Increasing Evidence Points to Inflammation as Source of Nervous System Manifestations of Lyme Disease
Results Show that Anti-Inflammatories May Prevent Many Neuropathologic Effects of Lyme Neuroborreliosis, According to Study Published in *The American Journal of Pathology*

Philadelphia, PA, April 16, 2015 – About 15% of patients with Lyme disease develop peripheral and central nervous system involvement, often accompanied by debilitating and painful symptoms. New research indicates that inflammation plays a causal role in the array of neurologic changes associated with Lyme disease, according to a study published in *The American Journal of Pathology*. The investigators at the Tulane National Primate Research Center and Louisiana State University Health Sciences Center also showed that the anti-inflammatory drug dexamethasone prevents many of these reactions.

“These results suggest that inflammation has a causal role in the pathogenesis of acute Lyme neuroborreliosis,” explained Mario T. Philipp, PhD, Professor of Microbiology and Immunology and chair of the Division of Bacteriology and Parasitology at Tulane National Primate Research Center (Covington, LA).

Lyme disease in humans results from the bite of a tick infected with the spirochete *Borrelia burgdorferi* (Bb). As Bb disseminates throughout the body, it can cause arthritis, carditis, and neurologic deficits. When the nervous system is involved, it is called Lyme neuroborreliosis (LNB). Clinical symptoms of LNB of the peripheral nervous system may include facial nerve palsy, neurogenic pain radiating along the back into the legs and feet, limb pain, sensory loss, or muscle weakness. Central nervous system involvement can manifest as headache, fatigue, memory loss, learning disability, depression, meningitis, and encephalopathy.

To understand further the neuropathologic effects of Bb infection, researchers infected 12 rhesus macaques with live *B. burgdorferi*; two animals were left uninfected as controls. Of the 12 Bb-inoculated animals, four were treated with the anti-inflammatory steroid dexamethasone, four with the non-steroidal...
anti-inflammatory drug (NSAID) meloxicam, and four remained untreated. Half of each group was studied for eight weeks postinoculation and the other half for 14 weeks.

The researchers examined the role of inflammation in the nervous systems of Bb-infected animals. Significantly elevated levels of the inflammatory mediators interleukin-6 (IL-6), IL-8, CCL2, and CXCL13 were observed, as well as pleocytosis (increased cell counts, primarily white blood cells) in the cerebrospinal fluid of all infected animals – except in those treated with dexamethasone. "Chemokines such as IL-8 and CCL2 are known to mediate the influx of immune cells in the central nervous system compartment during bacterial meningitis, and CXCL13 is the major determinant of B cell recruitment into the cerebrospinal fluid during neuroinflammation," explained Dr. Philipp.

Infection with Bb led to many histopathologic findings in infected animals not treated with dexamethasone, such as leptomenigitis, vasculitis, focal inflammation in the brain and spinal cord, and necrotizing focal neurodegeneration and demyelination in the cervical spinal cord. Evaluation of the dorsal root ganglia showed inflammation with neurodegeneration, along with significant apoptosis of neuronal and satellite glial cells (which surround sensory neurons), in all infected animals with the exception of those treated with dexamethasone. Researchers were able to quantify the protective effect of dexamethasone treatment in protecting both satellite glial cell and neuronal apoptosis; in contrast, meloxicam treatment was only effective in protecting against satellite glial cell apoptosis and only after prolonged administration.

The dorsal roots of animals infected with live Bb (but not treated with dexamethasone) showed the presence of abundant lymphocytes and monocytes. Interestingly, reactions near the injection sites were histologically different from the more diffuse inflammation found along the spinal cord. The pathology found in the dorsal root ganglia and sensory nerves may explain the localized pain and motor deficits that Lyme disease patients experience close to the origin of the tick bite.

Some patients with Lyme disease also show evidence of demyelinating neuropathy and slowing nerve conduction. Nerve conduction studies in motor and sensory nerves of the macaques showed that the Bb infection resulted in specific electrophysiological abnormalities (increased F wave latencies and chronodispersion) that could be prevented with dexamethasone.

Although antibiotics are the standard and necessary first-line treatment for Lyme disease, the results show the potential therapeutic impact of anti-inflammatory or immune-modulatory agents for Lyme-related neuroborreliosis. Most of the neuropathological changes produced by Bb infection were prevented by dexamethasone, a broad-spectrum steroidal anti-inflammatory drug, whereas the non-steroidal anti-inflammatory drug meloxicam was generally ineffective or only partially effective. Analyses of the differences in the mechanisms of action of both drugs may provide a blueprint for the development of new adjuvant treatments for LNB.

"Importantly, we found necrotizing myelitis and degeneration in the spinal cord, neurodegeneration in the dorsal root ganglia, and demyelination in the nerve roots only when lymphocytic inflammatory lesions were also observed in both the central nervous system and peripheral nervous system," stated Dr. Philipp. "Our results suggest that ongoing cytokine activation in the nervous system can contribute to the persistent symptoms of fatigue, pain, and cognitive dysfunction that patients sometimes experience despite having been treated for Lyme disease."

NOTES FOR EDITORS

This work was supported by grants from the National Institute of Neurologic Disorders and Stroke through grant NS048952, and by the National Center for Research Resources and the Office of Research Infrastructure Programs of the National Institutes of Health through grant P51OD011104/P51RR000164.

Full text of this study is available to credentialed journalists upon request; contact Eileen Leahy at 732-238-3628 or ajpmedia@elsevier.com. Journalists wishing to interview Dr. Philipp via email may contact Keith Brannon, associate director of public relations at Tulane University, at 504-862-8789 or kbrannon@tulane.edu.

ABOUT THE AMERICAN JOURNAL OF PATHOLOGY
The American Journal of Pathology (http://ajp.amjpathol.org), official journal of the American Society for Investigative Pathology, seeks to publish high-quality, original papers on the cellular and molecular biology of disease. The editors accept manuscripts that advance basic and translational knowledge of the pathogenesis, classification, diagnosis, and mechanisms of disease, without preference for a specific analytic method. High priority is given to studies on human disease and relevant experimental models using cellular, molecular, animal, biological, chemical, and immunological approaches in conjunction with morphology.

The leading global forum for reporting quality original research on cellular and molecular mechanisms of disease, The American Journal of Pathology is the most highly cited journal in Pathology – over 39,000 cites in 2013 – with an Impact Factor of 4.602 and Eigenfactor of 0.07076 according to the 2013 Journal Citation Reports®, Thomson Reuters, and an h-index of 206 according to the 2013 SCImago Journal and Country Rank.

ABOUT ELSEVIER
Elsevier is a world-leading provider of information solutions that enhance the performance of science, health, and technology professionals, empowering them to make better decisions, deliver better care, and sometimes make groundbreaking discoveries that advance the boundaries of knowledge and human progress. Elsevier provides web-based, digital solutions — among them ScienceDirect (www.sciencedirect.com), Scopus (www.scopus.com), Elsevier Research Intelligence (www.elsevier.com/research-intelligence), and ClinicalKey (www.clinicalkey.com) — and publishes nearly 2,200 journals, including The Lancet (www.thelancet.com) and Cell (www.cell.com), and over 33,000 book titles, including a number of iconic reference works. Elsevier is part of RELX Group plc (www.relxgroup.com), a world-leading provider of information solutions for professional customers across industries.