New Study Challenges Link between HLA Class I Hyperexpression in Pancreas and Type 1 Diabetes
Discrepancy Found between Results from Immunohistochemistry and from Quantitative Techniques, According to Study Published in The American Journal of Pathology

Philadelphia, PA, January 5, 2015 – The cause of type 1 diabetes remains unknown. Several studies using immunohistochemistry (IHC) have independently reported hyperexpression of human leukocyte antigen (HLA) class I on pancreatic islet cells in young patients with recent-onset type 1 diabetes. Investigators have therefore suggested that HLA hyperexpression may be an important first step in the development of type 1 diabetes. However, a new study in The American Journal of Pathology challenges these findings and reports that results differ when quantitative molecular techniques are applied instead of IHC. The investigators suggest that the previously reported model may require reexamination.

“IHC is the most commonly used method to display protein expression in tissues. However, the pattern of expression in composite tissues, such as the pancreas, should be interpreted with caution because obtained results critically depend on the accessibility of the epitope(s) recognized by the primary antibody. Availability of epitopes on proteins in tissue sections varies markedly between tissues, type of fixation, and staining technique,” says Oskar Skog, PhD, of the Department of Immunology, Genetics, and Pathology of Uppsala University (Sweden).

According to Dr. Skog and his co-investigators, the clinical manifestations of type 1 diabetes result from the loss of insulin-producing beta cells in the portion of the pancreas known as the endocrine (hormone-secreting) pancreas. However, the pancreas also contains exocrine tissue that produces digestive enzymes secreted into the small intestine. Researchers studied both endocrine and exocrine pancreatic tissue to see whether the findings were specific to the tissue directly affected by type 1 diabetes.

The investigators, who are members of The Diabetes Virus Detection (DiViD) Study, analyzed fresh pancreatic tissue from living, newly-diagnosed type 1 diabetic patients, instead of relying on commonly studied post-mortem tissue. Previous reports were confirmed using IHC, showing pronounced and distinct hyperexpression of HLA class I, especially in endocrine tissue compared to exocrine tissue. When quantitative molecular techniques were used, such as Western blot analysis, flow cytometry, real-time quantitative polymerase chain reaction (PCR), or RNA sequencing analyses, no differences were
observed in the levels of HLA class I expression between endocrine and exocrine tissue in patients with recent-onset type 1 diabetes. In addition, no differences were found between samples from type 1 diabetic and non-diabetic subjects.

Further investigation found no important differences in messenger RNA expression for the major histocompatibility complex class 1-specific enhanceosome and related transcription factors in isolated islets, and no differences in the expression of cytokines known to up-regulate HLA expression.

“Islet hyperexpression of HLA class I has been suggested to be an important step in the development of type 1 diabetes by providing a so-called fertile field for pre-existing autoreactive T cells. Our findings suggest that this model may need revision,” notes Dr. Skog. “The results presented by our study provide important clues for a better understanding of how this complex disease develops.”

Type 1 diabetes, previously known as juvenile diabetes, is characterized by destruction of pancreatic beta cells, resulting in an absence of insulin. It accounts for 5% to 10% of diabetes cases in the world. Some, but not all, cases of type 1 diabetes can be attributed to an autoimmune reaction that is influenced by genetic and environmental factors. The genes of the HLA system, which are located on chromosome 6, encode antigenic glycoproteins that are present on the surface of most cells in the body, including B cells, T cells, and fibroblasts. Individuals with certain variants of HLA genes are at heightened risk of developing autoimmune diseases, including type 1 diabetes, psoriasis, and reactive arthritis. The HLA complex helps the immune system differentiate the body’s proteins from those of foreign invaders such as viruses and bacteria. The class I region of the HLA complex includes the HLA-A, -B, and -C genes; these loci code for the heavy chain of the HLA-class I molecules.

NOTES FOR EDITORS


This work was supported by the Swedish Medical Research Council grant 65X-12219-15-6, EU-FP7-Health 2010 from the Persistent Virus Infection in Diabetes Network (PEVNET) 261441, Novo Nordisk Fund grant 5861, Diabetes Wellness Sweden grant 0948/2013SW, and the Swedish Diabetes Foundation and the Family Emfors Fund. Dr. Skog is partially supported by NIH grant U01AI065192-06. The Diabetes Virus Detection (DiViD) Study is supported by The Health Region South-East, Norway. Work performed at Uppsala Genome Center has been funded by RFI/VR SNISS (Radet for Forskningens Infrastrukturer/Vetenskapsradet; Swedish National Infrastructure for Large Scale Sequencing and Science for Life Laboratory, Uppsala.

Full text of this study is available to credentialed journalists upon request; contact Eileen Leahy at 732-238-3628 or ajpmedia@elsevier.com. Journalists wishing to interview the authors may contact Oskar Skog at oskar.skoq@igp.uu.se.

ABOUT THE AMERICAN JOURNAL OF PATHOLOGY
The American Journal of Pathology (http://ajp.amjpathol.org), official journal of the American Society for Investigative Pathology, seeks to publish high-quality, original papers on the cellular and molecular biology of disease. The editors accept manuscripts that advance basic and translational knowledge of the pathogenesis, classification, diagnosis, and mechanisms of disease, without preference for a specific analytic method. High priority is given to studies on human disease and relevant experimental models using cellular, molecular, animal, biological, chemical, and immunological approaches in conjunction with morphology.
The leading global forum for reporting quality original research on cellular and molecular mechanisms of
disease, The American Journal of Pathology is the most highly cited journal in Pathology – over 39,000
 cites in 2013 – with an Impact Factor of 4.602 and Eigenfactor of 0.07076 according to the 2013 Journal
Citation Reports®, Thomson Reuters, and an h-index of 206 according to the 2013 SCImago Journal and
Country Rank.

ABOUT ELSEVIER
Elsevier is a world-leading provider of information solutions that enhance the performance of science,
health, and technology professionals, empowering them to make better decisions, deliver better care, and
sometimes make groundbreaking discoveries that advance the boundaries of knowledge and human
progress. Elsevier provides web-based, digital solutions — among them ScienceDirect
(www.sciencedirect.com), Scopus (www.scopus.com), Elsevier Research Intelligence
(www.elsevier.com/research-intelligence) and ClinicalKey (www.clinicalkey.com) — and publishes nearly
2,200 journals, including The Lancet (www.thelancet.com) and Cell (www.cell.com), and over 25,000
book titles, including a number of iconic reference works.

The company is part of Reed Elsevier Group PLC (www.reedelsevier.com), a world-leading provider of
professional information solutions in the Science, Medical, Legal and Risk and Business sectors, which is
jointly owned by Reed Elsevier PLC and Reed Elsevier NV. The ticker symbols are REN (Euronext
Amsterdam), REL (London Stock Exchange), RUK and ENL (New York Stock Exchange).