Hyperproliferative Hepatocellular Alterations after Intraportal Transplantation of Thyroid Follicles

Frank Dombrowski,* Luisa Klotz,* Hans Jörg Hacker,† Yanhua Li,† Dietrich Klingmüller,‡ Klaudia Brix,§ Volker Herzog,§ and Peter Bannasch†

From the Pathologisches Institut,* the Institut für Klinische Biochemie,‡ and the Institut für Zellbiologie,§ Universität Bonn, Bonn; and the Abteilung für Cytopathologie,† Deutsches Krebsforschungszentrum, Heidelberg, Germany

The thyroid hormone 3,5,3′-triiodo-L-thyronine (T3) is a strong direct hepatocyte mitogen in vivo. The effects of T3 resemble those of peroxisome proliferators, which are known to induce hepatocellular tumors in rats. With the aim of studying long-term local effects of thyroid hormones on liver parenchyma, small pieces of thyroid tissue were transplanted via the portal veins into the livers of thyroidectomized male Lewis rats. At 1 week, 3 weeks, 3 months, and 18 months after transplantation, the transplants were found to proliferate, to synthesize thyroglobulin, and to release thyroxine and T3. At 3 and 18 months after transplantation, the hepatocytes of the liver acini downstream of the transplanted follicles showed an increase in cytoplasmic basophilia, a loss of glycogen, an enlargement and hyperchromasia of their nuclei, and a strong increase in cell turnover compared with unaltered liver acini. The altered hepatocytes exhibited an increase in the activities of glucose-6-phosphate dehydrogenase, glucose-6-phosphatase, malic enzyme, mitochondrial glycerol-3-phosphate dehydrogenase, cytochrome-c-oxidase, and acid phosphatase; the activities of glycogen synthase and glycogen phosphorylase were strongly decreased. The hepatocytic alterations downstream of the transplanted follicles could be explained by effects of T3. On the other hand, they resembled alterations characteristic of amphophilic preneoplastic liver foci observed in different models of hepatocarcinogenesis.

Materials and Methods

Experimental Design and Transplantation Procedure

Male Lewis rats (inbred strain) weighing about 200 g were used. In the main group (MG), the animals were thyroidectomized; 2 weeks later thyroid tissue pieces were transplanted via the portal vein into the right part of the liver. The animals of control group 1 (CG1) were not thyroidectomized; thyroid tissue pieces were transplanted via the portal vein into the right part of the liver. Control group 2 animals (CG2) were thyroidectomized but did not receive a transplant. The thyroidectomy was done under an anesthesia with diethylether. Housing and

Although T3 has been shown to be a strong mitogen on hepatocytes in vivo,1,2 little is known about long-term effects of thyroid hormones on liver parenchyma.3 The idea to transplant thyroid follicles into the liver of thyroidectomized rats was born from a similar transplantation model, in which a long-term increase in locally secreted pancreatic islet hormones (especially insulin) induced alterations of liver acini downstream of intrahepatically transplanted islets of Langerhans in diabetic rats.4 The hepatocellular alterations were in many respects in line with insulin effects and simultaneously similar to those observed in glycogen-storing foci, which are well known from different models of hepatocarcinogenesis.5 The glycogen-storing liver acini downstream of the transplanted islets proceeded to hepatocellular neoplasms as shown in a long-term study.6

One type of preneoplastic liver focus, namely the amphophilic cell focus, which is well known to occur in different models of hepatocarcinogenesis in different species7,8 and which is one of the most often observed types of focal lesion in human liver cirrhosis,9 was not induced by the islet transplants.6 This type of focus of altered hepatocytes is characterized by amphophilic (basophilic and eosinophilic) cytoplasm due to a proliferation of mitochondria, which are closely associated with rough endoplasmic reticulum, and a strong decrease in glycogen.7 Alterations of enzyme activities in this type of preneoplastic liver focus show an energy-wasting metabolism and have been suggested to reflect thyromimetic effects of the responsible oncogenic agents.10,11 We thus decided to investigate whether intrahepatic thyroid follicle transplants are able to induce amphophilic cell foci in thyroidectomized rats.
treatment of the animals were in line with the guidelines of the Society for Laboratory Animals Service (GV-Solas) and the strict German animal protection law.

In preliminary experiments, it was found that thyroid follicles or small pieces of thyroid tissue dissected by razor blades were too fragile for an effective transplantation. The rigidity of intrafollicular thyroglobulin was suspected to be the main problem. Therefore a pretreatment of donor animals was necessary to get follicles almost depleted of thyroglobulin. Donor animals received an iodine-poor diet (<0.04 μg iodine/g) with 0.05% propylthiouracil and tap water for 10 days, followed by an iodine-poor diet and H2O containing 1% KClO4 for 2 days; and finally an iodine-poor diet and H2O for 3 days. The following day the donor animals were killed, and the thyroid gland was prepared. The pretreatment resulted in an almost fourfold enlargement of the gland with almost empty follicular lumina. The glands were washed with Hanks’ solution (pH 7.2) and dissected with razor blades into small cubes of about 0.2 mm3. One gland was used for two recipient animals. The small cubes were dispersed in ice-cold Hanks’ solution (pH 7.2) and dissected with razor blades and were aspirated with 500 μl H9262. The recipient animals were anesthetized with diethyl ether, and the thyroid tissue pieces were transplanted only into the right part of the liver as follows. The branch of the portal vein that supplies the left lobe and the left part of the middle lobe was occluded by a vessel clamp. After infusion of the thyroid transplants into the portal vein, the clamp was removed (maximal time of ischemia, 1 minute). With this procedure it was possible to infuse the thyroid tissue pieces only into the right part of the liver, ie, the right lobe, the caudal lobes, and the right part of the middle lobe (the border between the right part and the left part of the middle lobe is marked by the falciform ligament). Thus, the left part of the middle lobe and the left lobe could be taken as an internal control in the experiments of the MG and the CG1.

At 1 week, 3 weeks, and 3 months after transplantation, six animals of each experimental group were killed between 10:00 a.m. and 11:30 a.m. An additional three animals of the MG were killed 18 months after transplantation. Additional MG animals were killed at days 3 (three animals) and 4 (three animals) without 5-bromo-2′-deoxyuridine (BrdU) application and without serum sampling (see below). Two hours before killing, another MG animal at 2 months after transplantation received 200 μCi 125I intravenously, and the intrahepatic thyroid transplants were prepared for autoradiography.

Table 1. Effect of Thyroid Follicle Transplantation on Body Weight

<table>
<thead>
<tr>
<th>Animal group* and serum factor</th>
<th>1 week</th>
<th>3 weeks</th>
<th>3 months</th>
<th>18 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG IT3</td>
<td>1.2 ± 0.2 (3)</td>
<td>1.1 ± 0.2 (5)</td>
<td>1.2 ± 0.2 (5)</td>
<td>3.4 ± 0.3 (3)</td>
</tr>
<tr>
<td>MG IT4</td>
<td>3.9 ± 1.1 (3)</td>
<td>4.1 ± 2.0 (5)</td>
<td>5.9 ± 2.2 (5)</td>
<td>20.7 ± 0.6 (3)</td>
</tr>
<tr>
<td>MG TSH</td>
<td>58.7 ± 4.3 (3)</td>
<td>61.3 ± 1.2 (5)</td>
<td>62.1 ± 1.7 (5)</td>
<td>9.3 ± 0.3 (3)</td>
</tr>
<tr>
<td>CG1 IT3</td>
<td>3.2 ± 0.5 (3)</td>
<td>3.2 ± 0.3 (5)</td>
<td>3.4 ± 0.2 (5)</td>
<td>—</td>
</tr>
<tr>
<td>CG1 IT4</td>
<td>23.5 ± 2.7 (3)</td>
<td>26.5 ± 2.6 (6)</td>
<td>21.6 ± 4.1 (5)</td>
<td>—</td>
</tr>
<tr>
<td>CG1 TSH</td>
<td>11.8 ± 1.4 (3)</td>
<td>12.9 ± 1.1 (6)</td>
<td>12.4 ± 1.6 (5)</td>
<td>—</td>
</tr>
<tr>
<td>CG2 IT3</td>
<td>0.8 ± 0.1 (3)</td>
<td>0.5 ± 0.3 (6)</td>
<td>0.7 ± 0.0 (4)</td>
<td>—</td>
</tr>
<tr>
<td>CG2 IT4</td>
<td>0.8 ± 0.1 (3)</td>
<td>2.4 ± 1.3 (5)</td>
<td>2.8 ± 1.1 (4)</td>
<td>—</td>
</tr>
<tr>
<td>CG2 TSH</td>
<td>63.1 ± 0.9 (3)</td>
<td>62.0 ± 1.3 (6)</td>
<td>61.5 ± 0.3 (4)</td>
<td>—</td>
</tr>
</tbody>
</table>

*MG, Main group (thyroidectomy and intrahepatic thyroid follicle transplantation); CG1, control group 1 (intrahepatic thyroid follicle transplantation and no thyroidectomy); CG2, control group 2 (thyroidectomy and no transplantation).
†Mean values ± SEM are shown. The number of animals (n) is shown in parentheses.
‡Significantly different from CG1.
§Significantly different from all of the preceding times.
Figure 1. The method of perfusion fixation and stereomicroscopic preparation of unstained liver slices allowed finding of small transplants a and b: The same tissue piece 1 week after transplantation (MG). In the MG, the transplants were completely vascularized during the first 3 weeks. (c, 3 days after transplantation; d, 3 weeks after transplantation. The transplants of CG1 underwent fibrosis, obviously because the serum levels of TSH were not increased (e, 3 weeks after transplantation; f, 3 months after transplantation. a: Unstained liver slice; b-d: Epon-sections stained by the method of Richardson; e and f: paraffin sections stained with H&E. Original magnifications, ×27 (a), ×40 (b), ×240 (c and d), ×254 (e), and ×200 (f).
BrdU Application by the Method of Eldridge et al

Seven days before killing, half of the animals to be killed at 1 week, 3 weeks, and 3 months and all three animals to be killed at 18 months were anesthetized, and osmotic pumps (Alzet model 2ML1, Alza Corp., Palo Alto, CA) filled with 40 mg of BrdU (Sigma, Heidelberg, Germany) were surgically implanted subcutaneously over the dorsal thoracolumbal area. These pumps continuously delivered BrdU until the animals were sacrificed. The remaining animals to be killed at 1 week, 3 weeks, and 3 months received a single dose of 50 mg BrdU/kg body weight intraperitoneally 1 hour before sacrifice.

Preparation of Tissues

Slices from the right part and from the left part of the middle lobe of the liver were snap-frozen and were used for enzyme histochemistry (see below). After removing the middle lobe of the liver, the animals were perfused with a mixture of 0.5% glutaraldehyde and 3% formaldehyde as described earlier. Immediately after perfusion, about 40 slices per animal were cut from the fixed liver lobes. These slices were transferred into phosphate-buffered saline (PBS) and were systematically examined with a stereomicroscope. With some experience it was possible to identify transplanted thyroid tissue pieces in these unstained liver slices as well as after embedding (see Results). Corresponding slices of the same transplants were embedded in Epon and in paraffin. Additionally, pituitary gland, kidney, adrenal glands, lung, heart,
spleen, and pancreas were embedded in paraffin. Four horizontal sections of the upper trachea and larynx together with surrounding tissue were embedded in paraffin to check the area of thyroidectomy (completeness of thyroidectomy) of the MG and the CG2 or the thyroid gland of CG1.

From the paraffin-embedded specimen, serial sections of 2 to 3 μm in thickness were stained with hematoxylin and eosin (H&E) and with the periodic acid-Schiff reaction (PAS). Additional sections were used for immunohistochemistry. In addition, 10 small cubes (1 mm³) were cut from each liver and were embedded in Epon. Semithin sections of the Epon-embedded specimens were stained by the method of Richardson et al. Thin sections for electron microscopy were stained with uranyl acetate and lead citrate and were examined with a Philips CM10 electron microscope (Eindhoven, The Netherlands).

Immunohistochemistry

After examination of the H&E and PAS stains, appropriate sections were selected and the corresponding sections were processed for immunohistochemistry. Immunostains of the liver for BrdU (monoclonal primary antibody from DAKO, Hamburg, Germany; dilution 1:100) and transforming growth factor-α (monoclonal primary antibody from Oncogene Science, Cambridge, MA; final antibody concentration 10 μg/ml) with antigen retrieval steps were performed as described earlier. Glutathion S-transferase placental form (GST-P; polyclonal primary antibody from Biogenex, San Ramon, CA; dilution 1:100) was analyzed without antigen retrieval steps, using the LSAB⁺-Kit (DAKO) and the DAB⁺-Kit (DAKO). Immunostains of the hypophysis for thyroid-stimulating hormone (TSH) were done with a monoclonal antibody from DAKO (dilution 1:50) using the LSAB⁺ and the DAB⁺ Kits. Sections were counterstained with hematoxylin, dehydrated, and coverslipped with Pertex (Medite, Burgdorf, Germany).

Anti-T3 and anti-T4 (polyclonal primary antibodies from ICN Biomedicals, Eschwege, Germany) were applied at a dilution of 1:250, anti-TG (polyclonal antibody. Institute of Cell Biology, University of Bonn, Bonn, Germany) and anticalcitonin (monoclonal antibody from DAKO) were used at a
dilution of 1:50. Secondary fluorescein isothiocyanate-conjugated goat anti-rabbit or goat anti-mouse antibodies (Sigma Chemical Co., Heidelberg, Germany) were used at a dilution of 1:50. In controls primary antibodies were omitted.

Determination of Apoptotic, Mitotic, and BrdU-Labeling Indices and Statistical Analysis

H&E-stained paraffin sections were viewed systematically for apoptotic and mitotic cells at a magnification of ×400. Mitotic and apoptotic indices (MI and AI) were calculated as the number of mitotic figures and of apoptotic bodies, respectively, per 1000 hepatocytic nuclei. Paraffin sections immunostained for BrdU were examined at a magnification of ×400. BrdU labeling indices (BrdU-LI) were calculated as the number of BrdU-labeled nuclei per 1000 hepatocytic nuclei. 5000–15,000 hepatocytic nuclei were counted per animal.

For the MG and the CG1, all indices were calculated separately for the liver acini downstream of the transplanted thyroid follicles in the right part of the liver, and in the left part of the liver which was free of transplants (intraindividual control). When no alterations were identifiable downstream of the transplants (MG at 1 week; CG1 at all times), the indices for the right part of the liver were calculated with the hepatocytes at a distance of about 1 mm from the transplants. For CG2 the indices were calculated only for the right lobe.

The body weight, AI, MI, BrdU-LI at 1 hour, BrdU-LI at 7 days, serum T3, serum thyroxin (T4), and serum TSH of the different animal groups and the different times after thyroid follicle transplantation (Table 1) were compared with the Wilcoxon-Mann-Whitney test. Significance was accepted when $P < 0.05$.

125I Application and Autoradiography

Two hours before sacrifice, 200 μCi of 125I were injected into the tail vein of an animal from the MG at 2 months after transplantation. The liver tissue was fixed in 4% formaldehyde and embedded into paraffin. Autoradiography was done with 3-μm-thick paraffin sections and

Figure 6. PAS-stained section shows glycogen loss in the altered liver acini downstream of a thyroid transplant, which is situated in a portal triad, 3 months after transplantation (thyroid follicles are strongly PAS-positive in the center of the figure). The topography of the central veins (arrowheads) shows that the altered areas represent acini. Only animals of the MG exhibited these altered liver acini. Original magnification, ×140.
Figure 7. 18 months after thyroid follicle transplantation, single very large transplants were found, which are surrounded by altered liver acini.

a: The stereomicroscopic aspect of an unstained liver slice. b–g: Paraffin sections of the same liver slice. The thyroid follicles are PAS-positive (c, e, h) but the altered liver acini are PAS-negative and show an amphiphilic cytoplasm (b, d, g). d–f: An area of a–c at higher magnification. g: Immunohistochemical localization of BrdU-labeled nuclei exhibits an increase in proliferative activity in the altered liver acini associated with the transplanted follicles. h: Close spatial relationship and the synchronous appearance of mitotic figures (arrows) and apoptotic bodies (arrowheads) of hepatocytes within the altered acini. i: The phenomenon that some hepatocytes within the altered acini exhibited areas of glycogen accumulation.

At 18 months the nuclei of the altered hepatocytes were enlarged and showed multiple condensations of their chromatin and several nucleoli. Epon-section stained by the method of Richardson et al.13 Original magnifications, ×24 (a), ×30 (b and c), ×155 (d–f), ×310 (g), ×242 (h), and ×385 (i).
viewed with dark-field illumination at a Zeiss Axiosphot microscope (Oberkochem, Germany).

Serum Free T3, Free T4, and TSH

Serum samples were taken from aortal blood at sacrifice. Free T3 (fT3) and free T4 (fT4) were measured by an electrochemiluminescence immunoassay with an Elecsys analyzer (Boehringer Mannheim, Mannheim, Germany). TSH was measured with the rat TSH 125I assay system from Amersham (Amersham, Buckinghamshire, UK).

Histochemistry of Enzymes and Metabolic Products

Pieces from snap-frozen liver tissue of five rats were frozen onto the same tissue holder, and serial sections of all pieces were cut simultaneously in a cryostat (Jung, Nussloch, Germany). The sections were mounted onto the same slide or the same membrane and incubated by the respective histochemical reaction. With this technique it was possible not only to produce sections of the same thickness but also to treat them simultaneously—under identical conditions for the specific histochemical assays. The liver and the thyroid gland of one completely untreated rat were included as a normal control. The following enzymes were investigated: glycogen synthase (SYN), glycogen phosphorylase (PHO), glucose-6-phosphatase (G6Pase), glucose-6-phosphate dehydrogenase (G6PDH), pyruvate kinase (PK), succinate dehydrogenase (SDH), malic enzyme (ME), mitochondrial -glutamyltransferase (GGT). Incubation conditions were essentially as previously described. Furthermore, serial cryostat sections were stained for basophilia with toluidine blue, for the presence of neutral lipids with oil red O, and for the presence of glycogen with PAS staining.
Figure 8. Electron micrographs show nonaltered (a) and altered (b) hepatocytes of the same liver at 3 months after transplantation. The altered hepatocytes exhibit a more condensed nuclear chromatin, a higher number of mitochondria, and an increase in rough endoplasmic reticulum when compared with the nonaltered hepatocytes. Glycogen and smooth endoplasmic reticulum are strongly decreased in the altered hepatocytes. The number of peroxisomes is not increased in the altered hepatocytes. Original magnification, ×16,000.
Results

Weight Gain, fT3, fT4, and TSH

The body weight gains are shown in Table 1. At 1 week and 3 weeks after transplantation, MG and CG1 were not different from CG2, obviously because CG2 had no abdominal surgery. At 3 months, the weight gain of CG1 was higher compared with CG2. The histological examination of the heart, lung, kidney, adrenal gland, spleen, and pancreas did not reveal any unusual finding. The immunohistochemically TSH-positive cells of the hypophysis were larger in the thyroidectomized animals (MG and CG2) than in the nonthyroidectomized animals (CG1). As expected, the MG and CG2 animals had significantly decreased fT3 and fT4 and significantly increased TSH serum values compared with the CG1 animals (Table 2). We made four-step sections at the anatomical site of the excised thyroid, but we did not find a thyroid remnant in any case. Between 3 and 18 months after transplantation, the fT3 and fT4 values of the MG increased, and the TSH decreased. At 18 months, the serum values (and the hypophyses) of the MG did not differ from the CG1 at 3 months.

The Transplanted Follicles

Stereomicroscopic examination of the unstained liver slices was a great help for finding the transplanted follicles for light and electron microscopical investigations (Figure 1, a and b). The transplants were vascularized (Figure 1, c and d) during the first 3 weeks, after which the follicles were surrounded by regularly fenestrated capillaries (Figure 2). In contrast, the transplants of the CG1 rats fibrosed during the first 3 weeks (Figure 1, e and f), probably due to low ("normal") TSH serum levels.

In the MG, the epithelial cells of the transplants formed typical follicles and showed a well-developed cytoplasm, regular organelles and microvilli at the electron microscopical level (Figure 2), and positive immunohistochemical stainings for TG, T4, or T3 (Figure 3, A–C) during the whole experiment. Only a few calcitonin-positive C cells were found by means of immunohistochemistry. In many specimens investigated electron microscopically, no C cell was present. The autoradiography after 125I application at 2 months after transplantation showed an iodine uptake by the intrahepatic thyroid follicles (Figure 4). The follicular epithelial cells of the MG exhibited a strong proliferative activity (Figure 5, a and b). A typical follicle transplant at 3 months is shown in Figure 6. At 18 months most of the transplants did not differ from those at 3 months, but single transplants grew up to 2 mm in size (Figure 7, a-c), and were then still showing mitotic figures.

Light and Electron Microscopy of Liver Acini Downstream of the Transplanted Follicles

At 3 days, 4 days, and 1 week after transplantation, no morphological alterations of the liver tissue surrounding the thyroid follicles were observed in the MG. However, in the MG and the CG1, the hepatocytes in the neighborhood of the transplants showed a slight increase in the MI and the BrdU-LI-1h as compared with the CG2. Furthermore the BrdU-LI-1h of the MG was increased in the right part of the liver compared with the left part (Table 3).

Three weeks after transplantation, the hepatocytes downstream of the transplanted follicles in the MG showed a slight decrease in the glycogen content and some alterations of the enzyme activities, which were strongly altered at later times (see below). The morphological alterations 3 weeks after transplantation represent an intermediate stage on the way to the later, more distinct alterations; but the BrdU-LI-1h and 7d at 3 weeks were already increased when compared not only with the 1-week values (25-fold for the 1h BrdU-LI), but also with the CG1 (10-fold) and CG2 (40-fold) values, and the intraindividual values of the left liver part (50-fold; Table 3; Figure 5, b and c). The 10-fold increase in the AI mean value in relation to the mean value of the left part was not significant (due to a high SEM).

At 3 as well as at 18 months after transplantation, the liver acini downstream of the transplanted follicles of the MG were clearly demarcated from the surrounding unaffected acini by a strong increase in cytoplasmic basophilia and eosinophilia and a negative PAS staining (Fig-
Figure 6; Figure 7, b-e and g). These altered light microscopic staining properties resulted from an increase in rough endoplasmic reticulum, a multiplication of mitochondria, and a depletion of glycogen, as shown by electron microscopy (Figure 8). The number of peroxisomes was not increased in the cytoplasm of the altered hepatocytes. Within some altered liver acini, single hepatocytes showed intracytoplasmic areas of glycogen accumulation, whereas in other areas of the same cells glycogen was depleted but mitochondria and rough endoplasmic reticulum were increased (Figure 7h). It is not clear whether these cells are intermediate cells between unaltered and altered hepatocytes or they result from secondary events in the altered-cell population. The nuclei of the hepatocytes downstream of the transplanted follicles were enlarged and hyperchromatic, and they showed multiple condensations of their chromatin and several nucleoli (Figure 7i). Many mitotic figures, some of which were pathological (Figure 9), but also many hepatocytic apoptotic bodies, were found in the same altered liver acini (Figure 7g), which is reflected by the fact that the MI, AI, and BrdU-LI (1h and 7d) at 3 months were strongly increased compared with 1) the left liver part of the same animals, 2) the MG at 1 week, and 3) CG1 and CG2. Furthermore the AI and the BrdU-LI 1h were significantly increased compared with the MG at 3 weeks. At 18 months, the MI was significantly higher than at 3 months (Table 3). Single altered acini at 18 months showed an amphophilic cytoplasm with basophilic stripes (Figure 10). This was a result of a highly organized rough endoplasmic reticulum, whereas the number of mitochondria was increased, and glycogen was depleted. This type of alteration was called amphophilic-tigroid cell focus. The livers of the animals of CG1 and the CG2 did not show any of the alterations observed in the MG.

Histochemical Alterations of Liver Acini Downstream of the Transplanted Follicles

The enzyme activities of the transplanted follicles did not differ from the normal control gland. In the unaltered liver acini, the histochemical pattern of the liver parenchyma reflected the well-known metabolic zonation showing gradients in enzyme activities from zone 1 to zone 3 of the acini. Thus, the reactions of the histochemical assay for G6Pase, G6PDH, SDH, AP, mG3PDH, COX, PHO, and SYN were stronger in zone 1 than in zone 3, whereas those for PK and the PAS stain were more pronounced in zone 3. ME and mG3PDH were more intense in zones 1 and 3 and less intense in zone 2. GGT was positive in bile ducts and some hepatocytes of zone 1.

The histochemical patterns of the altered liver acini at 3 and 18 months after follicle transplantation are summarized in Table 4, and examples are shown in Figures 11...
Table 4. Histochemical Pattern of Altered Liver Acini at 3 and 18 Months after Intraportal Thyroid Follicle Transplantation in Thyroidectomized Rats

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basophilia</td>
<td>↑↑</td>
</tr>
<tr>
<td>Glycogen</td>
<td>↑↑</td>
</tr>
<tr>
<td>Fat</td>
<td>NC</td>
</tr>
<tr>
<td>PHO</td>
<td>↑↓</td>
</tr>
<tr>
<td>SYN</td>
<td>↓↓</td>
</tr>
<tr>
<td>G6Pase</td>
<td>↑↑</td>
</tr>
<tr>
<td>G6PDH</td>
<td>↑↑</td>
</tr>
<tr>
<td>PK</td>
<td>NC</td>
</tr>
<tr>
<td>ME</td>
<td>↑↑</td>
</tr>
<tr>
<td>mG3PDH</td>
<td>↑↑</td>
</tr>
<tr>
<td>SDH</td>
<td>↑↓</td>
</tr>
<tr>
<td>COX</td>
<td>↑↓</td>
</tr>
<tr>
<td>AP</td>
<td>NC</td>
</tr>
<tr>
<td>GGT</td>
<td>NC</td>
</tr>
<tr>
<td>GST-P</td>
<td>NC</td>
</tr>
<tr>
<td>TGFβ1</td>
<td>NC</td>
</tr>
</tbody>
</table>

The intensity of the histochemical parameters in focal lesions was estimated semiquantitatively in comparison with the unaltered liver acini of the same tissue sections, using five grades: NC, no change; ↑, increase; ↑↑, strong increase; ↓, decrease; ↓↓, strong decrease.

and 12. The altered acini were characterized by increased activities of G6PDH, ME, G6Pase, mG3PDH, COX, AP (Figures 11, d–i; and 12, b, e, f) and SDH. The activities of PHO and SYN were strongly reduced (Figures 11c and 12, c and d). PK was not changed. GGT was seen orthotopically only in bile ducts, but was not expressed in the altered acini.

The immunostains for transforming growth factor-α and GST-P were negative in the altered acini. At 18 months after follicle transplantation, one animal exhibited a few very small foci of glycogen-storing hepatocytes, which were seen in paraffin sections of both parts of the liver and were not topographically related to the transplants. These foci were positive for transforming growth factor-α and GST-P. In the cryostat sections of the middle lobe of this animal, the incidental single glycogen-storing foci were not present.

Discussion

This is the first report on portal-embolic intrahepatic thyroid follicle transplantation in rats. The increase in serum TSH induced by thyroidectomy was a required precondition for the persistence and growth of the transplants. The elevated TSH serum levels persisted after follicle transplantation for at least 3 months and returned to "normal" levels 18 months after transplantation. The functional activity of the morphologically intact transplants was demonstrated by the immunohistochemical detection of T3, T4, TG, and calcitonin at 1 and 3 weeks, 3 months, and 18 months and by ability of transplanted thyroid tissue to incorporate 125I at 2 months after transplantation. Compared with CG2, the values of fT3, fT4, and TSH did not change during the first 3 months after transplantation. As long as the transplants were small, the amounts of T3 and T4 secreted by the transplants were obviously absorbed by the liver acini downstream of the transplanted follicles. Only when the transplants acquired a larger size (at 18 months) did the hormones reach the blood of the hepatic veins. The follicle epithelial cells of single large transplants were at this time still proliferating, and it requires further studies to answer the question whether single transplants could proceed to thyroid neoplasia. This would be analogous to the intrahepatic insulinomas that developed from hyperplastic islets after low-number pancreatic islet transplantation in diabetic rats.

The hepatocytes of the liver acini downstream of the transplants were altered in their morphology, cell turnover, and enzymic pattern. The increase in hepatocellular proliferation and, at the same time, in their apoptotic elimination were the first alterations that could be detected after thyroid follicle transplantation. This supports earlier findings that T3 is a strong mitogen for hepatocytes inducing so-called direct hyperplasia and polyploidization in vivo. However, it cannot be ruled out that additional factors secreted by the thyroid tissue may contribute to the effects observed. Interestingly, the AI was simultaneously increased in the altered liver acini, which is a common phenomenon of preneoplastic liver foci including amphilphilic cell foci and was also observed in glycogen-storing altered liver acini after pancreatic islet transplantation.

The altered hepatocytes did not grow beyond the borders of their acini, where they would be out of the influence of the thyroid hormones. It is unlikely that the altered hepatocytes undergo a complete reversion to "normal" after their outgrowth of the acinar borders and the influence of the hormones because there was no indication of any transitional changes in the adjacent acini. An immediate change under the microenvironmental conditions of the adjacent acini is not plausible, because the development of the alterations needed such a long time.

An intriguing question is whether the altered acini represent clonal populations. Compared with alterations of the hepatocytes that occurred 2 days after islet transplantation and that were obviously not monoclonal, the slow onset of the alterations after thyroid follicle transplantation might argue for a monoclonal expansion. However, the observation that, 3 and 18 months after transplantation, all transplants induced amphilphilic cell alterations in all animals of the MG is an argument against monoclonality. Moreover, no single transplant without a surrounding amphilphilic cell population was found either 3 months or 18 months after transplantation. There was also no indication for the induction of a basically different phenotypic hepatocellular alteration. All alterations after transplantation were strictly confined to the acinar borders, this being a further argument against early clonal expansion of the amphilphilic cell populations.

The increase in mitochondria and rough endoplasmic reticulum as well as the decrease in glycogen are in line with expected alterations induced by thyroid hormones. The resulting amphilphilic H&E staining of the cytoplasm, however, is very similar to a well-known type of hepatocytic alteration in the amphilphilic cell focus. This is a preneoplastic phenotype mainly induced by chemical hepatocarcinogens belonging to the group of peroxisome proliferators, eg, hypolipidemic drugs, and the ad-
Figure 11. Serial cryostat sections of altered liver acini downstream of a follicle transplant (a, arrow) at 3 months after transplantation. Central veins are indicated by arrowheads in a. Toluidine blue stain (a) shows the increase in basophilia of the altered acini, whereas the PAS stain (b) demonstrates the loss of glycogen. Activity of PHO (c) was decreased, whereas the activities of G6Pase (d), ME (e), G6PDH (f), mG3PDH (g), COX (h), and AP (i) were increased. The morphological aspect and the histochemical pattern of these altered liver acini resemble those of amphophilic preneoplastic liver foci. Original magnification, ×34 (a–i).
renal gland hormone dehydroepiandrosterone. Peroxisome proliferators and T3 are both so-called direct mitogens, which may induce hepatocyte proliferation without preceding cell loss. They both act via nuclear receptors on some common target genes, eg, ME and COX. Thyroid hormone receptor and peroxisome proliferator-activated receptor belong to a nuclear receptor superfamily, together with the receptors of sexual steroids and retinoic acid. Alterations induced by T3, such as the increase in activities of COX, mG3PDH, ME, G6Pase, G6PDH, SDH, and AP and the decrease of PHO and SYN have also been observed in preneoplastic amphophilic-cell foci induced by peroxisome proliferators. However, peroxisome proliferation was not present after follicle transplantation.

It is also interesting that both the amphophilic cell foci and the amphophilic liver acini presented here exhibit neither an increase in GGT nor an expression of transforming growth factor-α or GST-P, which are often involved in the glycogenotic-basophilic progression in many models of hepatocarcinogenesis. The progression from amphophilic cell foci to hepatocellular neoplasia usually needs more time than the neoplastic progression of glycogenotic cell populations. Therefore, the fact that the

Figure 12. Serial cryostat sections at 18 months after transplantation show altered liver parenchyma surrounding a proliferated transplant. PAS stain (a) demonstrates glycogen loss. The activities of ME (b), AP (e), and mG3PDH (f) were increased, whereas the activities of SYN (c) and PHO (d) were decreased in the altered liver tissue. The alterations of enzyme activities were even more pronounced when compared with the altered acini at 3 months after transplantation (Figure 11). Original magnification, ×59.
three animals of the MG at 18 months did not develop a hepatocellular tumor does not exclude that these altered liver acini are neoplastic.

The nonparenchymal cells in the altered liver acini after thyroid follicle transplantation have not yet been studied; nevertheless, they might play an important mediator role between the thyroid follicles, their hormones, and the hepatocytes.31

In conclusion, we have demonstrated a new transplantation model for the study of the effects of thyroid hormones on hepatocytes. Long-term studies have been started to investigate whether the altered liver acini downstream of the transplanted follicles not only showed morphological and enzymic alterations similar to neoplastic amphiphilic cell foci but also may proceed to neoplasia.

Acknowledgments

The skilful technical assistance of Sybille Wolf-Kümeth, Babette Bockmühl, Katrin Kählcke, Jörg Bedorf, Mathilde Hau-Liersch, Sabine Spürck, and Inge Heim is gratefully acknowledged. We thank Gerrit Klenz, Björn Fehmers, and Elisabeth Kraemer for photographic work, and Dr. W. Neumüller for critical reading of the manuscript.

References