Neurodegeneration with brain iron accumulation, type 1 is characterized by α-, β-, and γ-synuclein neuropathology.

Neurodegeneration with brain iron accumulation (NBIA 1), also known as Hallervorden-Spatz syndrome or adult neuroaxonal dystrophy, is a rare familial and sporadic neurodegenerative disorder. Symptoms usually present in late adolescence or early adult life and this disease is relentlessly progressive. NBIA 1 is characterized clinically by rigidity, dystonia, dyskinesia, and choreoathetosis, as well as dysthria, dysphagia, ataxia, and dementia. NBIA 1 also may be associated with other clinical manifestations such as spasticity and extensor plantar responses, optic atrophy, retinitis pigmentosa, as well as seizures and myoclonic jerks. Pathologically, NBIA 1 is characterized by cerebral atrophy, symmetrical partially destructive lesions of the globus pallidus with iron deposition in the medial globus pallidus, red nucleus, and substantia nigra. The iron deposition results in a characteristic magnetic resonance image with a hypointense center surrounded by a hyperintense area in the pallidum (“eye of the tiger”). The designation of NBIA 1 is increasingly used instead of the term Hallervorden-Spatz syndrome to describe this disorder. Associated with neuronal loss is an intense gliosis of the medial globus pallidus, the external segment is typically spared. Muscle pathology includes myeloid structures, dense bodies, and fiber splitting. Nonnervous tissue may also be involved as liver and pituitary abnormalities have been described. Bone marrow biopsy has demonstrated sea-blue histiocytes and osmophilic inclusions have been described in lymphocytes suggesting that NBIA 1 is a systemic disorder.

Supported by grants from the National Institute on Aging and a Pioneer Award from the Alzheimer’s Association. B. G. is a recipient of a fellowship from the Human Frontier Science Program Organization. Accepted for publication May 4, 2000.

J. E. G. and B. G. contributed equally to this manuscript.

Address reprint requests to John Q. Trojanowski, M.D., Ph.D., Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 3rd floor Maloney Building, 3600 Spruce St., Philadelphia, PA 19104. E-mail: trojanow@mail.med.upenn.edu.
The major histopathological hallmarks of NBIA 1 are axonal spheroids, 3,4,11,14 which have been shown to contain immunoreactive (IR) neurofilament (NF) proteins,7,18,19 superoxide dismutase,11 amyloid precursor protein (APP),20 and α-synuclein (αS).18,19,21,22 In addition to spheroids, other characteristic lesions include glial cytoplasmic inclusions (GCIs),18 Lewy body (LB)-like intraneuronal inclusions (NCIs),7,13,18,19,22 and dystrophic neurites (DNs),7,18,19 whereas in late onset NBIA 1, tau pathology has been demonstrated.14,22,23 Consisting of both paired helical filaments and straight filaments without amyloid β-protein (Aβ) deposition.

In this study, we examined three cases of NBIA 1 immunohistochemically with antibodies to NFs, purified LBs, tau, Aβ, APP, αS, as well as β-amyloid (βS) and γ-amyloid (γS). Moreover, we also mapped topographically-distinct epitopes extending throughout αS in lesions that were immunostained by anti-αS antibodies, and we demonstrated species of normal and abnormal αS in the NBIA 1 brain by Western blot analysis.

Materials and Methods

Case Materials

Three autopsy proven cases (one infantile, one adult, one late-onset) of NBIA 1 were obtained from the brain banks at the Center for Neurodegenerative Disease Research, Case Western Reserve University, and the Universities of Miami and Maryland (see Table 1 for clinical demographics). Tissue was fixed in either 10% neutral buffered formalin or 70% ethanol/150 mmol/L NaCl and paraffin-embedded. The following brain regions were examined: cervical spinal cord, olfactory bulb, and trigeminal ganglion when available. Serial sections of 6 µm thickness were extracted twice with 2 ml/gram of HS buffer/1% Triton X-100 (HS/T) and once with 1 ml/gram sodium dodecyl sulfate (SDS) sample buffer (1% SDS, 10% sucrose, 10 mmol/L NaCl, 0.3 gram) from the midfrontal cortex of NBIA 1 (Case Western Reserve) and a normal age-matched control (0.3 gram).

Western Blot Analysis

Western blotting and biochemical fractionation were performed as described previously.29,33 Briefly, gray matter (0.3 gram) from the midfrontal cortex of NBIA 1 (Case Western Reserve) and a normal age-matched control brain was homogenized in 2 ml/gram of tissue of high-salt (HS) buffer (50 mmol/L Tris, pH 7.4, 750 mmol/L NaCl, 10 mmol/L NaF, 5 mmol/L ethylenediaminetetraacetic acid with protease inhibitors) and centrifuged at 100,000 x g for 30 minutes. The pellets were re-extracted and the supernatants were pooled. The pellets were sequentially extracted twice with 2 ml/gram of HS buffer/1% Triton X-100 (HS/T) and once with 1 ml/gram sodium dodecyl sulfate (SDS) sample buffer (1% SDS, 10% sucrose, 10 mmol/L Tris, pH 6.8, 1 mmol/L ethylenediaminetetraacetic acid, 40 mmol/L dithiothreitol). The pellets were extracted with 0.67 ml/gram 70% formic acid (FA) and disrupted with two sequential 2-second sonication.

Table 1. Clinical Demographics and Neuropathology of NBIA 1 Cases

<table>
<thead>
<tr>
<th>Case</th>
<th>Age at onset (years)</th>
<th>Age at death (years)</th>
<th>Cause of death</th>
<th>Family history</th>
<th>Presenting symptom</th>
<th>Other features</th>
<th>PMI (hrs)</th>
<th>Brain wt (grams)</th>
<th>Macroscopic and microscopic neuropathology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ. of Miami</td>
<td>14 months</td>
<td>8</td>
<td>Aspiration pneumonia</td>
<td>NO</td>
<td>Loss of developmental milestones</td>
<td>Plaiddity, hearing loss, muscle cramps, dementia, dysphagia, seizures</td>
<td>5</td>
<td>1024</td>
<td>Severe atrophy, mild ventricular enlargement, severe neuronal loss in spinal cord, iron deposition, spheroids, NCIs, GCIs</td>
</tr>
<tr>
<td>CNDR</td>
<td>18 years</td>
<td>29</td>
<td>Inanition</td>
<td>NO</td>
<td>Tremor</td>
<td>Parkinsonism, optic atrophy, dementia, dysphagia, dysthria, spasticity, pes caus</td>
<td>6</td>
<td>1080</td>
<td>Severe atrophy, mild ventricular enlargement, depigmentation of locus ceruleus, iron deposition, spheroids, NCIs, GCIs, glial tangles</td>
</tr>
<tr>
<td>Case Western Reserve</td>
<td>75 years</td>
<td>77</td>
<td>Aspiration pneumonia</td>
<td>NO</td>
<td>Confusion</td>
<td>Dementia, behavioral abnormalities</td>
<td>60</td>
<td>1530</td>
<td>No atrophy, severe ventricular enlargement, small cortical infarct, iron deposition, spheroids, NCIs, GCIs</td>
</tr>
</tbody>
</table>

PMI, postmortem interval; NCI, neuronal cytoplasmic inclusions; GCI, glial cytoplasmic inclusion; CNDR, Center for Neurodegenerative Disease Research.

Immunohistochemistry

Histochromatic studies were performed using hematoxylin and eosi (H&E) and silver stains whereas immunohistochemistry was performed using well-characterized antibodies as described.24,25 The antibodies used here included those specific for NF subunits (RMoO20, NFL),26 ubiquitin (mAb 1510, Chemicon, Temecula, CA),27 purified cortical LBs (LB48),24 αS (LB509, Syn204, Syn208, SNL1),28,29 αS/βS (Syn202, Syn205, Syn214, SNL4),29 βS (Syn207),18 γS (antisera20),18 tau (17026),30 APP (LN39),31 and Aβ (2332).32 Sections were probed by immunohistochemistry, developed using the avidin-biotin-peroxidase complex method (Vector Labs, Burlingame, CA) and then lightly counterstained with hematoxylin.

Sections were examined and graded semi-quantitatively using the following system: 0 = no pathology, 1 = rare pathology, 2 = mild pathology, 3 = moderate pathology, and 4 = severe pathology. Each section was analyzed for synuclein IR spheroids, LBs, NCIs, GCIs, and DNs as well as for tau and amyloid pathologies.

AJP August 2000, Vol. 157, No. 2

362 Galvin et al
bursts. FA was evaporated in an Automatic Environment SpeedVac System (Savant Instruments, Holbrook, NY). SDS sample buffer (0.67 ml/gram) was added to the dried pellets, followed by vigorous vortex, and the pH was adjusted with NaOH. SDS sample buffer was added to the HS and HS/Triton fraction and all of the samples were boiled for 5 minutes. The FA samples were centrifuged at 13,000 × g for 5 minutes to remove insoluble debris. Five µl of each fraction was loaded in separate lanes for SDS-polyacrylamide gel electrophoresis followed by Western blot analysis.29,33

Results

Macroscopic and Microscopic Neuropathology

Two of the three brains exhibited severe atrophy with mildly dilated ventricles. The third brain (late onset) had marked ventricular dilatation without significant atrophy (see Table 1). All of the cases examined had iron accumulation in the globus pallidus, substantia nigra, red nucleus, and dentate nucleus whereas microscopic evaluation revealed neuronal loss with gliosis. The infantile onset case also displayed marked loss of anterior horn cells in cervical and lumbar spinal cord. Dystrophic axon spheroids were noted with H&E and silver stains in the basal ganglia and brainstem in all three cases.

Synuclein Pathology

αS pathology was seen throughout all three NBIA 1 brains (Figure 1). For example, αS IR NCIs and spheroids were abundant in the globus pallidus, putamen, thalamus, midfrontal gyrus, precentral gyrus, postcentral gyrus, amygdala, and entorhinal cortex (Figure 1, A–H). In addition, most cortical regions displayed numerous αS-positive DNs, but they were most prominent in the CA2/3 region of the hippocampus (Figure 1I). Antibodies specific for βS and γS labeled axonal spheroids but not NCIs or DNs.

Panels J to M in Figure 1 illustrate representative βS IR spheroids in the cingulate gyrus, inferior olive, cervical spinal cord, and putamen, respectively, whereas panels N to O in Figure 1 show typical γS IR spheroids in the cingulate and midfrontal cortices. However, similar NCIs, DNs and spheroids also were detected with antibodies to NF proteins and ubiquitin (data not shown) as well as with antibodies raised against purified cortical LBs (LB48) that recognize the mid-sized NF subunit24 as shown in Figure 1R, but not by antibodies to βS or γS (data not shown).

Tau and Aβ Pathology

Senile plaques were not detected in any of the three cases by immunohistochemistry with antibodies to Aβ or by silver-staining methods. However, many dystrophic processes were labeled by antibodies to Aβ (Figure 1S) and to APP (data not shown). Dystrophic neurites also were labeled with antibodies to tau proteins (Figure 1T). Rare neurofibrillary tangles were noted in the entorhinal cortex of the late onset case whereas the brain of the Center for Neurodegenerative Disease Research case contained tau IR glial tangles in the hippocampus and entorhinal cortex (Figure 1, U–V).

Epitope Analysis

To define the extent to which αS was incorporated in neuropathological lesions in the NBIA 1 brain, we used antibodies specific for defined epitopes in different domains spanning the αS molecule in immunohistochemical epitope mapping studies (Figure 2). Remarkably, we noted variations in staining intensity and pattern of distinct lesions with different epitope-specific anti-αS antibodies. For example, NCIs, DNs, and spheroids were seen best with LB509, which recognizes amino acids 115 to 122 in αS and the αS amino-terminal antibody SNL4 (amino acids 2 to 12).29 In contrast, NCIs, DNs, and spheroids were less immunoreactive with antibodies directed against the carboxy-terminal region of αS (ie, Syn202, Syn205, and Syn214 to epitopes within amino acids 130 to 140).29 The antibodies directed against the hydrophobic-middle region of αS (ie, Syn204 and Syn208 to epitopes in amino acids 87 to 110 and SNL1 to amino acids 104 to 119)29 poorly stained NCIs and DNs. Almost no spheroids were detectable with Syn208 and none were labeled with Syn204 or SNL1. Moreover, LB509, SNL4 and the carboxy-terminal antibodies (Syn202, Syn205, and Syn214) stained NCIs in a dense homogenous pattern whereas the antibodies to the middle hydrophobic region of αS (Syn204, Syn208, and SNL1) displayed a less intense punctate pattern of immunoreactivity. Finally, GCLs were seen best by LB509 and SNL4 but they were difficult to recognize with the other antibodies against αS (data not shown).

Biochemistry

Western blot analysis demonstrated the presence of αS in the HS-soluble fraction in the control and NBIA 1 brains (Figure 3, lanes 1–2), however there was a marked increase in high-molecular weight aggregates in the NBIA 1. In contrast to the control brain (Figure 3, lane 3), however, there was a significant reduction in the levels of αS in the HS/T-soluble fraction of the NBIA 1 brain (Figure 3, lane 4, small arrow). In the SDS-soluble fraction from the NBIA 1 brain, there was an accumulation of high-molecular weight aggregates of αS (Figure 3, lane 6, large arrow), but not in the control case (Figure 3, lane 5).

In comparison to other synucleinopathies, ie, Parkinson’s disease (PD), dementia with LBs (DLB), and multiple
system atrophy, αS did not aggregate or accumulate in the FA-soluble fraction of the control or NBIA 1 brains (Figure 3, lanes 7 and 8, respectively).

Discussion

The synucleins are a family of soluble presynaptic proteins that are widely expressed in neurons of the central nervous system. Two missense mutations in the αS gene have been described in rare familial PD kindreds.34,35 LBs of sporadic and familial PD, DLB, the LB variant of Alzheimer’s disease (AD),36,37 familial AD,33 and Down’s syndrome39 are also composed primarily of αS, but other proteins, such as NF subunits, are found consistently in these inclusions.24,37 In addition, αS is a major component of GCLs in multiple system atrophy.18,30 NBIA 1 is a rare neurodegenerative disorder with neuronal, axonal, and glial pathology that may be widely distributed or relatively restricted in the central nervous system. Whereas many cases begin in the late juvenile to early adult years, there have been reports of late onset cases.4,14 including one of the cases described here. The histopathological hallmark of NBIA 1 is the axonal spheroid that seems to be primarily comprised of insoluble αS.

In addition to αS-rich spheroids, we show here that αS IR NCls, GCls, and DNs are dispersed throughout the NBIA 1 brain. These pathological lesions, together with iron deposition, distinguish NBIA 1 from other synucleinopathies. Significantly, AD pathology may be absent from NBIA 1 brains even when patients with this disorder become demented. Although our cases showed no evidence of Aβ IR plaques and tau IR neurofibrillary tangles were very rare in the late onset case, the Center for Neurodegenerative Disease Research brain had abun-

Figure 2. Epitope mapping of NBIA 1 pathology with αS antibodies. A schematic representation of the αS protein is shown with the six KTKEGV repeat motifs depicted in red. The αS peptide (amino acids 61–95) is demonstrated in the hydrophobic-middle region and the two familial PD mutations (A30P and A53T) are shown. Epitope mapping of eight αS antibodies is shown with their amino acid sequences. Antibodies were used at equivalent titers as assayed by enzyme-linked immunosorbent assays as previously described.29 NCls are recognized by all αS antibodies, however there are differences in staining intensity. Antibodies directed against the middle hydrophobic region (Syn204, Syn208, SNL1) do not stain NCls as intensely as amino-terminal antibodies (SNL4) or carboxy-terminal antibodies (Syn202, Syn205, Syn214). Interestingly, antibody LB509, which recognizes a polypeptide stretch between the middle and carboxy-terminal regions, intensely stains DNs. NCls are best recognized by SNL4 and LB509 and to a lesser extent by the carboxy-terminal antibodies. Middle hydrophobic region antibodies either weakly stained (Syn204, Syn208) or did not recognize (SNL1) DNs. Spheroids were also best recognized by SNL4 and LB509. Middle region antibodies weakly stained (Syn208) or did not recognize (Syn204, SNL1) spheroids at all. See text for complete description of epitope mapping.

Figure 1. Neuropathology of NBIA 1. A–I: Panels demonstrate abundant αS pathology in the NBIA 1 brain. There are numerous NCls, DNs, and spheroids distributed in all regions examined including globus pallidus (A), putamen (B), thalamus (C), midfrontal gyrus (D), motor cortex (E), sensory cortex (F), amygdala (G), and entorhinal cortex (H). Note the extensive αS IR NCls in the CA3 region of the hippocampus (I). J–M: Panels demonstrate βS IR in spheroids (large arrowheads) but not in NCls or DNs. These spheroids are less numerous than the αS IR spheroids, but they are also found throughout the NBIA 1 brain including cingulate gyrus (J), inferior olive (K), cervical spinal cord (L), and putamen (M). Spheroids, but not NCls or DNs are also demonstrated with antibodies against γ2 (small arrowheads) in midfrontal gyrus (N) and cingulate gyrus (O). NCls and spheroids are labeled in cingulate gyrus (P) by the antibody, LB48, which recognizes the mid-sized NF subunit. DNs are also seen with NF antibodies in the CA3 region of the hippocampus (Q), but to a lesser degree than with the αS antibodies. GCls in oligodendrocytes were detected throughout the white matter in NBIA 1 with antibodies to αS (small arrow) in R. No SPs were seen, however axonal dilatations (large arrows) were detected in the basal ganglia with antibodies against Aβ (S) and tau (T). In the hippocampus, glial tangles were seen with antibodies against tau in (U) with a higher power view in (V).
dant tau IR glial tangles that also were weakly immuno-

stained by antibodies to αS.

Recently, it was reported that NCIs but not spheroids in
NBIA 1 brains are αS IR.19 The discordance between the
results in this study and the data described here may be
because of a number of factors including differences in
the specificities of the anti-αS antibodies used in each
study. Indeed, our epitope mapping study, using anti-

bodies to topographically separate antigenic sites
within the N-terminal region of αS (Syn205, Syn214) as well as antibodies to epitopes in the
amino acids 2 to 12) and LB509 (amino acids 115 to 122)
are the most sensitive probes for detecting axonal spher-
rodes. Moreover, consistent with a previous report,22 we
show here carboxy-terminal-specific antibodies (Syn202, Syn205, Syn214) as well as antibodies to epitopes in the
hydroporphic central region of αS (Syn204, Syn208, and
SNL1) label these spheroids weakly or not at all, and are
less sensitive for detecting NCIs and DNs. Notably,
LB509, which recognizes an epitope between the hy-
drophobic-middled and the carboxy-terminal regions of αS,
lables αS IR pathology in the NBIA 1 brains more in-
tensely than antibodies to the two flanking regions. Thus,
the LB509 epitope may be more accessible for antibody
binding than the flanking epitopes detected by our other
anti-αS antibodies, and this may reflect pathological al-
terations of αS specific to NBIA 1. Nonetheless, our study
confirms and extends previous reports that axonal spher-
rodes in the NBIA 1 brain are robustly labeled by antibod-
ies to αS.18,21

Although initially, βS and γS had not been implicated in
neurodegenerative disease,25 we reported recently that
the hippocampus of patients with PD and DLB contain
pathological aggregates of αS and βS in mossy fiber
projections as well as γS IR spheroids in the molecular
layer of the dentate gyrus.26 βS IR spheroids were not
seen in other disorders with axonal dilatations such as
Pick’s disease.25 Here, we extend these findings by dem-

onstrating βS and γS IR spheroids in another neurode-

generative disease, ie, NBIA 1. However, the βS IR ve-
sicular pathology that we detected in PD and DLB25 was
not seen in NBIA 1.

Significantly, our Western blot analysis demonstrated
αS in the HS-soluble fraction of both the control and NBIA
1 brains, but multiple higher molecular weight species of
αS were more prominent in this fraction of the NBIA 1
brain. Moreover, there also was a dramatic reduction of
αS in the HS/T fraction of the NBIA 1 brain compared to
control, similar to that reported in familial AD.33 Because
this fraction may represent a membrane-bound αS com-
ponent, the loss of membrane integrity, perhaps perhaps
including synaptic vesicle membranes may be a common fea-
ture of several different synucleinopathies. A significant
pool of high-molecular weight species of αS accumulated
in the SDS-soluble fraction only in the NBIA 1 brain, some
of which failed to enter the gel. Interestingly, little or no αS
was detected in the control (lane 8), although αS aggregates are present in the FA extracts of other
synucleinopathies (see text for further discussion).

Figure 3. Western blot analysis of the NBIA 1 brain. Control normal (C) and
NBIA 1 (D) brains were sequentially extracted with HS, HS/T, SDS, and FA
as described in Materials and Methods. Five μl of each fraction were loaded
in separate lanes of a 12% SDS-polyacrylamide gel electrophoresis gel and
after electrophoretic transfer to nitrocellulose membranes, the anti-αS anti-

body Syn208 was used to probe the membranes. All of the blots were probed
at the same time and developed for the same amount of time with ECL
reagents (NEN Life Sciences, Bedford, MA). αS was present in the HS soluble
fraction in both the control (lane 1) and NBIA 1 brain (lane 2) but there was
a marked increase in high-molecular weight aggregates in the NBIA 1 brain.
Compared to the HS/T extract of the control brain (lane 3), there was a
marked reduction in the level of αS in the NBIA 1 brain (lane 4, arrow-
head). Also note the presence of higher molecular weight aggregates of αS
in the SDS fractions of the NBIA 1 brain (arrow in lane 6) but not in the
same fraction from the control brain (lane 5). Finally, there were no αS
aggregates in the FA extracts of either the control (lane 7) or the NBIA 1
brain (lane 8), although αS aggregates are present in the FA extracts of other
synucleinopathies (see text for further discussion).
Acknowledgements
We thank Ms. Theresa Schuck and Ms. Danielle Lavalla for their expert technical assistance. We also thank the Brain and Tissue Bank for Developmental Disorders at the University of Maryland and University of Miami through National Institute of Child Health and Human Development contract N01-HD-8-3284 and the Brain Bank at the Alzheimer Disease Research Center at Case Western Reserve University for tissue.

References

NBIA 1 Pathology 367 AJP August 2000, Vol. 157, No. 2