Loss of the long arm of chromosome 4 has been identified previously as a common occurrence in adenocarcinomas of the esophagus and gastroesophageal junction by relatively low resolution genetic surveys. To better define the extent of 4q deletion in these neoplasms we isolated DNA from 29 primary carcinomas using microdissection, and used DNA obtained from xenografts of 14 carcinomas grown in immunodeficient mice in an assay of loss of heterozygosity of 25 polymorphic microsatellite markers distributed along the chromosomal arm. Two carcinomas exhibited widespread microsatellite instability and were excluded from deletion mapping. In the remaining 41 carcinomas, loss of heterozygosity was detected in 33 (80%). Twenty-three cancers showed complete or extensive reduction to homozygosity along the length of the long arm. Ten cancers had smaller discrete areas of loss and were principally useful in discerning three non-overlapping areas of consensus genetic deletion. Area 1 centered on marker D4S1534 at 4q21.1–22, area 2 centered on marker D4S620 at 4q32–33, and area 3 centered on marker D4S426 at 4q35. No known tumor suppressor genes map to these loci, but the frequent deletion of these areas in gastroesophageal carcinomas and in other carcinomas suggests that undiscovered tumor suppressor genes may reside here. (Am J Pathol 1999, 154:1329–1334)
Materials and Methods

Specimen Selection

Hematoxylin and eosin (H&E)-stained histological sections of surgical resection specimens of adenocarcinoma of the esophagus or gastroesophageal junction were examined. Thirty-six resected esophageal tumors were selected which were either confined to the distal esophagus or which involved the gastroesophageal junction with adjacent Barrett mucosa in the lower esophagus. After microdissection and DNA extraction, 7 cases were omitted due to the poor performance of material in polymerase chain reaction (PCR) assays, leaving 29 cases of primary tumors in our study.

Xenografts

Samples of fresh tumors were implanted subcutaneously into immunodeficient mouse strains, as described previously. Following tumor growth and harvesting, tumor samples were cryostat sectioned and examined histologically for verification of growth of adenocarcinoma cells. Additional cryostat sections were prepared for DNA using proteinase K-SDS extraction. Corresponding normal DNA was extracted from non-neoplastic gastric mucosa obtained from the surgical resection specimens.

Microdissection and DNA Preparation

For the primary carcinomas, a series of fresh 7-μm sections were made of archival formalin-fixed, paraffin-embedded tissue and mounted on plain glass slides. Depending on the growth pattern of the carcinoma, and the degree to which surrounding non-neoplastic tissue encroached on the tumor cells, samples of tumor were either microdissected manually using a scalpel or by laser capture microdissection. Histological sections for manual microdissection were prepared as described previously, while sections for laser capture microdissection were prepared as directed by the manufacturer of the apparatus (Arcturus Engineering Inc., Mountain View, CA). Genomic DNA was extracted from microdissected cells with a buffer containing nonionic detergent and proteinase K, as described previously.

Microsatellite Marker Selection

An initial panel of microsatellite markers was selected from the CHLC chromosome 4 sex averaged recombination minimization linkage map (GDB:4263357) to provide markers that spanned 4q at approximately 10 cM intervals. Additional makers were obtained from the Genome Database (http://www.gdb.org/) to provide more uniform coverage of markers based on cytogenetic location (directly assessed or inferred). The ordering of the markers was independently verified on the CEPH/Genethon chromosome 4 linkage map (GDB:1103650), the Marshfield chromosome 4 sex averaged linkage map (GDB:9800494), and the Stanford Human Genome Center YAC STS-content map of chromosome 4 (http://www-shgc.stanford.edu/Mapping/phys_map/Chr4YAC.html).

Polymerase Chain Reaction

MapPairs primers for chromosome 4 microsatellite markers were obtained from Research Genetics (Huntsville, AL). PCR amplification of microsatellite markers was performed in 20-μl reaction volumes using 10 μl of prepared genomic DNA, 2 units of Taq polymerase (Gibco/BRL), and appropriate primers at a final concentration of 0.3 mmol/L. Reactions were performed in the following buffer conditions: 67 mmol/L Tris-HCl (pH 8.8), 16 mmol/L (NH4)2SO4, 10 mmol/L β-mercaptoethanol, 4 mmol/L MgCl2, 5% formamide, 0.2 mmol/L dATP, 0.2 mmol/L dGTP, 0.2 mmol/L dCTP, and 1.0 μCi of [γ^32P]dCTP. The reaction components were heated to 94°C for 5 minutes and cooled to 78°C before addition of the Taq polymerase and radiolabeled nucleotide. Amplification then proceeded for 40 cycles using these parameters: denaturation at 94°C for 30 seconds, annealing at 50°C for 30 seconds, extension at 72°C for 60 seconds. All reactions concluded with a final extension step of 72°C for 5 minutes.

Autoradiography and Interpretation of Loss of Heterozygosity

PCR amplification products were treated with 20 μl of stop buffer (99.5% formamide, 1 mmol/L EDTA, 0.05% bromophenol blue, 0.05% xylene cyanol) and heated to 98°C for 3 minutes. Normal and tumor PCR products were then loaded into adjacent lanes and electrophoresed on a 6% denaturing polyacrylamide gel. Completed gels were then dried and exposed to autoradiography film. Normal and tumor lanes were compared for each case, and tumors were designated at each marker as homozgyous (non-informative), heterozygous with no loss, heterozygous having undergone allelic loss (LOH), or having undergone an allelic shift (microsatellite instability) based on visual inspection, using criteria previously outlined. A tumor was classified as having undergone LOH at a particular locus only if the predominant band(s) associated with one allele showed a diminution in intensity of 50% or more in the tumor relative to normal. Assays exhibiting microsatellite instability were not used to score loss of heterozygosity. All assays were independently scored by two investigators (C.A.R. and C.A.M.). All assays scored as LOH were repeated for confirmation, as were assays in which there were differences in interpretation between the readers (<5% of assays) and cases which exhibited allelic imbalance which did not meet the criteria of clear cut LOH. For the latter cases, tissue microdissection and LOH analysis was repeated. Cases which continued to show imbalance (typically an increased level of one allele in the tumor sample with no diminution of the second allele) were scored as heterozygous for the purposes of this study.
Results

Tissue was microdissected and DNA extracted from 36 esophageal and gastroesophageal junction adenocarcinomas. Of these, 29 provided DNA of sufficient quality to amplify products in a panel of microsatellite PCR reactions. One primary carcinoma exhibited microsatellite instability in over half of the markers tested and was omitted from the analysis of deletion boundaries. Fourteen tumor xenografts of esophageal and gastroesophageal junction adenocarcinomas were successfully grown and harvested. One xenograft tumor displayed widespread microsatellite instability and was also dropped from analysis of deletion boundaries.

Both primary and xenografted tumors showed a high rate of genetic deletion on chromosome 4q. Of the 41 carcinomas remaining in the analysis, 33 (80%) showed reduction to homozygosity of at least one heterozygous microsatellite marker when tumor and normal DNA samples were compared (Figure 1). Twenty three cancers showed complete or extensive reduction to homozygosity along the length of the long arm (Figure 2). In the latter group several cancers exhibited a patchy pattern of chromosomal loss, with areas of retained heterozygosity punctuated by areas of LOH. Ten tumors had smaller discrete areas of loss.

From the pattern of chromosomal loss, non-overlapping areas of consensus chromosomal deletion can be discerned (Figure 2). Three areas defined by cancers with small isolated deletions were considered the strongest candidates for putative loci of tumor suppressor genes. Area 1 was defined by the isolated deletion in tumor 21 at D4S1534 and bounded by heterozygous markers at D4S423 and D4S1538. This corresponds to the cytogenetic location 4q21.1–4q22. In addition to tumor 21, two other cancers (11 and X38) also had deletions isolated to this portion of the chromosome with no
deletion in other consensus areas. Examples of the microsatellite assays in this region are shown in Figure 3. Five other tumors (3, 13, 15, 19, 25) with extensive but discontinuous patterns of LOH had deletions that included this locus. In total 13 of 23 cancers (56%) informative at this locus had LOH (Figure 1), and 23 of the 41 cancers (56%) in this study had deletion boundaries that potentially involve this locus.

The second area of consensus deletion is defined by the isolated deletion of marker D4S620 in tumor 4, and is bounded by heterozygous markers at D4S1535 and D4S620 (Figure 2). Another cancer (24) showed a similar isolated small deletion, and 2 tumors (3 and 15) with discontinuous patterns of LOH had isolated areas of deletion at this locus. In total, 16 of 26 cancers (62%) informative at this locus had LOH, and 22 of the 41 cancers (54%) in our study had deletion boundaries that potentially involved this locus.

Discussion

We had previously performed genetic surveys of gastroesophageal adenocarcinomas using comparative genomic hybridization and found that genetic loss on chromosome 4 was a common occurrence. In the current study, we included primary tumors and tumor xenografts from our previous work, and enlarged the sample size with additional primary tumors to confirm with a second method, microsatellite allelotyping, that chromosome 4 deletions occur in 80% of such neoplasms. These results are in agreement with a previous lower resolution allelotyping study that detected chromosome 4 loss in more than half of esophageal adenocarcinomas.

We used a sufficient number of markers to map the extent of chromosomal deletion. In tumors exhibiting chromosome 4q deletion, over half showed total or near total loss of heterozygosity. However, the remaining neoplasms showed localized deletion or exhibited a patchy distribution of chromosomal loss. These localized deletions centered on three non-overlapping regions of the chromosome. This finding suggests that more than one tumor suppressor gene may be present on 4q.

There is precedence for multiple targets of tumor suppression on a single chromosomal arm. 18q loss is common in pancreatic and colorectal carcinoma. The tumor suppressor gene Smad4/DPC4 appears to be one target of inactivation by such deletions but does not explain all such genetic events. In the case of pancreatic carcinoma, only about half of all such deletions have been found to be explained as inactivating events of Smad4/DPC4. Some of these deletions involve the putative tumor suppressor gene DCC, but there may be other targets of genetic inactivation as well. In the case of colorectal carcinoma, Smad4/DPC4 is the target of only a minority of 18q deletions. However, an adjacent tumor suppressor gene, Smad2/MADR2, has also been shown to undergo biallelic inactivation in colorectal tumors with 18q deletion. Since there are 2000–5000 genes per chromosome, it is perhaps not unexpected that in some cases mutated tumorigenic loci will reside on the same chromosomal arm.

Some of the deletion regions we have identified in esophageal adenocarcinoma have been found in other neoplasms. Loss of chromosome 4 has been found in the
majority of breast carcinomas, hepatocellular carcinomas, and several forms of squamous carcinoma. A deletion mapping study of hepatocellular carcinomas showed multiple non-overlapping regions of deletion in the distal portion of the chromosome. One of these consensus area of deletion centers on D4S620, which is contained in deletion area 2 of our study. Deletion of the same locus is correlated with the immortalization of human keratinocytes in tissue culture. Since cellular immortalization is one characteristic of malignant transformation, it is possible that a gene involved in the regulation of cell senescence is a target of inactivation in cancers with genetic deletion at this locus.

The region we identified as deletion area 3 appears to play a role in human bladder carcinoma. One study found that loss of the distal portion of the chromosome (assayed by loss of D4S426, as in our study) occurred in 24% of tumors. Loss of this region was associated with increased malignant behavior of the cancer, as it correlated with advanced clinical stage and high histological grade. The shared areas of genetic deletion among these cancers suggest that genes inactivated at these loci have regulatory effects on cell behavior in numerous states of differentiation.

The mapping of genetic deletions in tumor samples, xenografts and cell lines has been the major pathway to the finding of new tumor suppressor genes. The p16INK4a/CDKN2/MTS1 regulatory effects on cell behavior in numerous states of malignant behavior of the cancer, as it correlated with advanced clinical stage and high histological grade. The shared areas of genetic deletion among these cancers suggest that genes inactivated at these loci have regulatory effects on cell behavior in numerous states of differentiation.

The mapping of genetic deletions in tumor samples, xenografts and cell lines has been the major pathway to the finding of new tumor suppressor genes. The p16INK4a/CDKN2/MTS1 regulatory effects on cell behavior in numerous states of malignant behavior of the cancer, as it correlated with advanced clinical stage and high histological grade. The shared areas of genetic deletion among these cancers suggest that genes inactivated at these loci have regulatory effects on cell behavior in numerous states of differentiation.

References

6. Huang Y, Boynton PF, Blount PL, Silverstein RJ, Yin J, Tong Y, McDaniel TK, Newkirk C, Resusa JH, Sridhara R, Reid BJ, Meltzer SJ. Loss of the distal portion of the chromosome (assayed by loss of D4S426, as in our study) occurred in 24% of tumors. Loss of this region was associated with increased malignant behavior of the cancer, as it correlated with advanced clinical stage and high histological grade. The shared areas of genetic deletion among these cancers suggest that genes inactivated at these loci have regulatory effects on cell behavior in numerous states of differentiation.

4. Wong DJ, Barrett MT, Stoger R, Emond MJ, Reid BJ: p16INK4a/CDKN2/MTS1 regulatory effects on cell behavior in numerous states of malignant behavior of the cancer, as it correlated with advanced clinical stage and high histological grade. The shared areas of genetic deletion among these cancers suggest that genes inactivated at these loci have regulatory effects on cell behavior in numerous states of differentiation.

References

4. Wong DJ, Barrett MT, Stoger R, Emond MJ, Reid BJ: p16INK4a promoter is hypermethylated at a high frequency in esophageal ad

References

4. Wong DJ, Barrett MT, Stoger R, Emond MJ, Reid BJ: p16INK4a promoter is hypermethylated at a high frequency in esophageal ad

References

4. Wong DJ, Barrett MT, Stoger R, Emond MJ, Reid BJ: p16INK4a promoter is hypermethylated at a high frequency in esophageal ad

References

4. Wong DJ, Barrett MT, Stoger R, Emond MJ, Reid BJ: p16INK4a promoter is hypermethylated at a high frequency in esophageal ad

References