Biomarker Helps Predict Survival Time in Gastric Cancer Patients
MicroRNA 506 Acts as a Suppressor of Angiogenesis and Metastasis in Gastric Cancer, According to Research Published in The American Journal of Pathology

Philadelphia, PA, September 8, 2015 – Gastric cancer poses a significant health problem in developing countries and is typically associated with late-stage diagnosis and high mortality. A new study in The American Journal of Pathology points to a pivotal role played by the biomarker microRNA (miR)-506 in gastric cancer. Patients whose primary gastric cancer lesions express high levels of miR-506 have significantly longer survival times compared to patients with low miR-506 expression. In addition, miR-506 suppresses tumor growth, blood vessel formation, and metastasis.

“Epithelial-to-mesenchymal transition (EMT) is an important process that enables cancer cells to invade their surroundings and to metastasize,” explained lead investigator Xin Song, MD, PhD, of the Cancer Research Institute of Southern Medical University (Guangzhou, China) and Cancer Biotherapy Center of The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province, Kumming, China). “Our study presents evidence that miR-506 is a potent inhibitor of EMT.”

Mesenchymal cells play an important role in normal tissue repair as well as in pathological processes such as tissue fibrosis, tumor growth, and cancer metastasis. Polarized epithelial cells undergo biochemical changes to give rise to mesenchymal cells through EMT. The transformed cells have the ability to migrate away from the epithelial layer, invade other tissues, and resist apoptosis (normal programmed cell death). EMT is a key step during normal embryogenesis, but it is also now recognized to be involved in cancer pathophysiology. Changes in the expression of specific microRNAs, a class of small noncoding RNAs that regulate gene expression, are one of several mechanisms that may initiate an EMT.

Researchers examined the expression of one of these microRNAs, miR-506, which was in turn identified as a useful marker for stratifying gastric cancer patients. The researchers used quantitative real-time PCR in a blinded manner to detect miR-506 in human gastric cancer samples taken from 84 patients who had undergone cancer surgery. When samples were divided into groups with miR-506 levels above and below the mean, survival was found to be significantly longer in patients with high miR-506 expression. For
example, at 60 months, cumulative survival was approximately 80% in the high miR-506 expression group compared to approximately 30% in the low-expression group.

The investigators next examined miR-506 expression in cells from seven gastric cancer cell lines. They found that gastric cancer cells had lower levels of miR-506 than normal stomach tissue. Further analysis of cell growth in vitro showed that miR-506 levels were lowest in the cell lines that had the highest invasive activity (SGC-7901 cells), and the highest levels were seen in cell lines with the lowest invasive activity (BGC-823 cells), thus supporting the hypothesis that miR-506 acts as a suppressor of cell metastasis. Lending greater strength to this hypothesis, inhibitors of miR-506 counteracted the downstream activity of miR-506, such as increasing the invasiveness and mobility of BGC-823 cells.

Further experiments showed that miR-506 inhibits new blood vessel growth (angiogenesis), with miR-506 overexpression suppressing vascular tubule development in SGC-7901 cells and miR-506 inhibitors promoting the formation of a tubular vessel network in BGC-823 cells. They also showed that miR-506 overexpression was associated with decreased expression of matrix metalloproteinase-9 and -2, and provided evidence that miR-506 may be targeting the proto-oncogene ETS1. “These findings indicate that miR-506 is necessary and sufficient for angiogenesis suppression during gastric cancer progression,” commented Dr. Song.

“In summary, cancer is a complex disease and controlling cancer development and progression requires system level and integrative approaches. Our study suggests that miR-506 acts as a tumor suppressor in gastric cancer. Additional studies will be needed to explore the potential clinical utility of miR-506 as a potential biomarker for gastric cancer prognosis and as a new potential therapeutic target,” added Dr. Song.

NOTES FOR EDITORS

“miR-506 inhibits epithelial to mesenchymal transition and angiogenesis in gastric cancer,” by Zhen Li, Zhimin Liu, Suwei Dong, Jianhua Zhang, Jing Tan, Ying Wang, Chunlei Ge, Ruilei Li, Yuanbo Xue, Mei Li, Weiwei Wang, Xudong Xiang, Jinyan Yang, Haiyan Ding, Tao Geng, Kaitai Yao, and Xin Song (DOI: http://dx.doi.org/10.1016/j.ajpath.2015.05.017). This article appears in The American Journal of Pathology, Volume 185, Issue 9 (September 2015) published by Elsevier.

The study was supported by grants from the National Natural Science Foundation of China (#30671904, #81360322, #81060185, #81260307 and #81470005), Scientific Research Project of the Department of Education of Yunnan Province (#2011J043), Leading Talent of Health Systems of Yunnan Province (#L-201213), National Clinical Key Specialty Construction Projects of Oncology of the National Health and Family Planning Commission of China (awarded to the Tumor Hospital of Yunnan Province: 2013-2014).

Full text of this study is available to credentialed journalists upon request; contact Eileen Leahy at 732-238-3628 or ajpmedia@elsevier.com. Journalists wishing to interview the authors may contact Dr. Xin Song at songxin68@126.com or Dr. Kaitai Yao at ktyao@fimmu.com.

ABOUT THE AMERICAN JOURNAL OF PATHOLOGY

The American Journal of Pathology (http://ajp.amjpathol.org), official journal of the American Society for Investigative Pathology, seeks to publish high-quality, original papers on the cellular and molecular biology of disease. The editors accept manuscripts that advance basic and translational knowledge of the pathogenesis, classification, diagnosis, and mechanisms of disease, without preference for a specific analytic method. High priority is given to studies on human disease and relevant experimental models using cellular, molecular, animal, biological, chemical, and immunological approaches in conjunction with morphology.

The leading global forum for reporting quality original research on cellular and molecular mechanisms of disease, The American Journal of Pathology is the most highly cited journal in Pathology – close to
40,000 cites in 2014 – with an Impact Factor of 4.591 and Eigenfactor of 0.06689 according to the 2014 Journal Citation Reports®, Thomson Reuters, 2015, and an h-index of 217 according to the 2014 SCImago Journal and Country Rank.

ABOUT ELSEVIER
Elsevier (www.elsevier.com) is a world-leading provider of information solutions that enhance the performance of science, health, and technology professionals, empowering them to make better decisions, deliver better care, and sometimes make groundbreaking discoveries that advance the boundaries of knowledge and human progress. Elsevier provides web-based, digital solutions — among them ScienceDirect (www.sciencedirect.com), Scopus (www.scopus.com), Elsevier Research Intelligence (www.elsevier.com/research-intelligence), and ClinicalKey (www.clinicalkey.com) — and publishes over 2,500 journals, including The Lancet (www.thelancet.com) and Cell (www.cell.com), and more than 33,000 book titles, including a number of iconic reference works. Elsevier is part of RELX Group plc (www.relxgroup.com), a world-leading provider of information solutions for professional customers across industries. www.elsevier.com