Histamine Regulation in Glucose and Lipid Metabolism via Histamine Receptors

Model for Nonalcoholic Steatohepatitis in Mice

Ke-Yong Wang,* Akihide Tanimoto,**† Sohsuke Yamada,* Xin Guo,* Yan Ding,* Teruo Watanabe,‡ Takeshi Watanabe,§ Kimitoshi Kohnno,‖ Ken-Ichi Hirano,‖ Hideo Tsukada,** and Yasuyuki Sasaguri*

From the Departments of Pathology and Cell Biology,* and the Department of Molecular Biology,† School of Medicine, University of Occupational and Environmental Health, Kitakyushu; the Department of Molecular and Cellular Pathology,‡ Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima; the Laboratory of Pathology,‖ Fukuoka Wajiro Hospital, Fukuoka; the Center for Innovation in Immunoregulative Technology and Therapeutics,§ Kyoto University, Graduate School of Medicine, Kyoto; the Department of Cardiovascular Medicine,‖ Graduate School of Medicine, Osaka University, Osaka; and the Department of Central Research Laboratory,** Hamamatsu Photonics, Shizuoka, Japan

Histamine has been proposed to be an important regulator of energy intake and expenditure. The aim of this study was to evaluate histamine regulation of glucose and lipid metabolism and development of nonalcoholic steatohepatitis (NASH) with a hyperlipidemic diet. Histamine regulation of glucose and lipid metabolism, adipocytokine production, and development of hyperlipidemia-induced hepatic injury were studied in histamine H1 (H1R/−/−) and H2 (H2R/−/−) receptor knockout and wild-type mice. H1R/−/− mice showed mildly increased insulin resistance. In contrast, H2R/−/− mice manifested profound insulin resistance and glucose intolerance. High-fat/high-cholesterol feeding enhanced insulin resistance and glucose intolerance. Studies with two-deoxy-2-[18F]-fluoro-D-glucose and positron emission tomography showed a brain glucose allocation in H1R/−/− mice. In addition, severe NASH with hypoadiponectinemia as well as hepatic triglyceride and free cholesterol accumulation and increased blood hepatic enzymes were observed in H2R/−/− mice. H1R/−/− mice showed an obese phenotype with visceral adiposity, hyperleptinemia, and less severe hepatic steatosis and inflammation with increased hepatic triglyceride. These data suggest that H1R and H2R signaling may regulate glucose and lipid metabolism and development of hyperlipidemia-induced NASH. (Am J Pathol 2010, 177:713–723; DOI: 10.2353/ajpath.2010.091198)

Histamine, one of the mediators of inflammation and immunity, is produced from L-histidine by the rate-limiting enzyme histidine decarboxylase (HDC). HDC is expressed in various types of cells, including mast cells, monocytes/macrophages, T lymphocytes, enterochromaffin-like cells, and neuronal cells.1–3 The effects of histamine are mediated through specific histamine receptors, which have been classified into the H1, H2, H3, and H4 subtypes.4 The recent development of gene-modified mice lacking HDC or histamine receptors has provided valuable tools to analyze the functions of histamine.5 For example, HDC knockout (KO) mice were reported to show clinical features of visceral adiposity, hyperleptinemia, and decreased glucose tolerance.6 In addition, it was reported that H1R/−/− mice fed a high-fat diet showed increased fat deposition and leptin resistance and that disruption of the H3R gene in mice resulted in an obese phenotype and glucose intolerance, with elevated blood insulin and leptin levels.7,8 Taken

Histamine has been proposed to be an important regulator of energy intake and expenditure. The aim of this study was to evaluate histamine regulation of glucose and lipid metabolism and development of nonalcoholic steatohepatitis (NASH) with a hyperlipidemic diet. Histamine regulation of glucose and lipid metabolism, adipocytokine production, and development of hyperlipidemia-induced hepatic injury were studied in histamine H1 (H1R/−/−) and H2 (H2R/−/−) receptor knockout and wild-type mice. H1R/−/− mice showed mildly increased insulin resistance. In contrast, H2R/−/− mice manifested profound insulin resistance and glucose intolerance. High-fat/high-cholesterol feeding enhanced insulin resistance and glucose intolerance. Studies with two-deoxy-2-[18F]-fluoro-D-glucose and positron emission tomography showed a brain glucose allocation in H1R/−/− mice. In addition, severe NASH with hypoadiponectinemia as well as hepatic triglyceride and free cholesterol accumulation and increased blood hepatic enzymes were observed in H2R/−/− mice. H1R/−/− mice showed an obese phenotype with visceral adiposity, hyperleptinemia, and less severe hepatic steatosis and inflammation with increased hepatic triglyceride. These data suggest that H1R and H2R signaling may regulate glucose and lipid metabolism and development of hyperlipidemia-induced NASH. (Am J Pathol 2010, 177:713–723; DOI: 10.2353/ajpath.2010.091198)

Histamine, one of the mediators of inflammation and immunity, is produced from L-histidine by the rate-limiting enzyme histidine decarboxylase (HDC). HDC is expressed in various types of cells, including mast cells, monocytes/macrophages, T lymphocytes, enterochromaffin-like cells, and neuronal cells.1–3 The effects of histamine are mediated through specific histamine receptors, which have been classified into the H1, H2, H3, and H4 subtypes.4 The recent development of gene-modified mice lacking HDC or histamine receptors has provided valuable tools to analyze the functions of histamine.5 For example, HDC knockout (KO) mice were reported to show clinical features of visceral adiposity, hyperleptinemia, and decreased glucose tolerance.6 In addition, it was reported that H1R/−/− mice fed a high-fat diet showed increased fat deposition and leptin resistance and that disruption of the H3R gene in mice resulted in an obese phenotype and glucose intolerance, with elevated blood insulin and leptin levels.7,8 Taken

Histamine has been proposed to be an important regulator of energy intake and expenditure. The aim of this study was to evaluate histamine regulation of glucose and lipid metabolism and development of nonalcoholic steatohepatitis (NASH) with a hyperlipidemic diet. Histamine regulation of glucose and lipid metabolism, adipocytokine production, and development of hyperlipidemia-induced hepatic injury were studied in histamine H1 (H1R/−/−) and H2 (H2R/−/−) receptor knockout and wild-type mice. H1R/−/− mice showed mildly increased insulin resistance. In contrast, H2R/−/− mice manifested profound insulin resistance and glucose intolerance. High-fat/high-cholesterol feeding enhanced insulin resistance and glucose intolerance. Studies with two-deoxy-2-[18F]-fluoro-D-glucose and positron emission tomography showed a brain glucose allocation in H1R/−/− mice. In addition, severe NASH with hypoadiponectinemia as well as hepatic triglyceride and free cholesterol accumulation and increased blood hepatic enzymes were observed in H2R/−/− mice. H1R/−/− mice showed an obese phenotype with visceral adiposity, hyperleptinemia, and less severe hepatic steatosis and inflammation with increased hepatic triglyceride. These data suggest that H1R and H2R signaling may regulate glucose and lipid metabolism and development of hyperlipidemia-induced NASH. (Am J Pathol 2010, 177:713–723; DOI: 10.2353/ajpath.2010.091198)

Histamine, one of the mediators of inflammation and immunity, is produced from L-histidine by the rate-limiting enzyme histidine decarboxylase (HDC). HDC is expressed in various types of cells, including mast cells, monocytes/macrophages, T lymphocytes, enterochromaffin-like cells, and neuronal cells.1–3 The effects of histamine are mediated through specific histamine receptors, which have been classified into the H1, H2, H3, and H4 subtypes.4 The recent development of gene-modified mice lacking HDC or histamine receptors has provided valuable tools to analyze the functions of histamine.5 For example, HDC knockout (KO) mice were reported to show clinical features of visceral adiposity, hyperleptinemia, and decreased glucose tolerance.6 In addition, it was reported that H1R/−/− mice fed a high-fat diet showed increased fat deposition and leptin resistance and that disruption of the H3R gene in mice resulted in an obese phenotype and glucose intolerance, with elevated blood insulin and leptin levels.7,8 Taken
together, these studies indicate that histamine plays important roles in energy regulation and metabolism.

In contrast, insulin resistance/metabolic syndrome, which increases the risk for atherosclerosis and cardiovascular events, is an aggregate of disorders related to obesity or visceral adiposity, insulin resistance, hyperlipidemia, and hypertension. Recently, the liver has also been recognized as one of the pathological targets of metabolic syndrome.1,2,3 Insulin resistance is associated with increased adiposity and nonalcoholic fatty liver disease, which can lead to the advanced condition known as nonalcoholic steatohepatitis (NASH). Typical morphological features of NASH in humans include steatosis, inflammation and pericellular fibrosis.4 Obese and diabetic ob/db mice develop steatohepatitis, but not fibrosis, in their liver.4,5 Other obese and diabetic db/db mice fed a diet lacking methionine and choline exhibited liver fibrosis as a model of NASH.6 Adiponectin, an adipokine secreted from adipocytes,7,8 was recently reported to be centrally involved in the pathogenesis of metabolic syndrome and nonalcoholic fatty liver disease.9,10

Because the loss of histamine functions has been suggested to result in disturbed energy regulation and metabolism,6–8 we speculated that the functions of histamine might be closely related to the pathogenesis of insulin resistance syndrome, metabolic disturbances, and NASH. In this study, we evaluated the phenotypic differences of wild-type, H1R–/–, and H2R–/– mice in terms of glucose metabolism, lipid metabolism, and the expression of adipokines, including adiponectin and leptin after high-fat/high-cholesterol diet (HcD). In addition, we examined in vivo glucose uptake using 2-deoxy-2-[18F]-fluoro-D-glucose ([18F]FDG) and positron imaging of whole mice bodies.

Materials and Methods

Animals and Diets

Targeting vectors were constructed in pMC1 (H1R–/–) and pPNT (H2R–/–) vectors and transfected into E14 ES cells. After the neo+ colonies were selected and verified by PCR and Southern blotting, the targeted ES cells were injected into blastocysts from C57BL/6 mice. The resulting male chimeras were mated with C57BL/6 mice to generate heterozygous mice.11,12 Experiments were performed on 8-week-old male wild-type, H1R–/–, and H2R–/– mice (backcrossed for nine generations) weighing 20–25 g (7–30 mice per experiment). Mice were fed a normal chow diet (NcD) or a HcD (1.25% cholesterol, 0.5% cholic acid, and 15% lard) for 14 weeks. On a caloric basis, HcD consisted of 41.5% fat from lard, 0.5% cholic acid, and 15% lard for 14 weeks. On a caloric basis, HcD consisted of 41.5% fat from lard, 0.5% cholic acid, and 15% lard for 14 weeks.

Blood Levels of Adiponectin and Leptin

Blood levels of adiponectin and leptin were measured by enzyme-linked immunosorbent assay (Morinaga, Tokyo, Japan). Blood insulin levels were also measured by an enzyme-linked immunosorbent assay (R&D Systems, Minneapolis, MN) in accordance with the manufacturer’s instructions.

Real-Time PCR

After extracting total RNA from the liver, skeletal muscle and visceral adipose tissue using TRIzol reagent (Life Technologies, Grand Island, NY), the mRNA expression of glucose transporters (Glut), adiponectin receptor (AdipoR), sterol-responsive element-binding protein-1c (SREBP-1c) and 2 (SREBP-1 and -2), hydroxymethylglutaryl-CoA reductase (HMGR) and fatty acid synthase (FASn) was analyzed by real-time PCR (TaqMan probe) using the primer pair summarized in Table 1. The levels of mRNA expression were normalized by those of the expression of 18s ribosomal RNA in the same samples.

Western Blotting of FASn

Fresh frozen liver tissues were lysed with a lysis buffer (10 mmol/L Tris-HCl [pH 7.5], 0.4 M NaCl, 1% Triton X-100, 0.1% Nonidet P-40, and 1 mmol/L phenylmethylsulfonyl fluoride) and applied to SDS-PAGE and electrophoresis onto polyvinylidene difluoride membrane. The expression of hepatic FASn was detected using anti-FASn antibody (American Research Products, Belmont, MA).

Dissection Analysis of [18F]FDG in Mice

The production of [18F]FDG was performed according to a method described elsewhere.22 [18F]FDG (2.5 MBq) was injected into mice through the tail veins. The mice were then sacrificed by decapitation under chloral hydrate anesthesia 45 minutes after the injection. Blood
data were acquired with a 1-minute time frame interval dose of 2.5 MBq into each mouse via the tail vein. The opposing detectors arranged in a horizontal mode. acrylic plate and placed on the midplane between two with chloral hydrate were positioned prone on an tonics, Hamamatsu, Japan). Two mice anesthetized labeled compound were determined with a planar imaging system (PPIS-4800; Hamamatsu Pho- beled compound were determined with a planar imaging system (PPIS-4800; Hamamatsu Pho- nics, Hamamatsu, Japan). Two mice anesthetized labeled compound were determined with a planar imaging system (PPIS-4800; Hamamatsu Pho- nics, Hamamatsu, Japan). Two mice anesthetized labeled compound were determined with a planar imaging system (PPIS-4800; Hamamatsu Pho- nics, Hamamatsu, Japan). Two mice anesthetized labeled compound were determined with a planar imaging system (PPIS-4800; Hamamatsu Pho-

Planar Positron Imaging

The kinetics and distribution patterns of each radiolabeled compound were determined with a planar positron imaging system (PPIS-4800; Hamamatsu Photonics, Hamamatsu, Japan). Two mice anesthetized with chloral hydrate were positioned prone on an acrylic plate and placed on the midplane between two opposing detectors arranged in a horizontal mode. Each radiolabeled compound was i.v. injected at a dose of 2.5 MBq into each mouse via the tail vein. The data were acquired with a 1-minute time frame interval for 45 minutes, and summation images were created by averaging the data obtained from 30 to 45 minutes after injection.

Histological Examination

The resected organs were fixed in 15% phosphate-buffered formalin and embedded in paraffin. Five-micrometer-thick sections were stained with H&E and Azan-Mallory stain or used for immunostaining with anti-a-smooth muscle actin antibody (α-SMA, DakoCytomation, Tokyo, Japan), as described previously. Paraffin sections of the liver, which were fixed in osmium tetroxide, were stained with Oil red-O to assess lipid accumulation. The degree of fat accumulation (fat accumulation score) was categorized into four categories: no lipid droplets (score = 0); lipid droplets in <50% of hepatocytes (score = 1); lipid droplets present in up to 75% of hepatocytes (score = 2); or lipid droplets in >75% of the hepatocytes (score = 3). The intensity of inflammation (inflammation score) was also categorized into four categories: no inflammation (score = 0); <10 inflammatory foci, each consisting of an aggregation of more than five inflammatory cells, in 10 microscopic fields viewed at ×200 (score = 1); ≥10 inflammatory foci (score = 2); or uncountable diffuse or fused inflammatory foci in the liver lobules (score = 3). Frozen sections of formalin-fixed liver underwent fluorescent staining to demonstrate the accumulation of neutral lipids (HCS LipidTOX Phospholipidosis and Steatosis Detection kits; Molecular Probes, Eugene OR).

Pancreatic tissue was stained with H&E and immunostained to detect insulin-, glucagon-, and somatostatin-positive cells (DakoCytomation). The size and numbers of islets per unit area were assessed using computer-assisted morphometry (NIH Image).

Analysis of Hepatic Injury and Lipid Content

Blood levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were measured using commercial kits (Wako Pure Chemical, Osaka, Japan). For the examination of hepatic lipid profile, snap frozen liver tissue (30 mg) was homogenized and extracted with chloroform-methanol (2/1 v/v) solution. The organic phase was dried and resolubilized in 2-propanol. Then the content of cholesterol in free and total, and triglyceride (TG) was determined using commercial kits (Wako Pure Chemical).

Statistical Analysis

All results are expressed as mean ± SE. Statistical analysis of the differences between groups was assessed by analysis of variance, and considered significant at \(P < 0.05 \).
Results

Histological Examination of Pancreatic Islet Cells

The pancreatic islets were hypertrophic in H1R−/− mice in comparison with those from wild-type and H2R−/− mice (Figure 1A). Immunohistochemically, the proportion of islet cells expressing insulin, glucagon, and somatostatin was not different among wild-type and KO mice (data not shown). The number (Figure 1B) and size of islets (Figure 1C) per unit area were significantly higher in H1R−/− mice.

Effect of Histamine Receptor Deficiency on Insulin and Glucose Challenge Tests

With respect to mice fed NcD, nonfasting blood glucose levels showed no difference in wild-type and H1R−/− mice, but those in H2R−/− mice showed increased than in wild-type mice (time 0; Figure 2A). After insulin challenge, blood glucose levels in H1R−/− mice were higher than those in wild-type mice at 120 minutes. In contrast, H2R−/− mice showed increased blood glucose at 60 and 120 minutes (Figure 2A). There was reduced clearance of glucose after glucose challenge only in H2R−/− mice (Figure 2B). Although the blood insulin levels in H2R−/− mice were lower than those in wild-type mice (time 0 in Figure 2C), the insulin levels after the glucose challenge were comparable with those in wild-type and H1R−/− mice (Figure 2C).

After 14 weeks of HcD feeding, the nonfasting blood glucose levels were significantly increased in all groups (time 0; Figure 2D, P < 0.05 NcD versus HcD). The blood glucose levels after insulin challenge were not increased in H1R−/− mice but higher in H2R−/− mice at 30 minutes. Results of glucose challenge showed impaired glucose clearance in all groups of mice (Figure 2E; P < 0.05 NcD versus HcD). Of note, glucose clearance in HcD-fed H2R−/− mice was markedly impaired after the glucose challenge (P < 0.05 versus HcD-fed wild-type mice). The insulin levels after glucose challenge were comparable with those in wild-type, H1R−/−, and H2R−/− mice (Figure 2F).

Positron Imaging and in Vivo Distribution of [18F]FDG

The planar positron imaging demonstrated enhanced glucose uptake in the brain of H1R−/− mice with NcD.
In the skeletal muscles, FDG uptake was higher in H1R−/− mice. Glut4 expression was increased in both groups of KO mice (Figure 4B). By contrast, Glut1 expression was decreased in H2R−/− mice in skeletal muscle. Glut4 expression was decreased in both H1R−/− and H2R−/− mice (Figure 4C).

Expression of Gluts in the Brain, Liver, and Skeletal Muscle

The expression of Gluts 1, 2, 3, and 4 in the brain was investigated in HCD-fed mice (12 weeks of feeding). The brain Glut1 and Glut2 expression were increased in H1R−/− mice. The expression of Glut3 was lower in H1R−/− mice than in wild-type and H2R−/− mice, whereas Glut4 expression was increased in both groups of KO mice (Figure 4A). In the liver, Glut1 expression was decreased and Glut2 expression was increased in both...
were observed in H2R−/− mice (supplemental Figure 1, see http://ajp.amjpathol.org).

Morphometric Analysis of Lipid Accumulation and Inflammation in the Liver

Oil-red O staining revealed small numbers of lipid droplets in the wild-type liver (Figure 5M). The numbers of lipid-positive hepatocytes and droplets numbers in each hepatocyte were increased in H1R−/− (Figure 5N) and H2R−/− mice (Figure 5O). The lipid droplets in H2R−/− mice, however, in most cases, showed variable in size, indicating mixed micro- and macrovesicular steatosis (Figure 5O). Fluorescent staining (LipidTOX) also demonstrated an increased lipid accumulation in the liver from H1R−/− and H2R−/− mice (supplemental Figure 2, see http://ajp.amjpathol.org). Morphometric analyses revealed that H2R−/− mice showed more severe lipid accumulation and inflammation than wild-type and H1R−/− mice after 6 weeks of HcD feeding (Figure 6A). Although the lipid accumulation in wild-type mice was comparable to that in H1R−/− and H2R−/− mice after 14 weeks of HcD, no inflammation was progressed in the liver of wild-type mice (Figure 6B). To clearly demonstrate the difference in lipid content and profile in each mice group, hepatic TG and cholesterol were measured from the liver tissues. The hepatic TG was increased in H1R−/− mice, whereas TG, total, and free cholesterol were markedly increased in H2R−/− mice (Figure 6C).

Increased Blood AST and ALT in H2R−/− Mice

The blood AST and ALT were significantly increased only in H2R−/− mice, indicating a presence of liver cell death.
Twenty percent of HcD-fed H2R\(^{-/-}\) mice were dead before 12 weeks of the feeding (2.3% dead in H1R\(^{-/-}\)/H1R\(^{-/-}\)/H1R\(^{-/-}\) mice, comparable with wild-type mice) possibly because of hepatic failure from severe hepatic inflammation and steatosis. Considering the histological findings, the induction of macrovesicular steatosis and ballooning of hepatocytes with inflammation and fibrosis by hyperlipidemia in H2R\(^{-/-}\)/H2R\(^{-/-}\)/H2R\(^{-/-}\) mice is consistent with those seen in human NASH.\(^{13}\)

Expression of Leptin, Adiponectin, and AdipoR after HcD Feeding for 12 Weeks

As shown in Figure 7A, the blood leptin levels were higher in H1R\(^{-/-}\)/H1R\(^{-/-}\)/H1R\(^{-/-}\) mice than those in wild-type mice, while the blood adiponectin levels were significantly lower in H2R\(^{-/-}\)/H2R\(^{-/-}\)/H2R\(^{-/-}\) mice than in wild-type mice (Figure 7B). Hepatic AdipoR1 expression in H1R\(^{-/-}\)/H1R\(^{-/-}\)/H1R\(^{-/-}\) mice was comparable to that in wild-type mice (Figure 7C) but that of AdipoR2 was decreased in both groups of KO mice (Figure 7D). In skeletal muscle, the expression of AdipoR1 and R2 did not differ between wild-type and KO mice (Figure 7, E and F).

Hepatic Expression of SREBPs, FASn, and HMGR after HcD Feeding for 12 Weeks

Expression of SREBP-1, a master regulator which up-regulates expression of enzymes involved in hepatic fatty acid biosynthetic pathway, including FASn, was investigated. The hepatic expression of SREBP-1 was moderately increased in H1R\(^{-/-}\)/H1R\(^{-/-}\)/H1R\(^{-/-}\) mice and markedly decreased in H2R\(^{-/-}\)/H2R\(^{-/-}\)/H2R\(^{-/-}\) mice (Figure 8A) compared with wild-type mice. The mRNA and protein expression of FASn were decreased in H2R\(^{-/-}\)/H2R\(^{-/-}\)/H2R\(^{-/-}\) mice (Figure 8, B and C). Although the mRNA expression of SREBP-2 was decreased in H1R\(^{-/-}\)/H1R\(^{-/-}\)/H1R\(^{-/-}\) and H2R\(^{-/-}\)/H2R\(^{-/-}\)/H2R\(^{-/-}\) mice, one of its target genes, HMGR, was moderately decreased in H2R\(^{-/-}\)/H2R\(^{-/-}\)/H2R\(^{-/-}\) mice (Figure 8, D and E).

Discussion

With NcD feeding, neither H1R\(^{-/-}\)/H1R\(^{-/-}\)/H1R\(^{-/-}\) nor H2R\(^{-/-}\)/H2R\(^{-/-}\)/H2R\(^{-/-}\) mice showed hyperlipidemia or any cardiovascular events but exhibited moderately impaired glucose metabolism. After the mice had been fed HcD to enhance hyperlipidemia-induced disturbances in glucose and lipid metabolism, both groups of KO mice exhibited impaired glucose uptake, as determined by the glucose challenge test. In addition, H1R\(^{-/-}\)/H1R\(^{-/-}\)/H1R\(^{-/-}\) mice showed obesity and visceral adiposity with hyperleptinemia, whereas H2R\(^{-/-}\)/H2R\(^{-/-}\)/H2R\(^{-/-}\) mice showed severe and early onset of NASH-like hepatic lesion with hypoadiponectinemia. Taken together, these findings sug-
gest that histamine signaling mediated through H1R and/or H2R may contribute to glucose and lipid metabolism.

Hyperlipidemic Mice Model to Study Glucose and Lipid Metabolisms

The most known models for NASH are leptin deficient (ob/ob) mice exhibiting obese and diabetic phenotypes, but the ob/ob mice require other factors such as methionine choline-deficient (MCD) diet, lipopolysaccharide, or carbon tetrachloride to induce hepatic inflammation and fibrosis. The MCD diet-induced models are also frequently used for the studies of NASH because MCD-fed mice show very similar histology of human NASH, including steatosis, inflammation, and fibrosis. Nevertheless, MCD diet, in itself, is not pathophysiological and induces lower plasma TG levels. In contrast, human NASH has been recognized as one of the pathological targets of metabolic syndrome and hyperlipidemia is closely associated with its pathogenesis. Therefore, HcD-induced models would be beneficial to study the development and progression of NASH.

Glucose Metabolism in H1R−/− and H2R−/− Mice

Lipid-induced insulin resistance has been extensively studied in experiments by acute lipid infusion and dietary overload. However, the extent of insulin resistance could not be fully elucidated using this lipid-induced etiology because the differences in severity of insulin resistance between H1R−/− and H2R−/− mice suggest the pathogeneses differ between the two groups of KO mice. H1R−/− mice have been reported to show leptin-resistant, diabetic, and obese phenotypes. In fact, H1R−/− mice exhibited moderate insulin resistance, hyperleptinemia, obesity, and visceral adiposity after HcD feeding. Leptin regulates metabolic efficiency and anorectic action via its receptors in hypothalamic nuclei, which receive projections from histamine neurons. Therefore, in the central nervous system, the mechanism that leads to decreased energy expenditure in HDC−/−, H1R−/−, and H3R−/− mice can be explained by impaired activity of the leptin–hypothalamic loop, because of the deficiency of neuronal histamine action and downstream leptin signaling, in which obese phenotypes and leptin resistance are common features. The leptin-mediated central mechanisms regulate insulin-dependent glucose utilization in the liver and the expression of uncoupling proteins in adipose tissue and skeletal muscle. Therefore, in H1R−/− mice, impairment of the leptin–histamine loop in the central nervous system results in decreased leptin-induced up-regulation of uncoupling proteins in adipose tissue.

In addition to the hypothalamic actions, leptin also exerts peripheral functions via leptin receptors expressed in peripheral tissues, including pancreatic islets. For example, leptin inhibits insulin gene expression and insulin secretion in isolated murine islets.

Leptin deficient (ob/ob), leptin receptor-deficient (db/db) and pancreas-specific leptin receptor-deficient mice, the pancreatic islets are hyperplastic because of deficient leptin signaling with enhanced insulin action in β cells. The presence of islet hypertrophy and hyperplasia in H1R−/− mice suggests that leptin signaling may also be impaired in H1R-deficient β cells and that leptin–histamine-mediated signaling may regulate β-cell growth and insulin secretion. Together with the fact that histamine can suppress islet cell proliferation, the islet hyperplasia in H1R−/− mice might not due to compensation for impaired glucose metabolism but might be resulted from deficiency of H1R and leptin-mediated histamine effects on islet cells. This might be a possible explanation that H2R−/− mice did not show islet hyperplasia even though the mice exhibited more profound glucose metabolic impairment.

H2R−/− mice exhibited enhanced insulin resistance and glucose intolerance, indicating reduced insulin sensitivity in peripheral tissues. Recent studies have revealed a central role of the adipocyte in metabolic regulation, which is mediated by the secretion of adipocytokines. In particular, hypoadiponectinemia is thought to be pivotal for the pathogenesis of insulin resistance/metabolic syndrome. In skeletal muscle and liver, adiponectin enhances insulin sensitivity through AdipoRs (AdipoR1 and AdipoR2, respectively) by increasing glucose transport. H2R−/− mice showed significantly decreased expression of adiponectin and hepatic AdipoR2 compared with wild-type mice, which may explain, in part, the decreased insulin sensitivity.

[18F]FDG Uptake and Gluts Expression in H1R−/− and H2R−/− Mice

The organ distribution of [18F]FDG was quite different in these KO mice. Of note, the relative and actual [18F]FDG uptake in the brain was higher in H1R−/− mice than in H2R−/− mice. However, the expression profile of the major Gluts (brain, Glut3; liver, Glut2; and skeletal muscle, Glut4) did not correspond to the distribution in [18F]FDG uptake. One possible explanation for the higher [18F]FDG uptake in the brain might be related to leptin and insulin effects on neuronal cells to enhance glucose uptake via Glut4. Actually both leptin and Glut4 expression was increased in H1R−/− mice after HcD feeding. Furthermore, the expression of other transporters Glut1 and Glut2, which located in the endothelial cells of blood brain barrier and astrocytes, respectively, were also increased in H1R−/− mice. The brain is given the highest priority to maintain its energy supply by a system of glucose allocation to the brain from the peripheral tissues, which is regulated by the neocortex and limbic-hypothalamic-pituitary-adrenal system. Disorders in energy on demand process can influence the glucose allocation and result in metabolic abnormalities such as anorexia, obesity, diabetes mellitus, and metabolic syndrome. Histamine signaling through H1 receptor might be involved in regulating the glucose allocation. However, the mechanisms and significance of uneven
organ distribution of [18F]FDG among these KO mice is still unknown.

Hepatic Steatosis and Inflammation in H1R−−−− and H2R−−−− Mice

Adiponectin is an anti-steatogenic cytokine and decreases the content of TG in the liver and inhibits liver fibrosis. AdipoR1 and R2 are the predominant receptors for adiponectin, and stimulation of AdipoR1-mediated signaling was shown to suppress hepatic expression of SREBP-1c, a master regulator which up-regulates enzymes involved in the fatty acid biosynthetic pathway, including FASn, to enhance de novo lipogenesis and lipid accumulation. In contrast, AdipoR2 is coupled to peroxisome proliferator-activated receptor-α signaling, which controls peroxisomal and mitochondrial β-oxidation. Thus, reduction of adiponectin signaling or targeted disruption of AdipoR enhances TG accumulation, lipid peroxidation, and oxidative stress leading to cell injuries and fibrosis. In contrast, adenovirus-mediated expression of either AdipoR1 or adipor2 in leptin receptor-deficient mice attenuated the hepatic TG accumulation. Our results show that hepatic AdipoR2 expression were decreased in both H1R−−−− and H2R−−−− mice. Therefore, the AdipoR2-mediated signaling in the liver might be reduced, which would partly explain the increased hepatic TG content in both KO mice.

Hepatic TG accumulation, however, is considered as a first step in the development of NASH, and a second hit is required to promote oxidative stress and inflammation, cell death, and fibrosis. In regard to hepatic lipodomics, recent studies have suggested a pathogenic role of hepatic cholesterol in progression to NASH. Especially, free cholesterol accumulation in the liver has been reported to sensitize tumor necrosis factor and Fas-induced hepatic injuries. Furthermore, other studies indicate that dietary cholesterol, rather than hepatic steatosis, is necessary for the progression to NASH, and a high-fat diet containing no cholesterol prevents hepatic inflammation without decreasing liver TG content. In the present study, NASH-like hepatic injuries manifested by liver cell ballooning, macrovesicular steatosis, and fibrosis were very often observed in H2R−−−− mice, in which hepatic free cholesterol was markedly increased. Therefore, these findings support a presence of the pathogenic role of free cholesterol, but not TG, in the progression to NASH. The mechanism(s), by which cholesterol, especially free cholesterol, accumulates in the liver of H2R−−−− mice, is not clearly understood yet. The expression of SREBPs, FASn, and HMGCR was decreased in H2R−−−− mice, which may be due to physiological feedback response on hyperlipidemia. Therefore, the possibility that altered hepatic lipogenesis might be related to cholesterol accumulation is still remained. Alternatively, enterohepatic circulation of cholesterol, including absorption, transport, excretion, and bile acid synthesis would be involved in the hepatic cholesterol accumulation in H2R−−−− mice or preserved expression of adiponectin and AdipoR1 in H1R−−−− mice may have a currently unknown protective effect on cholesterol accumulation, which are remained to be clarified in the future studies. In fact, acute hepatic injuries associated with clinical use of H2R antagonist has been reported in human cases, in which metabolic idiosyncrasy but not drug allergy is suggested for its etiology.

In summary, H1R and H2R signaling may play important roles in glucose and lipid metabolism, which seems to be mediated through both central and peripheral pathways. H1R signaling would be involved in central nervous system and pancreatic tissue to regulate glucose metabolism, while H2R signaling would be mainly related to peripheral action in the liver and skeletal muscle via adiponectin system to regulate both lipid and glucose metabolisms.

References

