Advertisement

Correlation between Caspase Activation and Neurofibrillary Tangle Formation in Alzheimer’s Disease

      Although evidence suggests that neurofibrillary tangles (NFTs) and neuronal cell loss are prominent features of Alzheimer’s disease (AD), the relationship between the two remains unknown. In the present study, the relationship between the activation of apoptotic mechanisms and NFT formation in AD was investigated using a caspase-cleavage site-directed antibody to fodrin, an abundant neuronal cytoskeleton protein. This antibody recognized cleavage products of fodrin after digestion by caspase-3, but did not recognize full-length fodrin. In vitro analysis of this fodrin caspase-cleavage product (CCP) antibody demonstrates that it is a specific probe for the detection of apoptotic but not necrotic pathways in cultured neurons. To determine whether caspases cleave fodrin in vivo, tissue sections from controls and AD were immunostained for fodrin (CCPs). Although no staining was observed in control cases, labeling of neurons was observed in the hippocampus of all AD cases, which increased as a function of disease progression. To determine a possible relationship between caspase activation and NFT formation, double-labeling experiments with fodrin CCP and PHF-1 were performed. Co-localization of these markers was observed in many neurons, and quantitative analysis showed that as the extent of NFT formation increased, there was a significant corresponding increase in fodrin CCP immunolabeling (r = 0.84). Taken together, these results provide evidence for the activation of apoptotic mechanisms in neurons in the AD brain and suggest that there is an association between NFT formation and the activation of apoptotic pathways in AD.
      To read this article in full you will need to make a payment

      References

        • Mirra SS
        • Heyman A
        • McKeel D
        • Sumi SM
        • Crain BJ
        • Brounlee LM
        • Vogel FS
        • Hughes JP
        • VanBelle G
        • Berg L
        The consortium to establish a registry for Alzheimer's disease (CERAD) part II. Standardization of the neuropathological assessment of Alzheimer's disease.
        Neurology. 1991; 41: 479-486
        • Trojanowski JQ
        • Schmidt ML
        • Shin RW
        • Bramblett GT
        • Goedert M
        • Lee MY
        From pathological marker to potential mediator of neuronal dysfunction and degeneration in Alzheimer's disease.
        Clin Neurosci. 1993; 1: 184-191
        • Bramblett GT
        • Goedert M
        • Jakes R
        • Merrick SE
        • Trojanowski JQ
        • Lee VM
        Abnormal tau phosphorylation at Ser396 in Alzheimer's disease recapitulates development and contributes to reduced microtubule binding.
        Neuron. 1993; 10: 1089-1099
        • Alonso AC
        • Grundke-Iqbal I
        • Iqbal K
        Alzheimer's disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules.
        Nat Med. 1996; 2: 783-787
        • Gervais FG
        • Xu D
        • Robertson GS
        • Vaillancourt JP
        • Zhu Y
        • Huang J
        • LeBlanc A
        • Smith D
        • Rigby M
        • Shearman MS
        • Clarke EE
        • Zheng H
        • Van Der Ploeg LH
        • Ruffolo SC
        • Thornberry NA
        • Xanthoudakis S
        • Zamboni RJ
        • Roy S
        • Nicholson DW
        Involvement of caspases in proteolytic cleavage of Alzheimer's amyloid-beta precursor protein and amyloidogenic A beta peptide formation.
        Cell. 1999; 97: 395-406
        • Su JH
        • Anderson AJ
        • Cummings BJ
        • Cotman CW
        Immunohistochemical evidence for DNA fragmentation in neurons in the AD brain.
        Neuroreport. 1994; 5: 2529-2533
        • Yang F
        • Sun X
        • Beech W
        • Teter B
        • Wu S
        • Sigel J
        • Vinters HV
        • Frautschy SA
        • Cole GM
        Antibody to caspase-cleaved actin detects apoptosis in differentiated neuroblastoma and plaque-associated neurons and microglia in Alzheimer's disease [see comments].
        Am J Pathol. 1998; 152: 379-389
        • LaFerla FM
        • Tinkle BT
        • Bieberich CJ
        • Haudenschild CC
        • Jay G
        The Alzheimer's A beta peptide induces neurodegeneration and apoptotic cell death in transgenic mice.
        Nat Genet. 1995; 9: 21-30
        • Takahashi A
        Caspase: executioner and undertaker of apoptosis.
        Int J Hematol. 1999; 70: 226-232
        • Metzstein MM
        • Stanfield GM
        • Horvitz HR
        Genetics of programmed cell death in C. elegans: past, present and future.
        Trends Genet. 1998; 14: 410-416
        • Su JH
        • Deng G
        • Cotman CW
        Neuronal DNA damage precedes tangle formation and is associated with up-regulation of nitrotyrosine in Alzheimer's disease brain.
        Brain Res. 1997; 774: 193-199
        • Bancher C
        • Lassmann H
        • Breitschopf H
        • Jellinger KA
        Mechanisms of cell death in Alzheimer's disease.
        J Neural Transm Suppl. 1997; 50: 141-152
        • Lassmann H
        • Bancher C
        • Breitschopf H
        • Wegiel J
        • Bobinski M
        • Jellinger K
        • Wisniewski HM
        Cell death in Alzheimer's disease evaluated by DNA fragmentation in situ.
        Acta Neuropathol (Berl). 1995; 89: 35-41
        • Selznick LA
        • Holtzman DM
        • Han BH
        • Gokden M
        • Srinivasan AN
        • Johnson Jr, EM
        • Roth KA
        In situ immunodetection of neuronal caspase-3 activation in Alzheimer disease.
        J Neuropathol Exp Neurol. 1999; 58: 1020-1026
        • Stadelmann C
        • Deckwerth TL
        • Srinivasan A
        • Bancher C
        • Bruck W
        • Jellinger K
        • Lassmann H
        Activation of caspase-3 in single neurons and autophagic granules of granulovacuolar degeneration in Alzheimer's disease.
        Am J Pathol. 1999; 155: 1459-1466
        • Sugaya K
        • Reeves M
        • McKinney M
        Topographic associations between DNA fragmentation and Alzheimer's disease neuropathology in the hippocampus.
        Neurochem Int. 1997; 31: 275-281
        • MacGibbon GA
        • Lawlor PA
        • Sirimanne ES
        • Walton MR
        • Connor B
        • Young D
        • Williams C
        • Gluckman P
        • Faull RL
        • Hughes P
        • Dragunow M
        Bax expression in mammalian neurons undergoing apoptosis, and in Alzheimer's disease hippocampus.
        Brain Res. 1997; 750: 223-234
        • Su JH
        • Deng G
        • Cotman CW
        Bax protein expression is increased in Alzheimer's brain: correlations with DNA damage, Bcl-2 expression, and brain pathology.
        J Neuropathol Exp Neurol. 1997; 56: 86-93
        • Goodman SR
        • Zagon IS
        • Riederer BM
        Spectrin isoforms in mammalian brain.
        Brain Res Bull. 1987; 18: 787-792
        • Wang KK
        • Posmantur R
        • Nath R
        • McGinnis K
        • Whitton M
        • Talanian RV
        • Glantz SB
        • Morrow JS
        Simultaneous degradation of alphaII- and betaII-spectrin by caspase 3 (CPP32) in apoptotic cells.
        J Biol Chem. 1998; 273: 22490-22497
        • Nath R
        • Raser KJ
        • Stafford D
        • Hajimohammadreza I
        • Posner A
        • Allen H
        • Talanian RV
        • Yuen P
        • Gilbertsen RB
        • Wang KK
        Non-erythroid alpha-spectrin breakdown by calpain and interleukin 1 beta-converting-enzyme-like protease(s) in apoptotic cells: contributory roles of both protease families in neuronal apoptosis.
        Biochem J. 1996; 319: 683-690
        • Janicke RU
        • Ng P
        • Sprengart ML
        • Porter AG
        Caspase-3 is required for alpha-fodrin cleavage but dispensable for cleavage of other death substrates in apoptosis.
        J Biol Chem. 1998; 273: 15540-15545
        • Rohn TT
        • Ivens KJ
        • Bahr BA
        • Cotman CW
        • Cribbs DH
        A monoclonal antibody to amyloid precursor protein induces neuronal apoptosis.
        J Neurochem. 2000; 74: 2331-2342
        • Pike CJ
        • Cotman CW
        Cultured GABA-immunoreactive neurons are resistant to toxicity induced by β-amyloid.
        Neuroscience. 1993; 56: 269-274
        • Cribbs DH
        • Kreng VM
        • Anderson AJ
        • Cotman CW
        Crosslinking of membrane glycoproteins by Concanavalin A induces apoptosis in cortical neurons.
        Neuroscience. 1996; 75: 173-185
        • Braak H
        • Braak E
        Neuropathological stageing of Alzheimer-related changes.
        Acta Neuropathol (Berl). 1991; 82: 239-259
        • Johnson JK
        • Head E
        • Kim R
        • Starr A
        • Cotman CW
        Clinical and pathological evidence for a frontal variant of Alzheimer disease.
        Arch Neurol. 1999; 56: 1233-1239
        • Bahr BA
        • Tiriveedhi S
        • Park GY
        • Lynch G
        Induction of calpain-mediated spectrin fragments by pathogenic treatments in long-term hippocampal slices.
        J Pharmacol Exp Ther. 1995; 273: 902-908
        • Bennett V
        • Baines AJ
        • Davis J
        Purification of brain analogs of red blood cell membrane skeletal proteins: ankyrin, protein 4.1 (synapsin), spectrin, and spectrin subunits.
        Methods Enzymol. 1986; 134: 55-69
        • del Cerro S
        • Arai A
        • Kessler M
        • Bahr BA
        • Vanderklish P
        • Rivera S
        • Lynch G
        Stimulation of NMDA receptors activates calpain in cultured hippocampal slices.
        Neurosci Lett. 1994; 167: 149-152
        • Masliah E
        • Iimoto DS
        • Saitoh T
        • Hansen LA
        • Terry RD
        Increased immunoreactivity of brain spectrin in Alzheimer disease: a marker for synapse loss?.
        Brain Res. 1990; 531: 36-44
        • Riederer BM
        • Zagon IS
        • Goodman SR
        Brain spectrin(240/235) and brain spectrin(240/235E): two distinct spectrin subtypes with different locations within mammalian neural cells.
        J Cell Biol. 1986; 102: 2088-2097
        • Schotte P
        • Declercq W
        • Van Huffel S
        • Vandenabeele P
        • Beyaert R
        Non-specific effects of methyl ketone peptide inhibitors of caspases.
        FEBS Lett. 1999; 442: 117-121
        • Cummings BJ
        • Head E
        • Ruehl W
        • Milgram NW
        • Cotman CW
        The canine as an animal model of human aging and dementia.
        Neurobiol Aging. 1996; 17: 259-268
        • Selkoe DJ
        • Bell DS
        • Podlisny MB
        • Price DL
        • Cork LC
        Conservation of brain amyloid proteins in aged mammals and humans with Alzheimer's disease.
        Science. 1987; 235: 873-877
        • Martin SJ
        • Green DR
        Protease activation during apoptosis: death by a thousand cuts?.
        Cell. 1995; 82: 349-352
        • Martin SJ
        • O'Brien GA
        • Nishioka WK
        • McGahon AJ
        • Mahboubi A
        • Saido TC
        • Green DR
        Proteolysis of fodrin (non-erythroid spectrin) during apoptosis.
        J Biol Chem. 1995; 270: 6425-6428
        • Cryns VL
        • Bergeron L
        • Zhu H
        • Li H
        • Yuan J
        Specific cleavage of alpha-fodrin during Fas- and tumor necrosis factor-induced apoptosis is mediated by an interleukin-1beta-converting enzyme/Ced-3 protease distinct from the poly(ADP-ribose) polymerase protease.
        J Biol Chem. 1996; 271: 31277-31282
        • Masliah E
        • Hansen L
        • Mallory M
        • Albright T
        • Terry RD
        Abnormal brain spectrin immunoreactivity in sprouting neurons in Alzheimer disease.
        Neurosci Lett. 1991; 129: 1-5
        • Peterson C
        • Vanderklish P
        • Seubert P
        • Cotman C
        • Lynch G
        Increased spectrin proteolysis in fibroblasts from aged and Alzheimer donors.
        Neurosci Lett. 1991; 121: 239-243
        • Goodman SR
        • Zagon IS
        The neural cell spectrin skeleton: a review.
        Am J Physiol. 1986; 250: C347-C360
        • Weisenberg RC
        • Flynn J
        • Gao BC
        • Awodi S
        • Skee F
        • Goodman SR
        • Riederer BM
        Microtubule gelation-contraction: essential components and relation to slow axonal transport.
        Science. 1987; 238: 1119-1122
        • Bennett V
        • Gilligan DM
        The spectrin-based membrane skeleton and micron-scale organization of the plasma membrane.
        Annu Rev Cell Biol. 1993; 9: 27-66
        • Raff MC
        • Barres BA
        • Burne JF
        • Coles HS
        • Ishizaki Y
        • Jacobson MD
        Programmed cell death and the control of cell survival.
        Philos Trans R Soc Lond B Biol Sci. 1994; 345: 265-268
        • Head E
        • McCleary R
        • Hahn FF
        • Milgram NW
        • Cotman CW
        Region-specific age at onset of beta-amyloid in dogs.
        Neurobiol Aging. 2000; 21: 89-96
        • Cummings BJ
        • Head E
        • Afagh AJ
        • Milgram NW
        • Cotman CW
        Beta-amyloid accumulation correlates with cognitive dysfunction in the aged canine.
        Neurobiol Learn Mem. 1996; 66: 11-23
        • Satou T
        • Cummings BJ
        • Cotman CW
        Immunoreactivity for BCL-2 protein within neurons in the Alzheimer's disease brain increases with disease severity.
        Brain Res. 1995; 697: 35-43
        • Su JH
        • Satou T
        • Anderson AJ
        • Cotman CW
        Up-regulation of BCL-2 is associated with neuronal DNA damage in Alzheimer's disease.
        Neuroreport. 1996; 7: 437-440
        • Li M
        • Ona VO
        • Guegan C
        • Chen M
        • Jackson-Lewis V
        • Andrews LJ
        • Olszewski AJ
        • Stieg PE
        • Lee J-P
        • Przedborski S
        • Friedlander RM
        Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model.
        Science. 2000; 288: 335-339