- Sorlie T.
- Tibshirani R.
- Parker J.
- Hastie T.
- Marron J.S.
- Nobel A.
- Deng S.
- Johnsen H.
- Pesich R.
- Geisler S.
- Demeter J.
- Perou C.M.
- Lønning P.E.
- Brown P.O.
- Børresen-Dale A.L.
- Botstein D.
- Sorlie T.
- Tibshirani R.
- Parker J.
- Hastie T.
- Marron J.S.
- Nobel A.
- Deng S.
- Johnsen H.
- Pesich R.
- Geisler S.
- Demeter J.
- Perou C.M.
- Lønning P.E.
- Brown P.O.
- Børresen-Dale A.L.
- Botstein D.
- Nielsen T.O.
- Hsu F.D.
- Jensen K.
- Cheong M.
- Karaca G.
- Hu Z.
- Hernandez-Boussard T.
- Livsey C.
- Cowan D.
- Dressler L.
- Akslen L.A.
- Ragaz J.
- Gown A.M.
- Gilks C.B.
- van de Rijn M.
- Perou C.M.
- van de Rijn M.
- Perou C.M.
- Tibshirani R.
- Haas P.
- Kallioniemi O.
- Kononen J.
- Torhorst J.
- Sauter G.
- Zuber M.
- Köchli O.R.
- Mross F.
- Dieterich H.
- Seitz R.
- Ross D.
- Botstein D.
- Brown P.
Materials and Methods
Patients and Specimens
IHC Staining
- de Silva Rudland S.
- Martin L.
- Roshanlall C.
- Winstanley J.
- Leinster S.
- Platt-Higgins A.
- Carroll J.
- West C.
- Barraclough R.
- Rudland P.
- Nielsen T.O.
- Hsu F.D.
- Jensen K.
- Cheong M.
- Karaca G.
- Hu Z.
- Hernandez-Boussard T.
- Livsey C.
- Cowan D.
- Dressler L.
- Akslen L.A.
- Ragaz J.
- Gown A.M.
- Gilks C.B.
- van de Rijn M.
- Perou C.M.
- Leake R.
- Barnes D.
- Pinder S.
- Ellis I.
- Anderson E.
- Anderson T.
- Adamson R.
- Rhodes A.
- Miller K.
- Walker R.
- Nielsen T.O.
- Hsu F.D.
- Jensen K.
- Cheong M.
- Karaca G.
- Hu Z.
- Hernandez-Boussard T.
- Livsey C.
- Cowan D.
- Dressler L.
- Akslen L.A.
- Ragaz J.
- Gown A.M.
- Gilks C.B.
- van de Rijn M.
- Perou C.M.
Statistical Methods
Results
IHC Staining of Breast Carcinomas for CK5/6 and CK14

IHC Staining for Cytokeratins and Overall Patient Survival

Association of Cytokeratins with Other Tumor Variables
Tumor variable ⁎ LN, lymph node with (+) tumor or without (−) tumor deposits; grade, histological grades I and II versus histological grade III; tumor size >5 cm versus <5 cm in diameter; other tumor variables, presence (+) or absence (−) of IHC staining for molecular variables using 5% cutoff for (+) versus (−) staining class for OPN (osteopontin), ERα (estrogen receptor α), PgR (progesterone receptor), S100P , S100A4, c-erbB-2, c-erbB-3, p53, pS2, and using a 1% cutoff for (+) versus (−) staining for FANCD2, AGR2, cathepsin D, CK14. | CK5/6 [no. (%)] | Statistical significance | ||
---|---|---|---|---|
Unstained | Stained | Uncorrected | Corrected | |
LN− | 82 (56) | 32 (43) | 0.065 | 0.66 |
LN+ | 64 (44) | 43 (57) | ||
Grade I + II | 142 (78.5) | 57 (65.5) | 0.026 | 0.34 |
Grade III | 39 (21.5) | 30 (34.5) | ||
Tumor, <5 cm | 158 (79) | 66 (74) | 0.45 | 1.00 |
Tumor, >5 cm | 43 (21) | 23 (26) | ||
OPN− | 88 (46) | 6 (7) | <0.0001 | <0.0001 |
OPN+ | 105 (54) | 83 (93) | ||
c-erbB-2− | 154 (78) | 68 (74) | 0.46 | 1.00 |
c-erbB-2+ | 44 (22) | 24 (26) | ||
c-erbB-3− | 86 (43) | 31 (34) | 0.16 | 0.93 |
c-erbB-3+ | 112 (57) | 60 (66) | ||
S100A4− | 145 (72) | 32 (34) | <0.0001 | <0.0001 |
S100A4+ | 57 (28) | 61 (66) | ||
S100P− | 97 (54) | 21 (27) | <0.0001 | 0.00069 |
S100P+ | 82 (46) | 58 (73) | ||
PgR− | 117 (61) | 57 (63) | 0.79 | 1.00 |
PgR+ | 76 (39) | 34 (37) | ||
p53− | 120 (59) | 52 (56) | 0.61 | 1.00 |
p53+ | 82 (41) | 41 (44) | ||
Cathepsin D− | 30 (19) | 11 (15) | 0.58 | 1.00 |
Cathepsin D+ | 129 (81) | 63 (85) | ||
pS2− | 116 (57) | 53 (58) | 1.00 | 1.00 |
pS2+ | 86 (43) | 38 (42) | ||
ERα− | 93 (46) | 44 (48) | 0.80 | 1.00 |
ERα+ | 109 (54) | 47 (52) | ||
AGR2− | 84 (43.5) | 8 (9) | <0.0001 | <0.0001 |
AGR2+ | 109 (56.5) | 78 (91) | ||
FANCD2− | 47 (25) | 56 (64) | <0.0001 | <0.0001 |
FANCD2+ | 138 (75) | 32 (36) | ||
CK14− | 161 (79) | 34 (37) | <0.0001 | <0.0001 |
CK14+ | 43 (21) | 59 (63) |
Histological grade | CK5/6 [no. (%)] | Statistical significance | CK14 [no. (%)] | Statistical significance | ||||
---|---|---|---|---|---|---|---|---|
Unstained | Stained | Contrast | P value | Unstained | Stained | Contrast | P value | |
I | 52 (28.7) | 17 (19.5) | I vs II | 0.412 | 48 (27.6) | 21 (22.3) | I vs II | 0.437 |
II | 90 (49.7) | 40 (46) | II vs III | 0.087 | 83 (47.7) | 47 (50) | II vs III | 0.878 |
III | 39 (21.5) | 30 (34.5) | I vs III | 0.031 | 43 (24.7) | 26 (27.7) | I vs III | 0.473 |
Tumor variable ⁎ LN, lymph node with (+) tumor or without (−) tumor deposits; grade, histological grades I and II versus histological grade III; tumor size >5 cm versus <5 cm in diameter; other tumor variables, presence (+) or absence (−) of IHC staining for molecular variables using 5% cutoff for (+) versus (−) staining class for OPN (osteopontin), ERα (estrogen receptor α), PgR (progesterone receptor), S100P , S100A4, c-erbB-2, c-erbB-3, p53, pS2, and using a 1% cutoff for (+) versus (−) staining for FANCD2, AGR2, cathepsin D, CK5/6. | CK14 [no. (%)] | Statistical significance | ||
---|---|---|---|---|
Unstained | Stained | Uncorrected | Corrected | |
LN− | 78 (54) | 36 (47) | 0.32 | 1.00 |
LN+ | 66 (46) | 41 (53) | ||
Grade I + II | 131 (75) | 68 (72) | 0.66 | 1.00 |
Grade III | 43 (25) | 26 (28) | ||
Tumor <5 cm | 148 (77.5) | 76 (77) | 0.88 | 1.00 |
Tumor >5 cm | 43 (22.5) | 23 (23) | ||
OPN− | 85 (46) | 9 (9) | <0.0001 | <0.0001 |
OPN+ | 99 (54) | 89 (91) | ||
c-erbB-2− | 149 (78) | 73 (74) | 0.46 | 1.00 |
c-erbB-2+ | 42 (22) | 26 (26) | ||
c-erbB-3− | 83 (44) | 34 (34) | 0.13 | 0.90 |
c-erbB-3+ | 107 (56) | 65 (66) | ||
S100A4− | 141 (73) | 36 (35) | <0.0001 | <0.0001 |
S100A4+ | 52 (27) | 66 (65) | ||
S100P− | 102 (58) | 16 (20) | <0.0001 | <0.0001 |
S100P+ | 75 (42) | 65 (80) | ||
PgR− | 109 (59) | 65 (66) | 0.3 | 1.00 |
PgR+ | 76 (41) | 34 (34) | ||
p53− | 119 (61) | 53 (52.5) | 0.17 | 0.95 |
p53+ | 75 (39) | 48 (47.5) | ||
Cathepsin D− | 27 (17.5) | 14 (18) | 1.00 | 1.00 |
Cathepsin D+ | 127 (82.5) | 65 (82) | ||
pS2− | 107 (55) | 62 (63) | 0.26 | 0.99 |
pS2+ | 87 (45) | 37 (37) | ||
ERα− | 82 (42) | 55 (56) | 0.036 | 0.44 |
ERα+ | 112 (58) | 44 (44) | ||
AGR2− | 81 (44) | 11 (12) | <0.0001 | <0.0001 |
AGR2+ | 104 (56) | 83 (88) | ||
FANCD2− | 41 (24) | 62 (63) | <0.0001 | <0.0001 |
FANCD2+ | 133 (76) | 37 (37) | ||
CK5/6− | 161 (83) | 43 (42) | <0.0001 | <0.0001 |
CK5/6+ | 34 (17) | 59 (57) |
- Rakha E.A.
- Elsheikh S.E.
- Aleskandarany M.A.
- Habashi H.O.
- Green A.R.
- Powe D.G.
- El-Sayed M.E.
- Benhasouna A.
- Brunet J.S.
- Akslen L.A.
- Evans A.J.
- Blamey R.
- Reis-Filho J.S.
- Foulkes W.D.
- Ellis I.O.
Tumor variable | Carcinoma cells stained (%) | |||||
---|---|---|---|---|---|---|
Borderline staining carcinoma for CK5/6 | Positive staining carcinoma for CK5/6 | |||||
Focal | Adjacent | P value | Enhanced | Adjacent | P value | |
CK5/6 | 12.3 ± 1.0 | 2.6 ± 0.1 | 0.0033 | 55.4 ± 5.7 | 28.7 ± 0.5 | 0.014 |
P value | NA | NA | NA | NA | ||
CK14 | 9.4 ± 1.0 | 1.7 ± 0.2 | 0.0002 | 58.6 ± 1.5 | 43.6 ± 3.2 | 0.008 |
P value | 0.024 | 0.0022 | 0.40 | 0.013 | ||
FANCD2 | 1.1 ± 0.2 | 0.82 ± 0.4 | 0.36 | 0.12 ± 0.11 | 0.12 ± 0.11 | 1.0 |
P value | <0.0001 | 0.0022 | 0.0035 | <0.0001 | ||
S100A4 | 8.6 ± 0.7 | 3.3 ± 0.8 | 0.001 | 15.6 ± 1.5 | 12.8 ± 1.9 | 0.12 |
P value | 0.0063 | 0.27 | 0.0003 | 0.0002 | ||
OPN | 20.9 ± 2.3 | 30.6 ± 3.8 | 0.019 | 34.8 ± 3.2 | 27.7 ± 3.5 | 0.061 |
P value | 0.004 | 0.0061 | 0.0055 | 0.67 | ||
AGR2 | 3.2 ± 0.3 | 3.6 ± 0.5 | 0.30 | 26.2 ± 3.7 | 35.8 ± 4.2 | 0.041 |
P value | 0.0001 | 0.027 | 0.0017 | 0.097 | ||
S100P | 29.7 ± 3.6 | 9.1 ± 0.6 | 0.006 | 9.5 ± 0.3 | 9.5 ± 1.5 | 1.0 |
P value | 0.0013 | <0.0001 | 0.005 | 0.0008 |
Staining for Other Tumor Variables and Patient Survival
Tumor variable ⁎ In set A, all tumor variables that showed a statistically significant association with duration of patient survival times in the univariate analysis for 137 patient cases available with full data sets were included. Thus comparisons between patients with involved lymph nodes, all tumor sizes (T1 to T4), all histological grades (I to III), staining for OPN, c-erbB-2, S100A4, S100P, p53, PgR, ERα, AGR2, FANCD2, CK5/6, and CK14 were made. In set B, data for pathological tumor variables, involved lymph nodes, all tumor sizes, all histological grades and only staining for CK5/6 and CK14 were included for 199 patients with full data sets. | Coeff β | SE of β | χ2 | P | RR | 95% CI |
---|---|---|---|---|---|---|
Set A | ||||||
Lymph nodes | 0.708 | 0.272 | 6.76 | 0.009 | 2.03 | 1.19–3.46 |
FANCD2 | −0.965 | 0.288 | 11.20 | 0.001 | 0.381 | 0.216–0.670 |
AGR2 | 2.412 | 0.639 | 14.24 | <0.001 | 11.15 | 3.19–39.0 |
S100P | 0.920 | 0.331 | 7.72 | 0.005 | 2.51 | 1.31–4.80 |
OPN | 2.54 | 1.051 | 5.85 | 0.016 | 12.69 | 1.62–99.5 |
ERα | −0.622 | 0.274 | 5.17 | 0.023 | 0.537 | 0.314–0.918 |
c-erbB-2 | 1.324 | 0.315 | 17.67 | <0.001 | 3.76 | 2.03–6.96 |
CK5/6 | 0.612 | 0.287 | 4.54 | 0.033 | 1.84 | 1.05–3.24 |
Set B | ||||||
Tumor size | 0.472 | 0.238 | 3.92 | 0.048 | 1.60 | 1.00–2.56 |
Lymph nodes | 0.571 | 0.211 | 7.29 | 0.007 | 1.77 | 1.17–2.68 |
CK5/6 | 1.210 | 0.245 | 24.39 | <0.001 | 3.35 | 2.07–5.42 |
CK14 | 0.912 | 0.238 | 14.63 | <0.001 | 2.49 | 1.56–3.97 |
Discussion
- van de Rijn M.
- Perou C.M.
- Tibshirani R.
- Haas P.
- Kallioniemi O.
- Kononen J.
- Torhorst J.
- Sauter G.
- Zuber M.
- Köchli O.R.
- Mross F.
- Dieterich H.
- Seitz R.
- Ross D.
- Botstein D.
- Brown P.
- Rakha E.A.
- Elsheikh S.E.
- Aleskandarany M.A.
- Habashi H.O.
- Green A.R.
- Powe D.G.
- El-Sayed M.E.
- Benhasouna A.
- Brunet J.S.
- Akslen L.A.
- Evans A.J.
- Blamey R.
- Reis-Filho J.S.
- Foulkes W.D.
- Ellis I.O.
- Nielsen T.O.
- Hsu F.D.
- Jensen K.
- Cheong M.
- Karaca G.
- Hu Z.
- Hernandez-Boussard T.
- Livsey C.
- Cowan D.
- Dressler L.
- Akslen L.A.
- Ragaz J.
- Gown A.M.
- Gilks C.B.
- van de Rijn M.
- Perou C.M.
- van de Rijn M.
- Perou C.M.
- Tibshirani R.
- Haas P.
- Kallioniemi O.
- Kononen J.
- Torhorst J.
- Sauter G.
- Zuber M.
- Köchli O.R.
- Mross F.
- Dieterich H.
- Seitz R.
- Ross D.
- Botstein D.
- Brown P.
- Sorlie T.
- Tibshirani R.
- Parker J.
- Hastie T.
- Marron J.S.
- Nobel A.
- Deng S.
- Johnsen H.
- Pesich R.
- Geisler S.
- Demeter J.
- Perou C.M.
- Lønning P.E.
- Brown P.O.
- Børresen-Dale A.L.
- Botstein D.
- van de Rijn M.
- Perou C.M.
- Tibshirani R.
- Haas P.
- Kallioniemi O.
- Kononen J.
- Torhorst J.
- Sauter G.
- Zuber M.
- Köchli O.R.
- Mross F.
- Dieterich H.
- Seitz R.
- Ross D.
- Botstein D.
- Brown P.
- Rakha E.A.
- Elsheikh S.E.
- Aleskandarany M.A.
- Habashi H.O.
- Green A.R.
- Powe D.G.
- El-Sayed M.E.
- Benhasouna A.
- Brunet J.S.
- Akslen L.A.
- Evans A.J.
- Blamey R.
- Reis-Filho J.S.
- Foulkes W.D.
- Ellis I.O.
- Nielsen T.O.
- Hsu F.D.
- Jensen K.
- Cheong M.
- Karaca G.
- Hu Z.
- Hernandez-Boussard T.
- Livsey C.
- Cowan D.
- Dressler L.
- Akslen L.A.
- Ragaz J.
- Gown A.M.
- Gilks C.B.
- van de Rijn M.
- Perou C.M.
- Nielsen T.O.
- Hsu F.D.
- Jensen K.
- Cheong M.
- Karaca G.
- Hu Z.
- Hernandez-Boussard T.
- Livsey C.
- Cowan D.
- Dressler L.
- Akslen L.A.
- Ragaz J.
- Gown A.M.
- Gilks C.B.
- van de Rijn M.
- Perou C.M.
- Rakha E.A.
- Elsheikh S.E.
- Aleskandarany M.A.
- Habashi H.O.
- Green A.R.
- Powe D.G.
- El-Sayed M.E.
- Benhasouna A.
- Brunet J.S.
- Akslen L.A.
- Evans A.J.
- Blamey R.
- Reis-Filho J.S.
- Foulkes W.D.
- Ellis I.O.
- Podo F.
- Buydens L.M.
- Degani H.
- Hilhorst R.
- Klipp E.
- Gribbestad I.S.
- Van Huffel S.
- van Laarhoven H.W.
- Luts J.
- Monleon D.
- Postma G.J.
- Schneiderhan-Marra N.
- Santoro F.
- Wouters H.
- Russnes H.G.
- Sørlie T.
- Tagliabue E.
- Børresen-Dale A.L.
Triple-negative breast cancer: present challenges and new perspectives.
- Korsching E.
- Packeisen J.
- Agelopoulos K.
- Eisenacher M.
- Voss R.
- Isola J.
- van Diest P.J.
- Brandt B.
- Boecker W.
- Buerger H.
- Sørlie T.
- Perou C.M.
- Tibshirani R.
- Aas T.
- Geisler S.
- Johnsen H.
- Hastie T.
- Eisen M.B.
- van de Rijn M.
- Jeffrey S.S.
- Thorsen T.
- Quist H.
- Matese J.C.
- Brown P.O.
- Botstein D.
- Eystein Lønning P.
- Børresen-Dale A.L.
- Sørlie T.
- Perou C.M.
- Tibshirani R.
- Aas T.
- Geisler S.
- Johnsen H.
- Hastie T.
- Eisen M.B.
- van de Rijn M.
- Jeffrey S.S.
- Thorsen T.
- Quist H.
- Matese J.C.
- Brown P.O.
- Botstein D.
- Eystein Lønning P.
- Børresen-Dale A.L.
- Böcker W.
- Moll R.
- Poremba C.
- Holland R.
- Van Diest P.J.
- Dervan P.
- Bürger H.
- Wai D.
- Ina Diallo R.
- Brandt B.
- Herbst H.
- Schmidt A.
- Lerch M.M.
- Buchwallow I.B.
- Böcker W.
- Moll R.
- Poremba C.
- Holland R.
- Van Diest P.J.
- Dervan P.
- Bürger H.
- Wai D.
- Ina Diallo R.
- Brandt B.
- Herbst H.
- Schmidt A.
- Lerch M.M.
- Buchwallow I.B.
- Lim E.
- Vaillant F.
- Wu D.
- Forrest N.C.
- Pal B.
- Hart A.H.
- Asselin-Labat M.L.
- Gyorki D.E.
- Ward T.
- Partanen A.
- Feleppa F.
- Huschtscha L.I.
- Thorne H.J.
- kConFab
- Fox S.B.
- Yan M.
- French J.D.
- Brown M.A.
- Smyth G.K.
- Visvader J.E.
- Lindeman G.J.
- Lim E.
- Vaillant F.
- Wu D.
- Forrest N.C.
- Pal B.
- Hart A.H.
- Asselin-Labat M.L.
- Gyorki D.E.
- Ward T.
- Partanen A.
- Feleppa F.
- Huschtscha L.I.
- Thorne H.J.
- kConFab
- Fox S.B.
- Yan M.
- French J.D.
- Brown M.A.
- Smyth G.K.
- Visvader J.E.
- Lindeman G.J.
- Korsching E.
- Packeisen J.
- Liedtke C.
- Hungermann D.
- Wülfing P.
- van Diest P.J.
- Brandt B.
- Boecker W.
- Buerger H.
- Ginestier C.
- Hur M.H.
- Charafe-Jauffret E.
- Monville F.
- Dutcher J.
- Brown M.
- Jacquemier J.
- Viens P.
- Kleer C.G.
- Liu S.
- Schott A.
- Hayes D.
- Birnbaum D.
- Wicha M.S.
- Dontu G.
- Lim E.
- Vaillant F.
- Wu D.
- Forrest N.C.
- Pal B.
- Hart A.H.
- Asselin-Labat M.L.
- Gyorki D.E.
- Ward T.
- Partanen A.
- Feleppa F.
- Huschtscha L.I.
- Thorne H.J.
- kConFab
- Fox S.B.
- Yan M.
- French J.D.
- Brown M.A.
- Smyth G.K.
- Visvader J.E.
- Lindeman G.J.
- Hosey A.M.
- Gorski J.J.
- Murray M.M.
- Quinn J.E.
- Chung W.Y.
- Stewart G.E.
- James C.R.
- Farragher S.M.
- Mulligan J.M.
- Scott A.N.
- Dervan P.A.
- Johnston P.G.
- Couch F.J.
- Daly P.A.
- Kay E.
- McCann A.
- Mullan P.B.
- Harkin D.P.
- Lim E.
- Vaillant F.
- Wu D.
- Forrest N.C.
- Pal B.
- Hart A.H.
- Asselin-Labat M.L.
- Gyorki D.E.
- Ward T.
- Partanen A.
- Feleppa F.
- Huschtscha L.I.
- Thorne H.J.
- kConFab
- Fox S.B.
- Yan M.
- French J.D.
- Brown M.A.
- Smyth G.K.
- Visvader J.E.
- Lindeman G.J.
- Rakha E.A.
- Elsheikh S.E.
- Aleskandarany M.A.
- Habashi H.O.
- Green A.R.
- Powe D.G.
- El-Sayed M.E.
- Benhasouna A.
- Brunet J.S.
- Akslen L.A.
- Evans A.J.
- Blamey R.
- Reis-Filho J.S.
- Foulkes W.D.
- Ellis I.O.
- Lim E.
- Vaillant F.
- Wu D.
- Forrest N.C.
- Pal B.
- Hart A.H.
- Asselin-Labat M.L.
- Gyorki D.E.
- Ward T.
- Partanen A.
- Feleppa F.
- Huschtscha L.I.
- Thorne H.J.
- kConFab
- Fox S.B.
- Yan M.
- French J.D.
- Brown M.A.
- Smyth G.K.
- Visvader J.E.
- Lindeman G.J.
Acknowledgments
Supplementary data
- Supplemental Figure S1
IHC staining in color of human breast tissues for cytokeratins. A: Incubation of normal breast duct tissue with antibody to CK14 shows brown staining of myoepithelial/basal cells (arrowheads) and of occasional suprabasal epithelial-like cells (arrows); most epithelial cells (e) and the adjacent stromal cells (s) were unstained. B: Invasive carcinoma stained for CK5/6 shows no IHC staining. C: Invasive carcinoma stained for CK5/6 shows borderline staining of the occasional brown malignant cell (arrow). D: Invasive carcinoma stained for CK5/6 shows positive brown staining for malignant cells. E: Invasive carcinoma stained for CK14 shows positive brown staining for malignant epithelial cells (e); stromal cells (s) were unstained. F: A different section of the invasive carcinoma shown in E, at a higher magnification, illustrates cytoplasmic staining in malignant epithelial cells (e) stained for CK14; stromal cells (s) were unstained. Nuclei were stained blue with Mayer's hemalum throughout. Original magnification: ×385 (B–E); ×770 (A and F). Scale bars = 20 μm.
- Supplemental Figure S2
IHC staining in color of invasive breast carcinoma classified as positively stained for cytokeratins CK14 and CK5/6. A and B: Near-adjacent sections of the same invasive carcinoma. Tissue incubated with mAb to CK14 shows strongly stained brown carcinoma cells (A); there is no staining with the same mAb preincubated with our synthetic peptide (B); stromal cells (s) were unstained under both conditions. C and D: Near-adjacent sections of the same invasive carcinoma. Tissue incubated with mAb to CK5/6 (C) shows strongly stained brown carcinoma cells; tissue incubated with mAb to osteopontin (D) shows the brown beaded cytoplasmic staining characteristic of osteopontin (see Ref. 19). E and F: Sections of the same invasive carcinoma incubated with mAb to CK5/6 (brown stain) and to S100A4 (pink/red stain); the primary antibodies were detected by horseradish peroxidase oxidation of diaminobenzidine (DAB) or alkaline phosphatase hydrolysis of naphthol dyes, respectively (as described under Materials and Methods). Some cells were stained both brown and red/pink in the cytoplasm, for both CK5/6 and S100A4 (E, arrows), whereas the majority of the cells stained separately either brown for CK5/6 or red/pink for S100A4 (F). Nuclei were stained blue with Mayer's hemalum throughout. Original magnification: ×310 (F); ×385 (A-D); ×480 (E). Scale bars = 20 μm.
- Supplemental Figure S3
Association of IHC staining for CK5/6 and CK14 with overall duration of patient survival. The cumulative proportion of surviving patients as a percentage of the total for each year after presentation for patients with carcinomas classified as unstained for either CK14 or CK5/6 (set a, solid line), positively stained for CK14 and unstained for CK5/6 (set b, dotted line), unstained for CK14 and positively stained for CK5/6 (set c, dashed line), or positively stained for both CK14 and CK5/6 (set d, dot-and-dash line). There were 142 censored observations in set a (47 dead of other causes), 12 in set b (six dead of other causes), seven in set c (one dead of other causes), and five in set d (two dead of other causes). The curves were highly significantly different overall (Wilcoxon statistic χ2 = 121.02, 3 df, P < 0.0001) and in pairwise combinations for sets a and b (χ2 = 64.48, 1 df, P < 0.0001; Cox's univariate analysis RR = 10.45, 95% CI = 5.88 to 18.5), sets a and c (χ2 = 64.37, 1 df, P < 0.0001; RR = 11.52, 95% CI = 6.37 to 20.8), and sets a and d (χ2 = 102.92, 1 df, P < 0.0001; RR = 14.15, 95% CI = 8.34 to 24.0). There was no significant difference in pairwise combinations for sets b and c (χ2 = 0.03, 1 df, P = 0.855), sets b and d (χ2 = 0.28, 1 df, P= 0.594), and sets c and d (χ2 = 0.34, 1 df, P= 0.558).
- Supplemental Table S1
- Supplemental Table S2
- Supplemental Table S3
References
- An atlas of subgross pathology of the human breast with special reference to possible precancerous lesions.J Natl Cancer Inst. 1975; 55: 231-273
- Diagnostic Histopathology of the Breast.Churchill Livingstone, Edinburgh1988
- Repeated observation of breast tumor subtypes in independent gene expression data sets.Proc Natl Acad Sci USA. 2003; 100: 8418-8423
- The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells.Cell. 1982; 31: 11-24
- Monoclonal marker that predicts early recurrence of breast cancer.Lancet. 1987; 1: 514
- Distribution of myoepithelial cells and basement membrane proteins in the normal breast and in benign and malignant breast disease.Cancer Res. 1982; 42: 4763-4770
- Immunocytochemical identification of cell types in benign and malignant breast diseases: variations in cell markers accompany the malignant state.J Histochem Cytochem. 1993; 41: 543-553
- Expression of luminal and basal cytokeratins in human breast carcinoma.J Pathol. 2004; 203: 661-671
- Immunohistochemical and clinical characterisation of the basal-like subtype of invasive breast carcinoma.Clin Cancer Res. 2004; 10: 5367-5374
- Biological and prognostic significance of stratified epithelial cytokeratins in infiltrating breast carcinomas.Virchows Arch. 1998; 433: 119-129
- Expression of cytokeratins 17 and 5 identifies a group of breast carcinomas with poor clinical outcome.Am J Pathol. 2002; 161 ([Erratum appeared in Am J Pathol 2003, 163:377]): 1991-1996
- Concordance among gene-expression-based predictors for breast cancer.N Engl J Med. 2006; 355: 560-569
- Phenotypic instability of rat mammary tumor epithelial cells.J Natl Cancer Inst. 1983; 71: 1227-1240
- Induction of the metastatic phenotype by transfection of a benign rat mammary epithelial cell line with the gene for p9Ka, a rat calcium-binding protein, but not with the oncogene EJ-ras-1.Oncogene. 1993; 8: 999-1008
- The identification of osteopontin as a metastasis-related gene product in a rodent mammary tumour model.Oncogene. 1996; 13: 97-104
- Human homologue of cement gland protein, a novel metastasis inducer associated with breast carcinomas.Cancer Res. 2005; 65: 3796-3805
- Induction of metastasis by S100P in a rat mammary model and its association with poor survival of breast cancer patients.Cancer Res. 2006; 66: 1199-1207
- Prognostic significance of the metastasis-inducing protein S100A4 (p9Ka) in human breast cancer.Cancer Res. 2000; 60: 1595-1603
- Prognostic significance of the metastasis-associated protein osteopontin in human breast cancer.Cancer Res. 2002; 62: 3417-3427
- The metastasis-associated anterior gradient 2 protein is correlated with poor survival of breast cancer patients.Am J Pathol. 2009; 175: 1848-1857
- Emergence of DNA-damage response network consisting of Fanconi anemia and BRCA proteins.Nat Rev Genet. 2007; 8: 735-748
- Significance of the Fanconi anemia FANCD2 protein in sporadic and metastatic human breast cancer.Am J Pathol. 2010; 176: 2935-2947
- Antibody markers of basal cells in complex epithelia.J Cell Sci. 1990; 97: 39-50
- Association of S100A4 and osteopontin with specific prognostic factors and survival of patients with minimally invasive breast cancer.Clin Cancer Res. 2006; 12: 1192-1200
- Comparison of the metastasis-inducing protein S100A4 (p9Ka) with other prognostic markers in human breast cancer.Int J Cancer. 2000; 89: 198-208
- Immunohistochemical detection of steroid receptors in breast cancer: a working protocol.J Clin Pathol. 2000; 53: 634-635
- HER2 testing in the UK: further update to recommendations.J Clin Pathol. 2008; 61: 818-824
- REporting recommendations for tumour MARKer prognostic studies (REMARK).Eur J Cancer. 2005; 41: 1690-1696
- Practical Nonparametric Statistics.ed 3. Wiley, London1999
- Triple negative breast cancer: distinguishing between basal and nonbasal subtypes.Clin Cancer Res. 2009; 15: 2302-2310
- Characterization of breast carcinomas by two monoclonal antibodies distinguishing myoepithelial from luminal epithelial cells.J Histochem Cytochem. 1986; 34: 869-881
- Basal cell-specific and hyperproliferation-related keratins in human cancer.Am J Pathol. 1991; 138: 751-763
- Breast Cancer Linkage Consortium: Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype.Clin Cancer Res. 2005; 11: 5175-5180
- Specific morphological features predictive for the basal phenotype in grade 3 invasive ductal carcinoma of breast.Histopathology. 2006; 49: 22-34
- Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype.Clin Cancer Res. 2008; 14: 1368-1376
- Basal-like breast cancer: a critical review.J Clin Oncol. 2008; 26: 2568-2581
- Triple negative breast cancers: clinical and prognostic implications.Eur J Cancer. 2009; 45: 27-40
- Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer.J Natl Cancer Inst. 2003; 95: 1482-1485
- Prognostic significance of the Nottingham histologic grade in invasive breast carcinoma.J Clin Oncol. 2008; 26: 3153-3158
- The Cancer Research Campaign (King's/Cambridge) Trial for early breast cancer: clinico-pathological aspects.Br J Cancer. 1982; 45: 655-669
- The long term prognostic significance of c-erbB-2 in primary breast cancer.Br J Cancer. 1991; 63: 447-450
- Expression and splicing of the unfolded response gene XBP-1 are significantly associated with clinical outcome of endocrine-treated breast cancer.Int J Cancer. 2008; 123: 85-88
- Triple-negative breast cancer: present challenges and new perspectives.Mol Oncol. 2010; 4: 209-229
- S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51.Blood. 2002; 100: 2414-2420
- CGH analysis of ductal carcinoma of the breast with basaloid/myoepithelial cell differentiation.Br J Cancer. 2001; 85: 422-427
- Cytogenetic alterations and cytokeratin expression patterns in breast cancer: integrating a new model of breast differentiation into cytogenetic pathways of breast carcinogenesis.Lab Invest. 2002; 82: 1525-1533
- Molecular portraits of human breast tumours.Nature. 2000; 406: 747-752
- Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications.Proc Natl Acad Sci USA. 2001; 98: 10869-10874
- Gene expression profiling predicts clinical outcome of breast cancer.Nature. 2002; 415: 530-536
- Microarray analysis of suppression subtracted hybridisation libraries identifies genes associated with breast cancer progression.Cell Oncol. 2010; 32: 87-99
- Immunocytochemical identification of cell types in human mammary gland: variations in cellular markers are dependent on glandular topography and differentiation.J Histochem Cytochem. 1989; 37: 1087-1100
- Histochemical organization and cellular composition of ductal buds in developing human breasts: evidence for cytological intermediates between epithelial and myoepithelial cells.J Histochem Cytochem. 1991; 39: 1471-1484
- Basal cytokeratins and their relationship to the cellular origin and functional classification of breast cancer.Breast Cancer Res. 2005; 7: 143-148
- Common adult stem cells in the human breast give rise to glandular and myoepithelial cell lineages: a new cell biological concept.Lab Invest. 2002; 82: 737-746
- Evidence of progenitor cells of glandular and myoepithelial cell lineages in the human adult female breast epithelium: a new progenitor (adult stem) cell concept.Cell Prolif. 2003; 36: 73-84
- Isolation of simian virus 40-transformed human mammary epithelial stem cell lines that can differentiate to myoepithelial-like cells in culture and in vivo.Dev Biol. 1989; 136: 167-180
- Growth and differentiation of progenitor/stem cells derived from the human mammary gland.Exp Cell Res. 2004; 297 ([Erratum appeared in Exp Cell Res 2004;300:257]): 444-460
- Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers.Nat Med. 2009; 15: 907-913
- A possible mammary stem cell line.Cell. 1978; 15: 283-298
- Cellular composition and organisation of ductal buds in developing rat mammary glands: evidence for morphological intermediates between epithelial and myoepithelial cells.Am J Anat. 1984; 170: 631-652
- Steroid hormone receptor status of mouse mammary stem cells.J Natl Cancer Inst. 2006; 98: 1011-1014
- Epithelial stem cells and their possible role in the development of the normal and diseased breast.Histol Histopathol. 1993; 8: 385-404
- Will cancer stem cells provide new therapeutic targets?.Carcinogenesis. 2005; 26: 703-711
- Molecular heterogeneity of breast carcinomas and the cancer stem cell hypothesis.Nat Rev Cancer. 2007; 7: 791-799
- Epithelial progenitor cell lines as models of normal breast morphogenesis and neoplasia.Cell Prolif. 2003; 36: 33-44
- A putative breast stem cell population is enriched for steroid receptor-positive cells.Dev Biol. 2005; 277: 443-456
- The origin of vimentin expression in invasive cancer: epithelial-mesenchymal transition, myoepithelial histogenesis or histogenesis from progenitor cells with bilinear differentiation potential?.J Pathol. 2005; 206: 451-457
- Prevalence of CD44+/CD24-/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis.Clin Cancer Res. 2005; 11: 1154-1159
- ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome.Cell Stem Cell. 2007; 1: 555-567
- Brca1 breast tumors contain distinct CD44 +/CD24- and CD133+ cells with cancer stem cell characteristics.Breast Cancer Res. 2008; 10: R10
- BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells.Cell Stem Cell. 2010; 7: 403-417
- Molecular basis for estrogen receptor alpha deficiency on BRCA1-linked breast cancer.J Natl Cancer Inst. 2007; 99: 1683-1694
- BRCA1 transcriptionally regulates genes associated with the basal-like phenotype in breast cancer.Breast Cancer Res Treat. 2010; 122: 721-731
- BRCA1 regulates human mammary stem cell progenitor cell fate.Proc Natl Acad Sci USA. 2008; 105: 1680-1685
- BRCA1 suppresses osteopontin-mediated breast cancer.J Biol Chem. 2006; 281: 26587-26601
- Mammary stem cells in normal development and cancer.in: Potten C.S. Academic Press, London1996: 147-232
Article info
Publication history
Footnotes
Supported by the Cancer and Polio Research Fund, Wirral, Cheshire, United Kingdom.
Supplemental material for this article can be found at http://ajp.amjpathol.org or at doi: doi: 10.1016/j.ajpath.2011.04.022.
Identification
Copyright
User license
Elsevier user license |
Permitted
For non-commercial purposes:
- Read, print & download
- Text & data mine
- Translate the article
Not Permitted
- Reuse portions or extracts from the article in other works
- Redistribute or republish the final article
- Sell or re-use for commercial purposes
Elsevier's open access license policy