- Ginestier C.
- Hur M.H.
- Charafe-Jauffret E.
- Monville F.
- Dutcher J.
- Brown M.
- Jacquemier J.
- Viens P.
- Kleer C.G.
- Liu S.
- Schott A.
- Hayes D.
- Birnbaum D.
- Wicha M.S.
- Dontu G.
- Charafe-Jauffret E.
- Ginestier C.
- Iovino F.
- Wicinski J.
- Cervera N.
- Finetti P.
- Hur M.H.
- Diebel M.E.
- Monville F.
- Dutcher J.
- Brown M.
- Viens P.
- Xerri L.
- Bertucci F.
- Stassi G.
- Dontu G.
- Birnbaum D.
- Wicha M.S.
- Charafe-Jauffret E.
- Ginestier C.
- Iovino F.
- Tarpin C.
- Diebel M.
- Esterni B.
- Houvenaeghel G.
- Extra J.M.
- Bertucci F.
- Jacquemier J.
- Xerri L.
- Dontu G.
- Stassi G.
- Xiao Y.
- Barsky S.H.
- Birnbaum D.
- Viens P.
- Wicha M.S.
- Ginestier C.
- Hur M.H.
- Charafe-Jauffret E.
- Monville F.
- Dutcher J.
- Brown M.
- Jacquemier J.
- Viens P.
- Kleer C.G.
- Liu S.
- Schott A.
- Hayes D.
- Birnbaum D.
- Wicha M.S.
- Dontu G.
Are CSCs the Source of Metastatic Lesions in Breast Cancer?
- 1A high percentage of CD44+/CD24−/low tumor cells in breast primary tumors correlated with the presence of distant metastases, particularly osseous metastases.25
- 2A subpopulation of circulating tumor cells from metastatic breast cancer patients expressed stem cell markers.26,27
- 3The majority (71%) of tumor cells in early bone marrow metastases expressed the CD44+/CD24− phenotype.28
- 4Pleural metastases from breast cancer patients were highly enriched for a CD44+/CD24−/low subpopulation.29All of the patients who were studied had already received chemotherapy, which highlights the link between chemoresistance of CSCs (reviewed by Liu and Wicha,19Dean,30and Lacerda et al31) and metastasis.
- 5A gene signature of invasiveness, generated by comparing the gene expression profile of CD44+/CD24−/low tumorigenic breast cancer cells with that of normal breast epithelium, was strongly associated with metastasis-free survival.32
- 6Expression of the stem cell marker ALDH in samples of inflammatory breast cancer correlated with the development of distant metastases and decreased survival.11In other studies, however, ALDH prevalence was not a strong predictor of cancer stage or metastasis.
- Charafe-Jauffret E.
- Ginestier C.
- Iovino F.
- Tarpin C.
- Diebel M.
- Esterni B.
- Houvenaeghel G.
- Extra J.M.
- Bertucci F.
- Jacquemier J.
- Xerri L.
- Dontu G.
- Stassi G.
- Xiao Y.
- Barsky S.H.
- Birnbaum D.
- Viens P.
- Wicha M.S.
Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer.Clin Cancer Res. 2010; 16: 45-5533,34,35This discrepancy can be explained on the basis of ALDH isoforms. The ALDH isoform usually thought to be responsible for the ALDH activity in CSCs is ALDH1A1. Recently, however, it was reported that ALDH1A3 is the main isoform responsible for ALDH activity in breast CSCs and that its expression can be used as a specific marker for breast CSCs.35ALDH1A3 expression in human breast cancer samples correlated significantly with tumor grade, metastasis, and cancer stage, showing that CSC prevalence is directly associated with metastasis.35
- Charafe-Jauffret E.
- Ginestier C.
- Iovino F.
- Wicinski J.
- Cervera N.
- Finetti P.
- Hur M.H.
- Diebel M.E.
- Monville F.
- Dutcher J.
- Brown M.
- Viens P.
- Xerri L.
- Bertucci F.
- Stassi G.
- Dontu G.
- Birnbaum D.
- Wicha M.S.
- Charafe-Jauffret E.
- Ginestier C.
- Iovino F.
- Tarpin C.
- Diebel M.
- Esterni B.
- Houvenaeghel G.
- Extra J.M.
- Bertucci F.
- Jacquemier J.
- Xerri L.
- Dontu G.
- Stassi G.
- Xiao Y.
- Barsky S.H.
- Birnbaum D.
- Viens P.
- Wicha M.S.
- Charafe-Jauffret E.
- Ginestier C.
- Iovino F.
- Wicinski J.
- Cervera N.
- Finetti P.
- Hur M.H.
- Diebel M.E.
- Monville F.
- Dutcher J.
- Brown M.
- Viens P.
- Xerri L.
- Bertucci F.
- Stassi G.
- Dontu G.
- Birnbaum D.
- Wicha M.S.
- Charafe-Jauffret E.
- Ginestier C.
- Iovino F.
- Tarpin C.
- Diebel M.
- Esterni B.
- Houvenaeghel G.
- Extra J.M.
- Bertucci F.
- Jacquemier J.
- Xerri L.
- Dontu G.
- Stassi G.
- Xiao Y.
- Barsky S.H.
- Birnbaum D.
- Viens P.
- Wicha M.S.
- Liu H.
- Patel M.R.
- Prescher J.A.
- Patsialou A.
- Qian D.
- Lin J.
- Wen S.
- Chang Y.F.
- Bachmann M.H.
- Shimono Y.
- Dalerba P.
- Adorno M.
- Lobo N.
- Bueno J.
- Dirbas F.M.
- Goswami S.
- Somlo G.
- Condeelis J.
- Contag C.H.
- Gambhir S.S.
- Clarke M.F.
- Liu H.
- Patel M.R.
- Prescher J.A.
- Patsialou A.
- Qian D.
- Lin J.
- Wen S.
- Chang Y.F.
- Bachmann M.H.
- Shimono Y.
- Dalerba P.
- Adorno M.
- Lobo N.
- Bueno J.
- Dirbas F.M.
- Goswami S.
- Somlo G.
- Condeelis J.
- Contag C.H.
- Gambhir S.S.
- Clarke M.F.
- Liu H.
- Patel M.R.
- Prescher J.A.
- Patsialou A.
- Qian D.
- Lin J.
- Wen S.
- Chang Y.F.
- Bachmann M.H.
- Shimono Y.
- Dalerba P.
- Adorno M.
- Lobo N.
- Bueno J.
- Dirbas F.M.
- Goswami S.
- Somlo G.
- Condeelis J.
- Contag C.H.
- Gambhir S.S.
- Clarke M.F.
- Liu H.
- Patel M.R.
- Prescher J.A.
- Patsialou A.
- Qian D.
- Lin J.
- Wen S.
- Chang Y.F.
- Bachmann M.H.
- Shimono Y.
- Dalerba P.
- Adorno M.
- Lobo N.
- Bueno J.
- Dirbas F.M.
- Goswami S.
- Somlo G.
- Condeelis J.
- Contag C.H.
- Gambhir S.S.
- Clarke M.F.
- Liu H.
- Patel M.R.
- Prescher J.A.
- Patsialou A.
- Qian D.
- Lin J.
- Wen S.
- Chang Y.F.
- Bachmann M.H.
- Shimono Y.
- Dalerba P.
- Adorno M.
- Lobo N.
- Bueno J.
- Dirbas F.M.
- Goswami S.
- Somlo G.
- Condeelis J.
- Contag C.H.
- Gambhir S.S.
- Clarke M.F.
- Shipitsin M.
- Campbell L.L.
- Argani P.
- Weremowicz S.
- Bloushtain-Qimron N.
- Yao J.
- Nikolskaya T.
- Serebryiskaya T.
- Beroukhim R.
- Hu M.
- Halushka M.K.
- Sukumar S.
- Parker L.M.
- Anderson K.S.
- Harris L.N.
- Garber J.E.
- Richardson A.L.
- Schnitt S.J.
- Nikolsky Y.
- Gelman R.S.
- Polyak K.
- Charafe-Jauffret E.
- Ginestier C.
- Iovino F.
- Wicinski J.
- Cervera N.
- Finetti P.
- Hur M.H.
- Diebel M.E.
- Monville F.
- Dutcher J.
- Brown M.
- Viens P.
- Xerri L.
- Bertucci F.
- Stassi G.
- Dontu G.
- Birnbaum D.
- Wicha M.S.
- Charafe-Jauffret E.
- Ginestier C.
- Iovino F.
- Wicinski J.
- Cervera N.
- Finetti P.
- Hur M.H.
- Diebel M.E.
- Monville F.
- Dutcher J.
- Brown M.
- Viens P.
- Xerri L.
- Bertucci F.
- Stassi G.
- Dontu G.
- Birnbaum D.
- Wicha M.S.
- Bonuccelli G.
- Casimiro M.C.
- Sotgia F.
- Wang C.
- Liu M.
- Katiyar S.
- Zhou J.
- Dew E.
- Capozza F.
- Daumer K.M.
- Minetti C.
- Milliman J.N.
- Alpy F.
- Rio M.C.
- Tomasetto C.
- Mercier I.
- Flomenberg N.
- Frank P.G.
- Pestell R.G.
- Lisanti M.P.
- Bonuccelli G.
- Casimiro M.C.
- Sotgia F.
- Wang C.
- Liu M.
- Katiyar S.
- Zhou J.
- Dew E.
- Capozza F.
- Daumer K.M.
- Minetti C.
- Milliman J.N.
- Alpy F.
- Rio M.C.
- Tomasetto C.
- Mercier I.
- Flomenberg N.
- Frank P.G.
- Pestell R.G.
- Lisanti M.P.
- Liu H.
- Patel M.R.
- Prescher J.A.
- Patsialou A.
- Qian D.
- Lin J.
- Wen S.
- Chang Y.F.
- Bachmann M.H.
- Shimono Y.
- Dalerba P.
- Adorno M.
- Lobo N.
- Bueno J.
- Dirbas F.M.
- Goswami S.
- Somlo G.
- Condeelis J.
- Contag C.H.
- Gambhir S.S.
- Clarke M.F.
The Niche of Metastatic CSCs
Signals from the ECM
- Ginestier C.
- Hur M.H.
- Charafe-Jauffret E.
- Monville F.
- Dutcher J.
- Brown M.
- Jacquemier J.
- Viens P.
- Kleer C.G.
- Liu S.
- Schott A.
- Hayes D.
- Birnbaum D.
- Wicha M.S.
- Dontu G.
- Liu M.
- Sakamaki T.
- Casimiro M.C.
- Willmarth N.E.
- Quong A.A.
- Ju X.
- Ojeifo J.
- Jiao X.
- Yeow W.S.
- Katiyar S.
- Shirley L.A.
- Joyce D.
- Lisanti M.P.
- Albanese C.
- Pestell R.G.
Signals from Stromal Cells
- Andre F.
- Cabioglu N.
- Assi H.
- Sabourin J.C.
- Delaloge S.
- Sahin A.
- Broglio K.
- Spano J.P.
- Combadiere C.
- Bucana C.
- Soria J.C.
- Cristofanilli M.
Signals That Promote the Metastatic CSC Phenotype

The Proto-Oncogene JUN
The Cell Fate Determination Factor DACH1
- Popov V.M.
- Zhou J.
- Shirley L.A.
- Quong J.
- Yeow W.S.
- Wright J.A.
- Wu K.
- Rui H.
- Vadlamudi R.K.
- Jiang J.
- Kumar R.
- Wang C.
- Pestell R.G.
- Popov V.M.
- Zhou J.
- Shirley L.A.
- Quong J.
- Yeow W.S.
- Wright J.A.
- Wu K.
- Rui H.
- Vadlamudi R.K.
- Jiang J.
- Kumar R.
- Wang C.
- Pestell R.G.
NF-κB
- Liu M.
- Sakamaki T.
- Casimiro M.C.
- Willmarth N.E.
- Quong A.A.
- Ju X.
- Ojeifo J.
- Jiao X.
- Yeow W.S.
- Katiyar S.
- Shirley L.A.
- Joyce D.
- Lisanti M.P.
- Albanese C.
- Pestell R.G.
- Liu M.
- Sakamaki T.
- Casimiro M.C.
- Willmarth N.E.
- Quong A.A.
- Ju X.
- Ojeifo J.
- Jiao X.
- Yeow W.S.
- Katiyar S.
- Shirley L.A.
- Joyce D.
- Lisanti M.P.
- Albanese C.
- Pestell R.G.
- Liu M.
- Sakamaki T.
- Casimiro M.C.
- Willmarth N.E.
- Quong A.A.
- Ju X.
- Ojeifo J.
- Jiao X.
- Yeow W.S.
- Katiyar S.
- Shirley L.A.
- Joyce D.
- Lisanti M.P.
- Albanese C.
- Pestell R.G.
MicroRNAs
- Wellner U.
- Schubert J.
- Burk U.C.
- Schmalhofer O.
- Zhu F.
- Sonntag A.
- Waldvogel B.
- Vannier C.
- Darling D.
- zur Hausen A.
- Brunton V.G.
- Morton J.
- Sansom O.
- Schüler J.
- Stemmler M.P.
- Herzberger C.
- Hopt U.
- Keck T.
- Brabletz S.
- Brabletz T.
- Wellner U.
- Schubert J.
- Burk U.C.
- Schmalhofer O.
- Zhu F.
- Sonntag A.
- Waldvogel B.
- Vannier C.
- Darling D.
- zur Hausen A.
- Brunton V.G.
- Morton J.
- Sansom O.
- Schüler J.
- Stemmler M.P.
- Herzberger C.
- Hopt U.
- Keck T.
- Brabletz S.
- Brabletz T.
- Wellner U.
- Schubert J.
- Burk U.C.
- Schmalhofer O.
- Zhu F.
- Sonntag A.
- Waldvogel B.
- Vannier C.
- Darling D.
- zur Hausen A.
- Brunton V.G.
- Morton J.
- Sansom O.
- Schüler J.
- Stemmler M.P.
- Herzberger C.
- Hopt U.
- Keck T.
- Brabletz S.
- Brabletz T.
How To Eradicate CSC-Driven Metastases?
- Feldmann G.
- Fendrich V.
- McGovern K.
- Bedja D.
- Bisht S.
- Alvarez H.
- Koorstra J.B.
- Habbe N.
- Karikari C.
- Mullendore M.
- Gabrielson K.L.
- Sharma R.
- Matsui W.
- Maitra A.
- Feldmann G.
- Fendrich V.
- McGovern K.
- Bedja D.
- Bisht S.
- Alvarez H.
- Koorstra J.B.
- Habbe N.
- Karikari C.
- Mullendore M.
- Gabrielson K.L.
- Sharma R.
- Matsui W.
- Maitra A.
Conclusions
Acknowledgments
References
- Prospective identification of tumorigenic breast cancer cells [Erratum appeared in Proc Natl Acad Sci USA 2003, 100:6890].Proc Natl Acad Sci USA. 2003; 100: 3983-3988
- Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties.Cancer Res. 2005; 65: 5506-5511
- Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy.Breast Cancer Res. 2008; 10: R25
- Brca1 breast tumors contain distinct CD44+/CD24− and CD133+ cells with cancer stem cell characteristics.Breast Cancer Res. 2008; 10: R10
- In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells.Genes Dev. 2003; 17: 1253-1270
- Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells.Breast Cancer Res. 2004; 6: R605-R615
- Identification of a primitive brain-derived neural stem cell population based on aldehyde dehydrogenase activity.Stem Cells. 2006; 24: 975-985
- Functional characterization of highly purified human hematopoietic repopulating cells isolated according to aldehyde dehydrogenase activity.Blood. 2004; 104: 1648-1655
- ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome.Cell Stem Cell. 2007; 1: 555-567
- Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature.Cancer Res. 2009; 69: 1302-1313
- Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer.Clin Cancer Res. 2010; 16: 45-55
- Identification of tumorsphere- and tumor-initiating cells in HER2/Neu-induced mammary tumors.Cancer Res. 2007; 67: 8671-8681
- Isolation and molecular characterization of cancer stem cells in MMTV-Wnt-1 murine breast tumors.Stem Cells. 2008; 26: 364-371
- Identification and characterization of cancer initiating cells from BRCA1 related mammary tumors using markers for normal mammary stem cells.Int J Biol Sci. 2008; 4: 133-142
- Ras activation contributes to the maintenance and expansion of Sca-1pos cells in a mouse model of breast cancer.Cancer Lett. 2010; 287: 172-181
- CD44+/CD24− breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis.Breast Cancer Res. 2006; 8: R59
- Cancer stem cells in the central nervous system–a critical review.Cancer Res. 2010; 70: 8255-8258
- Implications of the cancer stem-cell hypothesis for breast cancer prevention and therapy.J Clin Oncol. 2008; 26: 2813-2820
- Targeting breast cancer stem cells.J Clin Oncol. 2010; 28: 4006-4012
- Cancer stem cells and metastasis: lethal seeds.Clin Cancer Res. 2006; 12: 5606-5607
- Beyond tumorigenesis: cancer stem cells in metastasis.Cell Res. 2007; 17: 3-14
- Tumor dormancy and cancer stem cells: implications for the biology and treatment of breast cancer metastasis.Breast Dis. 2006; 26: 87-98
- Metastatic inefficiency.Adv Cancer Res. 1990; 54: 159-211
- Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors.J Clin Invest. 2005; 115: 44-55
- Prevalence of CD44+/CD24−/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis.Clin Cancer Res. 2005; 11: 1154-1159
- Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients.Breast Cancer Res. 2009; 11: R46
- Circulating tumor cells with a putative stem cell phenotype in peripheral blood of patients with breast cancer.Cancer Lett. 2010; 288: 99-106
- Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype.Clin Cancer Res. 2006; 12: 5615-5621
- let-7 regulates self renewal and tumorigenicity of breast cancer cells.Cell. 2007; 131: 1109-1123
- ABC transporters, drug resistance, and cancer stem cells.J Mammary Gland Biol Neoplasia. 2009; 14: 3-9
- The role of tumor initiating cells in drug resistance of breast cancer: implications for future therapeutic approaches.Drug Resist Updat. 2010; 13: 99-108
- The prognostic role of a gene signature from tumorigenic breast-cancer cells.N Engl J Med. 2007; 356: 217-226
- In situ identification of putative cancer stem cells by multiplexing ALDH1, CD44, and cytokeratin identifies breast cancer patients with poor prognosis.Am J Pathol. 2010; 176: 2131-2138
- Prognostic impact of ALDH1 in breast cancer: a story of stem cells and tumor microenvironment.Breast Cancer Res Treat. 2010; 123: 97-108
- Aldehyde dehydrogenase activity of breast cancer stem cells is primarily due to isoform ALDH1A3 and its expression is predictive of metastasis.Stem Cells. 2011; 29: 32-45
- A multigenic program mediating breast cancer metastasis to bone.Cancer Cell. 2003; 3: 537-549
- Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models.Proc Natl Acad Sci USA. 2010; 107: 18115-18120
- High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability.J Cell Mol Med. 2009; 13: 2236-2252
- Molecular definition of breast tumor heterogeneity.Cancer Cell. 2007; 11: 259-273
- Caveolin-1 (P132L), a common breast cancer mutation, confers mammary cell invasiveness and defines a novel stem cell/metastasis-associated gene signature.Am J Pathol. 2009; 174: 1650-1662
- Normal stem cells and cancer stem cells: the niche matters [Erratum appeared in Cancer Res 2006;66:6458].Cancer Res. 2006; 66: 4553-4557
- Cancer stem cells: an old idea–a paradigm shift.Cancer Res. 2006; 66 (discussion 1895–1886): 1883-1890
- Cancer stem cell niche: the place to be.Cancer Res. 2011; 71: 634-639
- Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat-3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells.J Biol Chem. 2008; 283: 17635-17651
- Expression of CD 44 s, CD 44 v 3 and CD 44 v 6 in benign and malignant breast lesions: correlation and colocalization with hyaluronan.Histopathology. 2005; 47: 420-428
- Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene.Science. 1987; 235: 177-182
- The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells.Cell. 2009; 138: 1083-1095
- HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion.Oncogene. 2008; 27: 6120-6130
- The canonical NF-kappaB pathway governs mammary tumorigenesis in transgenic mice and tumor stem cell expansion.Cancer Res. 2010; 70: 10464-10473
- Interaction between the adhesion receptor, CD44, and the oncogene product, p185HER2, promotes human ovarian tumor cell activation.J Biol Chem. 1997; 272: 27913-27918
- Heregulin-mediated ErbB2-ERK signaling activates hyaluronan synthases leading to CD44-dependent ovarian tumor cell growth and migration.J Biol Chem. 2007; 282: 19426-19441
- Hyaluronan-mediated CD44 activation of RhoGTPase signaling and cytoskeleton function promotes tumor progression.Semin Cancer Biol. 2008; 18: 251-259
- Alpha-6 integrin is necessary for the tumourigenicity of a stem cell-like subpopulation within the MCF7 breast cancer cell line.Int J Cancer. 2008; 122: 298-304
- Migratory neighbors and distant invaders: tumor-associated niche cells.Genes Dev. 2008; 22: 559-574
- Stromal cell-derived factor-1 and CXCR4 receptor interaction in tumor growth and metastasis of breast cancer.Biomed Pharmacother. 2006; 60: 273-276
- Involvement of chemokine receptors in breast cancer metastasis.Nature. 2001; 410: 50-56
- CXCR4 regulates growth of both primary and metastatic breast cancer.Cancer Res. 2004; 64: 8604-8612
- Expression of chemokine receptors predicts the site of metastatic relapse in patients with axillary node positive primary breast cancer.Ann Oncol. 2006; 17: 945-951
- Priming the ‘soil’ for breast cancer metastasis: the pre-metastatic niche.Breast Dis. 2006; 26: 65-74
- Human mesenchymal stem cells (hMSCs) target osteosarcoma and promote its growth and pulmonary metastasis.Cancer Lett. 2009; 281: 32-41
- Mesenchymal stem cells in early entry of breast cancer into bone marrow.PLoS One. 2008; 3: e2563
- Interleukin-6 is a potent growth factor for ER-alpha-positive human breast cancer.FASEB J. 2007; 21: 3763-3770
- Mesenchymal stem cells within tumour stroma promote breast cancer metastasis.Nature. 2007; 449: 557-563
- Tissue resident stem cells produce CCL5 under the influence of cancer cells and thereby promote breast cancer cell invasion.Cancer Lett. 2009; 284: 80-85
- Transforming p21ras mutants and c-Ets-2 activate the cyclin D1 promoter through distinguishable regions.J Biol Chem. 1995; 270: 23589-23597
- Biological and clinical associations of c-jun activation in human breast cancer.Int J Cancer. 2000; 89: 177-186
- cJun overexpression in MCF-7 breast cancer cells produces a tumorigenic, invasive and hormone resistant phenotype.Oncogene. 1999; 18: 6063-6070
- c-Jun induces mammary epithelial cellular invasion and breast cancer stem cell expansion.J Biol Chem. 2010; 285: 8218-8226
- The retinal determination gene, dachshund, is required for mushroom body cell differentiation.Development. 2000; 127: 2663-2672
- The cell fate determination factor DACH1 is expressed in estrogen receptor-alpha-positive breast cancer and represses estrogen receptor-alpha signaling.Cancer Res. 2009; 69: 5752-5760
- The cell fate determination factor dachshund inhibits androgen receptor signaling and prostate cancer cellular growth.Cancer Res. 2009; 69: 3347-3355
- The dachshund gene in development and hormone-responsive tumorigenesis.Trends Endocrinol Metab. 2010; 21: 41-49
- Attenuation of Forkhead signaling by the retinal determination factor DACH1.Proc Natl Acad Sci USA. 2010; 107: 6864-6869
- DACH1 is a cell fate determination factor that inhibits cyclin D1 and breast tumor growth.Mol Cell Biol. 2006; 26: 7116-7129
- The cell fate determination factor dachshund reprograms breast cancer stem cell function.J Biol Chem. 2011; 286: 2132-2142
- Dachshund inhibits oncogene-induced breast cancer cellular migration and invasion through suppression of interleukin-8.Proc Natl Acad Sci USA. 2008; 105: 6924-6929
- Signaling to NF-kappaB.Genes Dev. 2004; 18: 2195-2224
- The beginning of the end: IkappaB kinase (IKK) and NF-kappaB activation.J Biol Chem. 1999; 274: 27339-27342
- Selective activation of NF-kappa B subunits in human breast cancer: potential roles for NF-kappa B2/p52 and for Bcl-3.Oncogene. 2000; 19: 1123-1131
- Estrogen withdrawal-induced NF-kappaB activity and bcl-3 expression in breast cancer cells: roles in growth and hormone independence.Mol Cell Biol. 2003; 23: 6887-6900
- Nuclear factor-kappaB enhances ErbB2-induced mammary tumorigenesis and neoangiogenesis in vivo.Am J Pathol. 2009; 174: 1910-1920
- Protein kinase C induces motility of breast cancers by upregulating secretion of urokinase-type plasminogen activator through activation of AP-1 and NF-kappaB.Biochem Biophys Res Commun. 2002; 290: 552-557
- Raf kinase inhibitor protein suppresses nuclear factor-kappaB-dependent cancer cell invasion through negative regulation of matrix metalloproteinase expression.Cancer Lett. 2010; 299: 137-149
- Cancer stem cells and the cell cycle: targeting the drive behind breast cancer.Expert Rev Anticancer Ther. 2009; 9: 275-279
- MicroRNAs: crucial multi-tasking components in the complex circuitry of tumor metastasis.Cell Cycle. 2009; 8: 3506-3512
- Metastasis-related miRNAs, active players in breast cancer invasion, and metastasis.Cancer Metastasis Rev. 2010; 29: 785-799
- A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation.J Cell Biol. 2008; 182: 509-517
- microRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling.Proc Natl Acad Sci USA. 2010; 107: 8231-8236
- Notch1-induced transformation of RKE-1 cells requires up-regulation of cyclin D1.Cancer Res. 2006; 66: 7562-7570
- ErbB2 induces Notch1 activity and function in breast cancer cells.Clin Transl Sci. 2008; 1: 107-115
- Notch1-induced mammary tumor development is cyclin D1-dependent and correlates with expansion of pre-malignant multipotent duct-limited progenitors.Oncogene. 2010; 29: 4543-4554
- Cyclin D1 functions in cell migration.Cell Cycle. 2006; 5: 2440-2442
- The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2.J Biol Chem. 2008; 283: 14910-14914
- The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2 [Erratum appeared in Genes Dev 2009;23:1378].Genes Dev. 2008; 22: 894-907
- A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells.EMBO Rep. 2008; 9: 582-589
- The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs.Nat Cell Biol. 2009; 11: 1487-1495
- Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer.Cell Stem Cell. 2007; 1: 313-323
- The role of gemtuzumab ozogamicin in acute leukaemia therapy.Br J Haematol. 2006; 132: 398-409
- Mechanisms and strategies to overcome multiple drug resistance in cancer.FEBS Lett. 2006; 580: 2903-2909
- The cancer stem cell selective inhibitor salinomycin is a p-glycoprotein inhibitor.Blood Cells Mol Dis. 2010; 45: 86-92
- Identification of selective inhibitors of cancer stem cells by high-throughput screening.Cell. 2009; 138: 645-659
- An orally bioavailable small-molecule inhibitor of Hedgehog signaling inhibits tumor initiation and metastasis in pancreatic cancer.Mol Cancer Ther. 2008; 7: 2725-2735
- Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model.Nat Biotechnol. 2010; 28: 341-347
- Anticancer therapeutics: targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor.Mol Pharm. 2008; 5: 474-486
- Targeting of CD44 eradicates human acute myeloid leukemic stem cells.Nat Med. 2006; 12: 1167-1174
- CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts.J Clin Invest. 2010; 120: 485-497
Article info
Publication history
Footnotes
Supported in part by PASPA-UNAM (Programa de Apoyos para la Superación del Personal Académico-Universidad Nacional Autónoma de México) (M.A.V.-V.) and the NIH (grants R01CA070896, R01CA075503, R01CA107382, R01CA132115, and R01CA086072 to R.G.P. and R01CA120876 to M.P.L.). The Kimmel Cancer Center was supported by an NIH cancer center core grant (P30CA56036 to R.G.P.). This project is funded in part from the Marian C. Falk Medical Research Trust and a grant from the Pennsylvania Department of Health (R.G.P.).
CME Disclosure: The authors did not disclose any relevant financial relationships.
A guest editor acted as editor-in-chief for this manuscript. No person at Thomas Jefferson University or Albert Einstein College of Medicine was involved in the peer review process or final disposition of this article.
Identification
Copyright
User license
Elsevier user license |
Permitted
For non-commercial purposes:
- Read, print & download
- Text & data mine
- Translate the article
Not Permitted
- Reuse portions or extracts from the article in other works
- Redistribute or republish the final article
- Sell or re-use for commercial purposes
Elsevier's open access license policy