Short Communication

Clonal Human (hNT) Neuron Grafts for Stroke Therapy

Neuropathology in a Patient 27 Months after Implantation

Peter T. Nelson,* Douglas Kondziolka,†
Lawrence Wechsler,‡ Steven Goldstein,†
James Gebel,† Sharon DeCesare,†
Elaine M. Elder,† Paul J. Zhang,* Alan Jacobs,§
Michael McGrogan,§ Virginia M.-Y. Lee,* and
John Q. Trojanowski*

From the Department of Pathology and Laboratory Medicine,*
the Division of Anatomical Pathology, University of
Pennsylvania, Philadelphia, Pennsylvania; the Departments of
Neurological Surgery† and Neurology,‡ University of Pittsburgh,
Pittsburgh, Pennsylvania; and Layton Bioscience, Incorporated,§
Sunnyvale, California

Although grafted cells may be promising therapy for stroke, survival of implanted neural cells in the brains of stroke patients has never been documented. Human NT2N (hNT) neurons derived from the NTera2 (NT2) teratocarcinoma cell line were shown to remain postmitotic, retain a neuronal phenotype, survive >1 year in host rodent brains and ameliorate motor and cognitive impairments in animal models of ischemic stroke. Here we report the first postmortem brain findings of a phase I clinical stroke trial patient implanted with human hNT neurons adjacent to a lacunar infarct 27 months after surgery. Neurofilament immunoreactive neurons were identified in the graft site, fluorescent in situ hybridization revealed polyploidy in groups of cells at this site just like polyploid hNT neurons in vitro, and there was no evidence of a neoplasm. These findings indicate that implanted hNT neurons survive for >2 years in the human brain without deleterious effects. (Am J Pathol 2002, 160:1201–1206)

Materials and Methods

Details of the phase I protocol for implantation of hNT cells in stroke patients have been described.25,26 Briefly, Leksell model G stereotaxic coordinate frame (Elekta Instruments, Atlanta, GA) was applied to the head under local anesthesia and mild sedation. Computerized to-
mography was performed for stereotaxic targeting to the stroke site. The cells were prepared in the Cellular Products Laboratory of the University of Pittsburgh Cancer Institute and viable hNT cells were implanted after the dura was opened and a stabilizing probe was inserted to a point 4-cm proximal to the final target. The cells were aspirated into a 250-μl syringe, the cannula was filled with the cell suspension, and a 20-μl volume of cells was injected slowly at the first target site. The instrument was then withdrawn to the second and third sites for subsequent implants. Immunosuppression was begun 1 week before surgery and discontinued 8 weeks after surgery.

The focus of the current study was a 71-year-old man with fixed motor deficits (marked left facial weakness, slight proximal movement of the left arm and fingers, mild leg weakness, but no dysarthria or aphasia) because of lacunar stroke of the right putamen. He received stereotaxic implantation of 2 × 10⁶ hNT neurons 34 months after infarction adjacent to the infarct in a phase I clinical trial (Figure 1A). This patient died of a presumptive myocar-dial infarction 27 months after implantation, but unlike 6 of the 12 patients in the trial who showed motor improvements, this patient demonstrated no motor recovery. The patient was embalmed, the brain removed and then transported to the University of Pennsylvania Hospital for neuropathological examination. Blocks of tissue were obtained from the entire lacune and graft site as well as multiple areas of isocortex, allocortex, brainstem, and cerebellum after further fixation in 10% neutral buffered formalin. Near serial paraffin-embedded sections were cut for histochemistry, including hematoxylin and eosin (H&E), Bodian, and Luxol Fast Blue/Nissl staining, as well as immunohistochemistry with antibodies to glial fibrillary acidic protein, neurofilament (NF) proteins (RMD020), and Ki-67 (MIB-1) as described.4,10,14

Fluorescent in situ hybridization (FISH) was performed on 4-μm-thick paraffin-embedded sections using Vysis’ LSI probes (Vysis, Downer’s Grove, IL) according to the manufacturer’s recommendations with two different sets of probes. To visualize chromosome 21 alone, Vysis’ LSI 21 SpectrumOrange (loci D21S259, D21S341, D21S342, region 21q22.13-q22.2; product no. 32-190002) was used. Vysis’ MultiVysion PGT (product no. 32-131080) was used to visualize both chromosome 13 (13q14; SpectrumRed) and chromosome 21 (21q22.13-q22.2; SpectrumGreen).

Tissues studied by FISH included the brain of the current patient (including the graft site wherein neurons were identified by immunohistochemistry), a control human brain, and the graft site in rat brains previously injected with hNT neurons. Cells with fluorescent signals were enumerated in at least 50 nonoverlapping nuclei in each case using a Nikon fluorescent microscope equipped with a triple band-pass filter set. The numbers of signals per nucleus were counted for each cell. Because hNT neurons required FISH and oil immersion fluorescence microscopy for identification, stereology could not be used to count the total hNT neurons in the graft site.

Results

On neuropathological examination of the 1246 g brain, macroscopic abnormalities were an ~3 × 1.5 × 2-cm resolved right putamen lacune encroaching on the internal capsule and an ~1-cm³ gliotic area medial to the infarct consistent with the site of the grafted hNT neurons (Figure 1, A and B). Although spinal cord was not available for study, corticospinal tract degeneration was noted to extend from the internal capsule through brainstem (Figure 1C). Histological examination demonstrated extensive gliosis with numerous glial fibrillary acidic protein-immunoreactive astrocytes and some hemosiderin-laden macrophages surrounding the infarct. Bodian and Luxol Fast Blue myelin stains revealed extensive loss of myelinated axons in the lacune and throughout the ipsilateral corticospinal tract (Figure 1D). No tumor was identified anywhere in the brain, and a monoclonal antibody to Ki-67, a protein expressed in cycling cells, immunolabeled <1% of cells (data not shown), consistent with the absence of a neoplasm. There was no evidence of additional infarcts, vasculopathy, inflammatory/infectious disorders, neurodegenerative disease, congenital anomalies, and so forth.

Histochemical stains demonstrated a population of neurons at the graft site (Figure 1E), and many were NF protein immunoreactive consistent with grafted hNT neurons in experimental animals (Figure 1F). However, implanted hNT neurons could not be identified unequivocally by immunohistochemistry in human brain, although hNT neurons can be identified in rodent brain with human species-specific antibodies to neuronal proteins.4,10,20–23 To overcome this problem and identify neurons in the graft site as hNT neurons, we exploited the known stable polyploidy of hNT neurons in FISH studies of sections through the graft site containing NF-positive neurons.21 Because hNT neurons have been shown to be polyploid for chromosome 21, but not for chromosome 13, we used FISH with DNA probes designed for use on formalin-fixed paraffin-embedded tissue. Accordingly, we conducted FISH to probe sections of the graft site in the patient’s brain, a control human brain, and the graft site in a rat brain previously injected with hNT neurons. A single chromosome 21-specific probe detected multiple signals in nuclei within the previously identified hNT neuron graft site of the rat brain (Figure 2A). Similarly, polyploidy for chromosome 21 was observed at the hNT neuron injection site in the current patient (Figure 2B). Using a cocktail of FISH probes for multiple chromosomes, we evaluated chromosome numbers in nuclei of neurons at the hNT graft site and demonstrated polyploidy in chromosome 21, but not chromosome 13, at the hNT neuron implantation site in the current patient (Figure 2; C to F and Figure 3). Thus, the presence of cells with a neuronal phenotype and distinctive chromosomal features of hNT neurons is consistent with survival of a population of grafted hNT neurons in the brain of this patient 27 months after implantation.
Discussion

The findings reported here confirm that grafted hNT neurons do not revert to a neoplasm, consistent with previous studies in experimental animals for >1 year. They suggest that a population of transplanted hNT neurons survived in the brain of this patient for 27 months after implantation. Although mature neurons duplicate chromosomes before cell death in Alzheimer’s disease, and fibroblasts from Alzheimer’s disease patients can be trisomic for chromosome 21, which could confound inter-
pretation of our FISH data here, the current patient did not have Alzheimer's disease and the control brain did not have polyploid neurons (Figure 3).

Although there have been a few previous studies describing the neuropathology of human brain transplant efforts, these implants were performed for therapy of...
neurodegenerative disease, and used embryonic human neural cells. 1,2,14,29,30 In contrast, hNT cells are well-studied clonal human neurons with several distinct advantages for use in therapy of human brain diseases. For example, they: 1) do not pose ethical or legal problems because they are not derived from human embryos; 2) are highly uniform unlike cells cultured from living animals; 3) do not harbor known human pathogens or potentially infectious agents present in xenografts; 4) are available in unlimited quantities produced in accordance with general manufacturing procedures for human use; 5) have been extensively characterized in vitro and are amenable to genetic engineering; 11–13 and 6) have been transplanted and characterized previously in normal rodents as well as in animal models of stroke, Huntington’s disease, Parkinson’s disease, and trauma, with encouraging results. 3, 4, 6, 18, 22, 24

Acknowledgments

We thank Dr. Clayton Wiley, Ms. Terry Schuck, Dr. Raghunath Puthiyaveetti, and Ms. Eileen Heatherby for advice and assistance with the post-mortem studies.

References

4. Borlongan CV, Tajima Y, Trojanowski JQ, Lee VM-Y, Sanberg PR: Transplantation of cryopreserved human embryonal carcinoma-de-
planted hNT neurons for Huntington’s disease. Cell Transplant 1999, 8:143–151