NEWS RELEASE
UNDER EMBARGO UNTIL NOVEMBER 13, 2018, 12:01 AM ET

Media contacts:
Eileen Leahy
Elsevier
+1 732 238 3628
ajpmedia@elsevier.com

Dr. Chhavi Chauhan
Scientific Editor
The American Journal of Pathology
+1 240 283 9724
cchauhan@asip.org

New transgenic rat model may enable better understanding of amyloid buildup in cerebral blood vessels

New insights into cerebral amyloid angiopathy using this rat model may advance research on cognitive impairment, particularly Alzheimer disease, according to a new study in The American Journal of Pathology

Philadelphia, November 13, 2018 – In a report in The American Journal of Pathology investigators describe the generation of a successful novel transgenic rat model that accumulates amyloid specifically in brain blood vessels and strongly mimics many of the associated detrimental changes that are observed in humans – a condition known as cerebral amyloid angiopathy (CAA), which is also commonly observed in Alzheimer disease.

Accumulation of β-amyloid in brain tissue is considered a hallmark pathological finding of Alzheimer disease. Less well known is that β-amyloid deposits are also found in small blood vessels of the brain, the condition known as CAA, which is also associated with impaired cognition and dementia. The lack of reliable preclinical animal models has limited our understanding of CAA.

Transgenic rats mimic many of the characteristics of human pathology, including amyloid deposits in small blood vessels in the brain, capillary structural changes, neuroinflammation, and microhemorrhages. “The transgenic rats, known as rTg-DI, develop progressive accumulation of brain blood vessel amyloid–associated inflammation, small bleeds, and occluded vessels in the brain and exhibit cognitive impairments,” explained William E. Van Nostrand, PhD, of the George and Anne Ryan Institute for Neuroscience, Department of Biomedical and Pharmaceutical Sciences, of the University of Rhode
Island, Kingston, RI, USA. “Although rats are still far from a perfect model to investigate CAA, the new model described here more completely mimics the pathological changes observed in the human brain and offers a better opportunity to test potential therapeutic interventions and develop useful biomarkers for this condition.”

Transgenic rats have had foreign DNA inserted into their genome. In this case, human amyloid precursor protein DNA was introduced into the rats’ DNA, rendering their offspring transgenic (having both human and rat DNA). The transferred DNA contained mutations that originated from patients with CAA, so that the rats would produce low levels of human mutant amyloid β peptides in their brains.

The investigators showed that human amyloid-β precursor protein was evident in neurons throughout the cortex, hippocampus, and thalamus of the rats. As the rats aged from three to 12 months, there was a progressive accumulation of the mutant amyloid-β peptides in the rat brains. At 12 months, fibrillar amyloid covered nearly 45 percent of capillaries in the thalamus, 70 percent of capillaries in the hippocampus, and 30 percent of capillaries in the cortex. Most of the peptides were of the shorter Aβ40 form, the type of amyloid that is found in human CAA.

The investigators observed that early-onset and progressive accumulation of cerebral microvascular fibrillar amyloid was accompanied by early-onset and sustained behavioral deficits in the transgenic rats. They performed more slowly on a behavioral test that measured the time taken to explore novel objects in an open field. “That the early-onset development of microvascular CAA and associated neuroinflammation coincided with early-onset and sustained cognitive deficits offers the promise of a unique model for the future elucidation as to how CAA can promote vascular-mediated cognitive impairment and dementia (VCID),” commented Dr. Van Nostrand.

Structural changes were seen in cerebral capillaries as the amyloid accumulated, including vessel fragmentation and increased tortuosity (twisting). There was also evidence of neuroinflammation, such as an elevated number of activated microglia around the blood vessels compared to wild-type rats.

The rTg-DI transgenic rats also developed numerous microbleeds and occluded microvessels in areas of microbleeds. Microbleeds in the hippocampus and thalamus were detected at six months, and this increased as the rTg-rats aged to 12 months. “This was an especially important finding since we know that the presence of cerebral microbleeds is a prominent clinical feature of CAA in humans,” noted Dr. Van Nostrand.

Caption: rTg-DI transgenic rats develop severe capillary/microvascular fibrillar amyloid accumulation accompanied by numerous microbleeds and occluded microvessels that were observed in areas of microbleeds. In (A), brain tissue from a twelve-month–old rTg-DI rat was stained for fibrillar amyloid using thioflavin-S (green) and immunolabeled for collagen type IV to identify cerebral microvessels (red); extensive microvascular amyloid is seen. Staining with
hemosiderin (blue) and counterstaining with pararosanline (pink) was used to identify microhemorrhages (B) and occluded microvessels (C) in the thalamic region. Scale bars = 50 µm.

There were some differences noted between human and rat CAA. For instance, in humans, microbleeds are more common in cortical regions, not in deep brain regions like the thalamus. Despite these differences between rTg-DI rats and humans, Dr. Van Nostrand believes “this unique model provides new opportunities to investigate the pathogenic development of CAA and its relation to VCID. rTg-DI rats will provide an improved platform for the development of biomarkers and preclinical testing of therapeutic interventions for this common small vessel disease.”

---

Notes for editors

This study was funded by NIH grants NS091969, NS09269, AG053991 and AG027317.

Full text of the study is available to credentialed journalists upon request; contact Eileen Leahy at +1 732 238 3628 or ajpmedia@elsevier.com. Journalists wishing to interview the authors should contact Dr. William E. Van Nostrand at wvannostrand@uri.edu.

About The American Journal of Pathology
The American Journal of Pathology, official journal of the American Society for Investigative Pathology, published by Elsevier, seeks high-quality original research reports, reviews, and commentaries related to the molecular and cellular basis of disease. The editors will consider basic, translational, and clinical investigations that directly address mechanisms of pathogenesis or provide a foundation for future mechanistic inquiries. Examples of such foundational investigations include data mining, identification of biomarkers, molecular pathology, and discovery research. High priority is given to studies of human disease and relevant experimental models using molecular, cellular, and organismal approaches. http://ajp.amjpathol.org

About Elsevier
Elsevier is a global information analytics business that helps institutions and professionals advance healthcare, open science and improve performance for the benefit of humanity. Elsevier provides digital solutions and tools in the areas of strategic research management, R&D performance, clinical decision support and professional education, including ScienceDirect, Scopus, SciVal, ClinicalKey and Sherpath. Elsevier publishes over 2,500 digitized journals, including The Lancet and Cell, 38,000 e-book titles and many iconic reference works, including Gray’s Anatomy. Elsevier is part of RELX Group, a global provider of information and analytics for professionals and business customers across industries. www.elsevier.com