Serotonin Deficiency Implicated in Rheumatoid Arthritis

Philadelphia, PA, March 9, 2016 – For the first time, serotonin (5-hydroxytryptamine, 5-HT) has been directly implicated in the pathophysiology of rheumatoid arthritis (RA). Although 5-HT is predominantly known as a neurotransmitter within the central nervous system, new evidence points to additional important functions for serotonin in the periphery. A report in The American Journal of Pathology shows that experimentally-induced RA in serotonin-deficient mice is worse than disease reported in controls and that some effects of RA can be reduced by serotonin or its agonists (compounds that activate serotonin receptors).

These findings may lay the groundwork for new treatment approaches for RA. “Our study highlights that 5-HT has a direct immunoregulatory role in arthritis. The development of treatments targeting 5-HT or 5-HT receptors could represent an exciting prospect to regulate the immune response in RA and open new perspectives to improve the therapeutic options for patients,” explained co-lead investigator Marie-Christine de Vernejoul of BIOSCAR, INSERM UMR_S1132 of the Hôpital Lariboisière, Unité Mixte de Recherche (UMR) 1132, Université Paris Diderot (Paris, France).

The investigators used a mouse model of RA known as collagen-induced arthritis (CIA) that produces features similar to that of human RA. Disease manifestations include cartilage and bone destruction, as well as the activation of cells responsible for bone resorption, known as osteoclasts. They compared the effects of CIA in normal mice to those in mice genetically bred with a deficiency in tryptophan hydroxylase-1, a key enzyme needed for serotonin production in peripheral tissues.

The investigators found that both the number and activity of osteoclasts were higher in 5-HT-deficient mice with arthritis. In addition, more bone resorption was detected both at the affected joints and at remote sites.
The serotonin-deficient mice with arthritis also showed changes in certain cell-signaling molecules known as cytokines (higher IL-17, higher TNF-α, and lower IL-4) in their paws. Specifically, they displayed a shift in the balance between T cell subtypes, especially regulatory T cells and Th17 lymphocytes.

“Altogether, our data show that 5-HT−deficient mice are characterized by a relative, dampened expansion of Treg associated with an enhanced shift toward a Th17 phenotype, a situation previously described in patients with arthritis,” noted co-lead investigator Francine Côté of the Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications Institut Imagine INSERM U1163/CNRS ERL 8254, Hôpital Necker (Paris, France).

Subsequent experiments using cell cultures showed that the balance between Th17/Treg cells could be normalized by the addition of 5-HT or 5-HT receptor agonists, revealing a direct regulatory role of serotonin in RA. These novel data suggest a new therapeutic target that could be important for this disabling disease.

#

NOTES FOR EDITORS

Full text of this study is available to credentialed journalists upon request; contact Eileen Leahy at +1 732-238-3628 or ajpmedia@elsevier.com. Journalists wishing to interview the authors should contact Francine Côté at francine.cote@free.fr.

This research was supported by the Arthritis Courtin’s Fundation, la Fondation pour la Recherche Médicale (FRM), le Centre National de la Recherche Scientifique (CNRS), and l’Université Paris Descartes. Tereza Coman was supported by a fellowship from Institut Imagine.

ABOUT THE AMERICAN JOURNAL OF PATHOLOGY
The American Journal of Pathology (http://ajp.amjpathol.org), official journal of the American Society for Investigative Pathology, seeks to publish high-quality, original papers on the cellular and molecular biology of disease. The editors accept manuscripts that advance basic and translational knowledge of the pathogenesis, classification, diagnosis, and mechanisms of disease, without preference for a specific analytic method. High priority is given to studies on human disease and relevant experimental models using cellular, molecular, animal, biological, chemical, and immunological approaches in conjunction with morphology.

The leading global forum for reporting quality original research on cellular and molecular mechanisms of disease, The American Journal of Pathology is the most highly cited journal in Pathology – close to 40,000 cites in 2014 – with an Impact Factor of 4.591 and Eigenfactor of 0.06689 according to the 2014 Journal Citation Reports®, Thomson Reuters, 2015, and an h-index of 217 according to the 2014 SCImago Journal and Country Rank.

ABOUT ELSEVIER
Elsevier (www.elsevier.com) is a world-leading provider of information solutions that enhance the performance of science, health, and technology professionals, empowering them to make better decisions, deliver better care, and sometimes make groundbreaking discoveries that advance the boundaries of knowledge and human progress. Elsevier provides web-based, digital solutions — among them ScienceDirect (www.sciencedirect.com), Scopus (www.scopus.com), Elsevier Research Intelligence (www.elsevier.com/research-intelligence), and ClinicalKey (www.clinicalkey.com) — and publishes over
2,500 journals, including *The Lancet* (www.thelancet.com) and *Cell* (www.cell.com), and more than 33,000 book titles, including a number of iconic reference works. Elsevier is part of RELX Group (www.relxgroup.com), a world-leading provider of information and analytics for professional and business customers across industries. www.elsevier.com