- Fan C.Y.
- Pan J.
- Usuda N.
- Yeldandi A.V.
- Rao M.S.
- Reddy J.K.
- Lee S.S.
- Pineau T.
- Drago J.
- Lee E.J.
- Owens J.W.
- Kroetz D.L.
- Fernandez-Salguero P.M.
- Westphal H.
- Gonzalez F.J.
- Fan C.Y.
- Pan J.
- Usuda N.
- Yeldandi A.V.
- Rao M.S.
- Reddy J.K.
- Lee S.S.
- Pineau T.
- Drago J.
- Lee E.J.
- Owens J.W.
- Kroetz D.L.
- Fernandez-Salguero P.M.
- Westphal H.
- Gonzalez F.J.
- Fan C.Y.
- Pan J.
- Usuda N.
- Yeldandi A.V.
- Rao M.S.
- Reddy J.K.
- Rusyn I.
- Asakura S.
- Pachkowski B.
- Bradford B.U.
- Denissenko M.F.
- Peters J.M.
- Holland S.M.
- Reddy J.K.
- Cunningham M.L.
- Swenberg J.A.
- Fan C.Y.
- Pan J.
- Usuda N.
- Yeldandi A.V.
- Rao M.S.
- Reddy J.K.
- Rusyn I.
- Asakura S.
- Pachkowski B.
- Bradford B.U.
- Denissenko M.F.
- Peters J.M.
- Holland S.M.
- Reddy J.K.
- Cunningham M.L.
- Swenberg J.A.
- Fan C.Y.
- Pan J.
- Usuda N.
- Yeldandi A.V.
- Rao M.S.
- Reddy J.K.
- Rutkowski D.T.
- Wu J.
- Back S.H.
- Callaghan M.U.
- Ferris S.P.
- Iqbal J.
- Clark R.
- Miao H.
- Hassler J.R.
- Fornek J.
- Katze M.G.
- Hussain M.M.
- Song B.
- Swathirajan J.
- Wang J.
- Yau G.D.
- Kaufman R.J.
- Rutkowski D.T.
- Wu J.
- Back S.H.
- Callaghan M.U.
- Ferris S.P.
- Iqbal J.
- Clark R.
- Miao H.
- Hassler J.R.
- Fornek J.
- Katze M.G.
- Hussain M.M.
- Song B.
- Swathirajan J.
- Wang J.
- Yau G.D.
- Kaufman R.J.
Materials and Methods
ACOX1−/− Mice and Generation of ACOX1−/− with Human ACOX1 Transgene (ACOX1−/−h+ Humanized Mice)
- Fan C.Y.
- Pan J.
- Usuda N.
- Yeldandi A.V.
- Rao M.S.
- Reddy J.K.
- Fan C.Y.
- Pan J.
- Usuda N.
- Yeldandi A.V.
- Rao M.S.
- Reddy J.K.
- Jia Y.
- Qi C.
- Kashireddi P.
- Surapureddi S.
- Zhu Y.J.
- Rao M.S.
- Le Roith D.
- Chambon P.
- Gonzalez F.J.
- Reddy J.K.
Trimming BAC clone | 5′-GGGTGCAAATTGCCCGGTGCCTTCTGTTTCCCAGGCAGCTCTGTG-3′ |
5′-CAGCTTACCTCTCAGGAATGCTACGTTTTGAACATCAAGAATGGAAA-3′ | |
ACOX-amp | |
Sense | 5′-GCCATGGATATGTTCCAGAAGGTAGCTTGGTCTGACAGTTACCAATGC-3′ |
Antisense | 5′-GCTGCCATTGAGGCTTTTAACAAAGGTGGCACTTTTC-3′ |
Genotyping | |
Neo | |
Sense | 5′-TATTCGGCTATGACTGGGCACA-3′ |
Antisense | 5′-GATGGATACTTTCTCGGCAGGA-3′ |
mACOX1 exon | |
Sense | 5′-CCGCAAGCCATCCGACATTC-3′ |
Antisense | 5′-ATTCAGTGGGTCAGGCGACTGC-3′ |
hACOX1BAC | |
Sense | 5′-ATTGCCCGGTGCCTTCTGTTTC-3′ |
Antisense | 5′-AGCCGGTGAGCGTGGGTCTC-3′ |
qPCR/Probe | |
hACOX1 | |
Forward | 5′-TCTGTCTGGGCCGCTGTCACTC-3′ |
Reverse | 5′-CCTAGGAGGCAGCCTCAGGACG-3′ |
mACOX1 | |
Forward | 5′-GCCAAGGCGACCTGAGTGAGC-3′ |
Reverse | 5′-ACCGCAAGCCATCCGACATTC-3′ |
ATF6 | |
Forward | 5′-CAGTTGCTCCATCTCCTCTCC-3′ |
Reverse | 5′-TGGGACACTGGCATTGGTTTG-3′ |
XBP1 | |
Forward | 5′-CCTGAGCCCGGAGGAGAA-3′ |
Reverse | 5′-CTCGAGCAGTCTGCGCTG-3′ |
XBP1s | |
Forward | 5′-ACACGCTTGGGAATGGACAC-3′ |
Reverse | 5′-CCATGGGAAGATGTTCTGGG-3′ |
ATF4 | |
Forward | 5′-ACTATCTGGAGGTGGCCAAG-3′ |
Reverse | 5′-CATCCAACGTGGTCAAGAGC-3′ |
GRP78 | |
Forward | 5′-CGTGGAGATCATAGCCAACG-3′ |
Reverse | 5′-ATACGCCTCAGCAGTCTCCT-3′ |
Trb3 | |
Forward | 5′-CCCACAGGCACAGAGTACAC-3′ |
Reverse | 5′-CGTCCTCTCACAGTTGCTGA-3′ |
CHOP | |
Forward | 5′-AGCCTGGTATGAGGATCTGC-3′ |
Reverse | 5′-CTCCTGCTCCTTCTCCTTCA-3′ |
Gadd45α | |
Forward | 5′-CCAAGCTGCTCAACGTAGA-3′ |
Reverse | 5′-CCACTGATCCATGTAGCGAC-3′ |
P8 | |
Forward | 5′-ACCAAGAGAGAAGCTGCTGC-3′ |
Reverse | 5′-CTCCCTCTCCAGAACCTCACT-3′ |
PPARγ | |
Forward | 5′-CCACAGTTGATTTCTCCAGCATTTC-3′ |
Reverse | 5′-CAGGTTCTACTTTGATCGCACTTTG-3′ |
aP2 | |
Forward | 5′-GAAGTGGGAGTGGGCTTTGC-3′ |
Reverse | 5′-TGTGGTCGACTTTCCATCCC-3′ |
Bax | |
Forward | 5′-ACCAAGAAGCTGAGCGAGTG-3′ |
Reverse | 5′-CTCACGGAGGAAGTCCAGTG-3′ |
Bcl2 | |
Forward | 5′-TCTTCTCCTTCCAGCCTGAG-3′ |
Reverse | 5′-CCCACCGAACTCAAAGAAGG-3′ |
18S | |
Forward | 5′-AAACGGCTACCACATCCAAG-3′ |
Reverse | 5′-CCTCCAATGGATCCTCGTTA-3′ |
Morphology
- Jia Y.
- Qi C.
- Kashireddi P.
- Surapureddi S.
- Zhu Y.J.
- Rao M.S.
- Le Roith D.
- Chambon P.
- Gonzalez F.J.
- Reddy J.K.
- Fan C.Y.
- Pan J.
- Usuda N.
- Yeldandi A.V.
- Rao M.S.
- Reddy J.K.
- Jia Y.
- Qi C.
- Kashireddi P.
- Surapureddi S.
- Zhu Y.J.
- Rao M.S.
- Le Roith D.
- Chambon P.
- Gonzalez F.J.
- Reddy J.K.
Serum and Hepatic Lipid
Cell Culture
Gene Expression Analysis
- Jia Y.
- Qi C.
- Kashireddi P.
- Surapureddi S.
- Zhu Y.J.
- Rao M.S.
- Le Roith D.
- Chambon P.
- Gonzalez F.J.
- Reddy J.K.
Chromatin Immunoprecipitation and Electrophoretic Mobility Shift Assay
- Viswakarma N.
- Yu S.
- Naik S.
- Kashireddy P.
- Matsumoto K.
- Sarkar J.
- Sarkar J.
- Surapureddi S.
- Jia Y.
- Rao M.S.
- Reddy J.K.
ChIP assay | |
P1 | |
Forward | 5′-CTGACGGAAGGAAGGTTGTT-3′ |
Reverse | 5′-TGGCTCATTTAGAGACACGC-3′ |
P2 | |
Forward | 5′-CAGCCAGACCAGAAATTGTC-3′ |
Reverse | 5′-GAGCCCATTGCACTTAGATG-3′ |
P3 | |
Forward | 5′-CTCAGACCTCAGGCCACTCT-3′ |
Reverse | 5′-CTTGGTGAGCTGGTGAGAAA-3′ |
EMSA | |
P1 | |
Sense | 5′-GGCACACCATCAAAGGGGAAAAGGTCAGAGGTTGGAAAACCTGAGCTCA-3′ |
Antisense | 5′-GAGACTCTGAGCTCAGGTTTTCCAACCTCTGACCTTTTCCCCTTTGAT-3′ |
P2 | |
Sense | 5′-GGATATGTCCCTGAGAGTTGCAGCTGACCCACAGCCTGCTGTGAGGCCACT-3′ |
Antisense | 5′-GGAATCAGTGGCCTCACAGCAGGCTGTGGGTCAGCTGCAACTCTCAGGGA-3′ |
P3 | |
Sense | 5′-GAGTAAAATTGCAACATTCCAAACTCAGACCTCAGGCCACTCTACACTTGGT-3′ |
Antisense | 5′-GGTTGAACCAAGTGTAGAGTGGCCTGAGGTCTGAGTTTGGAATGTTGCAATT-3′ |
Statistical Analysis
Results
Steatohepatitis, Lipoapoptosis, Hepatocellular Regeneration, and Hepatocarcinogenesis in ACOX1−/− Mice


Aggravated ER Stress in ACOX1−/− Mouse Liver
- Fan C.Y.
- Pan J.
- Usuda N.
- Yeldandi A.V.
- Rao M.S.
- Reddy J.K.
- Fan C.Y.
- Pan J.
- Usuda N.
- Yeldandi A.V.
- Rao M.S.
- Reddy J.K.

Induction of ER Stress in Liver by Upregulation of Transcription Factor p8 by PPAR Isoforms
- Fan C.Y.
- Pan J.
- Usuda N.
- Yeldandi A.V.
- Rao M.S.
- Reddy J.K.


Generation of ACOX1−/− Mice with Human ACOX1 Transgene

Prevention of Liver Carcinogenesis in ACOX1−/−h+ Mice by ER Stress Relief
- Reddy J.K.
- Goel S.K.
- Nemali M.R.
- Carrino J.J.
- Laffler T.G.
- Reddy M.K.
- Sperbeck S.J.
- Osumi T.
- Hashimoto T.
- ND Lalwani N.D.
- Rao M.S.
- Fan C.Y.
- Pan J.
- Usuda N.
- Yeldandi A.V.
- Rao M.S.
- Reddy J.K.
Discussion
- Fan C.Y.
- Pan J.
- Usuda N.
- Yeldandi A.V.
- Rao M.S.
- Reddy J.K.
- Rutkowski D.T.
- Wu J.
- Back S.H.
- Callaghan M.U.
- Ferris S.P.
- Iqbal J.
- Clark R.
- Miao H.
- Hassler J.R.
- Fornek J.
- Katze M.G.
- Hussain M.M.
- Song B.
- Swathirajan J.
- Wang J.
- Yau G.D.
- Kaufman R.J.
- Salazar M.
- Carracedo A.
- Salanueva I.J.
- Hernández-Tiedra S.
- Lorente M.
- Egia A.
- Vázquez P.
- Blázquez C.
- Torres S.
- García S.
- Nowak J.
- Fimia G.M.
- Piacentini M.
- Cecconi F.
- Pandolfi P.P.
- González-Feria L.
- Iovanna J.L.
- Guzmán M.
- Boya P.
- Velasco G.
- Hashimoto T.
- Fujita T.
- Usuda N.
- Cook W.
- Qi C.
- Peters J.M.
- Gonzalez F.J.
- Yeldandi A.V.
- Rao M.S.
- Reddy J.K.
- Fan C.Y.
- Pan J.
- Usuda N.
- Yeldandi A.V.
- Rao M.S.
- Reddy J.K.
- Hashimoto T.
- Fujita T.
- Usuda N.
- Cook W.
- Qi C.
- Peters J.M.
- Gonzalez F.J.
- Yeldandi A.V.
- Rao M.S.
- Reddy J.K.
- Fan C.Y.
- Pan J.
- Usuda N.
- Yeldandi A.V.
- Rao M.S.
- Reddy J.K.
- Fan C.Y.
- Pan J.
- Usuda N.
- Yeldandi A.V.
- Rao M.S.
- Reddy J.K.
- Hashimoto T.
- Fujita T.
- Usuda N.
- Cook W.
- Qi C.
- Peters J.M.
- Gonzalez F.J.
- Yeldandi A.V.
- Rao M.S.
- Reddy J.K.
- Fan C.Y.
- Pan J.
- Usuda N.
- Yeldandi A.V.
- Rao M.S.
- Reddy J.K.
- Fan C.Y.
- Pan J.
- Usuda N.
- Yeldandi A.V.
- Rao M.S.
- Reddy J.K.
- Salazar M.
- Carracedo A.
- Salanueva I.J.
- Hernández-Tiedra S.
- Lorente M.
- Egia A.
- Vázquez P.
- Blázquez C.
- Torres S.
- García S.
- Nowak J.
- Fimia G.M.
- Piacentini M.
- Cecconi F.
- Pandolfi P.P.
- González-Feria L.
- Iovanna J.L.
- Guzmán M.
- Boya P.
- Velasco G.
- Rutkowski D.T.
- Wu J.
- Back S.H.
- Callaghan M.U.
- Ferris S.P.
- Iqbal J.
- Clark R.
- Miao H.
- Hassler J.R.
- Fornek J.
- Katze M.G.
- Hussain M.M.
- Song B.
- Swathirajan J.
- Wang J.
- Yau G.D.
- Kaufman R.J.

- Salazar M.
- Carracedo A.
- Salanueva I.J.
- Hernández-Tiedra S.
- Lorente M.
- Egia A.
- Vázquez P.
- Blázquez C.
- Torres S.
- García S.
- Nowak J.
- Fimia G.M.
- Piacentini M.
- Cecconi F.
- Pandolfi P.P.
- González-Feria L.
- Iovanna J.L.
- Guzmán M.
- Boya P.
- Velasco G.
Supplementary data
- Supplemental Figure S1
Hepatic triglyceride and cholesterol content. Mouse liver samples (100 mg) from 5 month old mice (wild-type; ACOX1−/− and ACOX1−/−h+) were used for lipid extraction and the levels of triglyceride and total cholesterol were quantified using the commercial kits. *P<0.05 compared to wild type or ACOX1−/−h+ mice.
- Supplemental Figure S2
Changes in the level of C26:0/C22:0 (A) and C24:0/C22:0 (B) fatty acids in plasma of wild type, ACOX1−/− and ACOX1−/−h+ humanized mice.
- Supplemental Figure S3
Northern blot analysis of GRP78 mRNA level in liver of wild type and PPARα−/− mice untreated or treated with Wy-14,643. Mice were fed control chow or chow with 0.125% Wy-14,643 for 3 days. A reduction in GRP78 mRNA expression in untreated PPARα-/- mice compared to wild type control. There is slight increase of GRP78 mRNA in wild type mice after Wy-14,643 treatment but not changed in PPARα−/− mice. 18S and 28S were used as loading controls.
- Supplemental Figure S4
Reduction of p8 in ACOX1−/− MEFs downregulates ER stress response gene expression. siRNA knockdown with 0 μg , 1 μg or 3 μg of p8 siRNA in ACOX1−/− MEF (P2) for 2 days, 3 μg of negative control siRNA was used as control. The fold presented is a normalization of p8 groups against negative control.
- Supplemental Figure S5
Expression of human ACOX1 mRNA in ACOX1−/−h+ humanized mice. (A) Mouse ACOX1 (mACOX1) mRNA tissue distribution in wild-type mice. (B) Human ACOX1 (hACOX1) mRNA tissue distribution in ACOX1−/−h+ humanized mice quantified by Q-PCR. ACOX1 mRNA was quantified by Q-PCR and normalized against 18S rRNA. In A and B the tissues used are indicated: brain, heart, liver, lung, skeletal muscle (SKM), small intestine (S. Intestine), white adipose tissue (WAT), and brown adipose tissue (BAT). (C) Induction of mouse ACOX1 mRNA (mACOX1) in response to Wy-14, 643 (Wy) treatment in wild-type mouse and in ACOX1−/−h+ humanized mouse liver. (D) Marked induction of human ACOX1 mRNA (hACOX1) in the liver of ACOX1−/−h+ humanized mice treated with Wy-14,643. No hACOX1 mRNA is detected in ACOX1−/− and WT mouse livers. Wy-14,643 (0.125%) was fed for 1 week. ACOX1−/− mouse liver is used as control.
References
- Obesity, metabolic syndrome, and cardiovascular disease.J Clin Endocrinol Metab. 2004; 89: 2595-2600
- Non-alcoholic fatty liver disease.J Gastroenterol Hepatol. 2002; 17: S186-S190
- Lipid metabolism and liver inflammation.Am J Physiol Gastrointest Liver Physiol. 2006; 290: G852-G858
- Molecular mechanisms and therapeutic targets in steatosis and steatohepatitis.Pharmacol Rev. 2008; 60: 311-357
- Molecular mechanisms of lipotoxicity in nonalcoholic fatty liver disease.Semin Liver Dis. 2008; 28: 360-369
- Expanding the natural history of nonalcoholic steatohepatitis: from cryptogenic cirrhosis to hepatocellular carcinoma.Gastroenterology. 2002; 123: 134-140
- Mouse models in non-alcoholic fatty liver disease and steatohepatitis research.Int J Exp Pathol. 2006; 87: 1-16
- Hepatocellular and hepatic peroxisomal alterations in mice with a disrupted peroxisomal fatty acyl-coenzyme A oxidase gene.J Biol Chem. 1996; 271: 24698-24710
- Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation.Cell Metab. 2009; 9: 327-338
- Steatohepatitis, spontaneous peroxisome proliferation and liver tumors in mice lacking peroxisomal fatty acyl-CoA oxidase.J Biol Chem. 1998; 273: 15639-15645
- Nonalcoholic steatosis and steatohepatitis.Am J Physiol Gastrointest Liver Physiol. 2001; 281: G1333-G1339
- Hepatocyter-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas.J Clin Invest. 2004; 113: 1774-1783
- Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators.Mol Cell Biol. 1995; 15: 3012-3022
- Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system.Annu Rev Nutr. 2001; 21: 193-230
- Hydrogen peroxide generation in peroxisome proliferator-induced oncogenesis.Mutat Res. 2000; 448: 159-177
- Expression of base excision DNA repair genes is a sensitive biomarker for in vivo detection of chemical-induced chronic oxidative stress: identification of the molecular source of radicals responsible for DNA damage by peroxisome proliferators.Cancer Res. 2004; 64: 1050-1057
- PPARalpha: energy combustion, hypolipidemia, inflammation and cancer.Nucl Recept Signal. 2010; 8: e002
- Endoplasmic reticulum stress and liver injury.Semin Liver Dis. 2007; 27: 367-377
- ER stress and lipogenesis: a slippery slope toward hepatic steatosis.Dev Cell. 2008; 15: 795-796
- UPR pathways combine to prevent hepatic steatosis caused by ER stress-mediated suppression of transcriptional master regulators.Dev Cell. 2008; 15: 829-840
- Endoplasmic reticulum stress: a new actor in the development of hepatic steatosis.Curr Opin Lipidol. 2010; 21: 239-246
- GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice.J Clin Invest. 2009; 119: 1201-1215
- Regulation of endoplasmic reticulum stress-induced cell death by ATF4 in neuroectodermal tumor cells.J Biol Chem. 2010; 285: 6091-6100
- Dephosphorylation of translation initiation factor 2alpha enhances glucose tolerance and attenuates hepatosteatosis in mice.Cell Metab. 2008; 7: 520-532
- The endoplasmic reticulum stress response and aging.Rev Neurosci. 2009; 20: 23-37
- Endoplasmic reticulum stress in disease pathogenesis.Annu Rev Pathol Mech Dis. 2008; 3: 399-425
- The role of endoplasmic reticulum stress in the progression of atherosclerosis.Circ Res. 2010; 107: 839-850
- Emerging role of nuclear protein 1 (NUPR1) in cancer biology.Cancer Metastasis Rev. 2009; 28: 225-232
- Stress-inducible protein p8 is involved in several physiological and pathological processes.J Biol Chem. 2010; 285: 1577-1581
- Mitogenic and carcinogenic effects of a hypolipidemic peroxsiome proliferator, [4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio]acetic acid] (Wy-14,643), in rat and mouse liver.Cancer Res. 1979; 39: 152-161
- Transcription coactivator PBP, the peroxisome proliferator-activated receptor (PPAR)-binding protein, is required for PPARalpha-regulated gene expression in liver.J Biol Chem. 2004; 279: 24427-24434
- Mouse steroid receptor coactivator-1 is not essential for peroxisome proliferator-activated receptor alpha-regulated gene expression.Proc Natl Acad Sci USA. 1999; 96: 1585-1590
- Functional significance of the two ACOX1 isoforms and their crosstalks with PPARα and RXRα.Lab Invest. 2010; 90: 696-708
- Molecular characterization of the role of orphan receptor small heterodimer partner in development of fatty liver.Hepatology. 2007; 46: 147-157
- Transcriptional coactivator PRIP, the peroxisome proliferator-activated receptor gamma (PPARgamma)-interacting protein, is required for PPARgamma-mediated adipogenesis.J Biol Chem. 2003; 278: 25281-25284
- Transcriptional regulation of Cidea, mitochondrial cell death-inducing DNA fragmentation factor alpha-like effector A, in mouse liver by peroxisome proliferator-activated receptor alpha and gamma.J Biol Chem. 2007; 282: 18613-18624
- The stress-regulated protein p8 mediates cannabinoid-induced apoptosis of tumor cells.Cancer Cell. 2006; 9: 301-312
- Transcription regulation of peroxisomal fatty acyl-CoA oxidase and enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase in rat liver by peroxisome proliferators.Proc Natl Acad Sci USA. 1996; 83: 1747-1751
- Identification of a peroxisome proliferator-responsive element upstream of the human peroxisomal fatty acyl coenzyme A oxidase gene.J Biol Chem. 1996; 271: 2147-2155
- Peroxisome proliferators and peroxisome proliferator-activated receptor alpha: biotic and xenobiotic sensing.Am J Pathol. 2004; 164: 2305-2321
- The peroxisome proliferator (PP) response element upstream of the human acyl-CoA oxidase gene is inactive among a sample human population: significance for species differences in response to PPs.Carcinogenesis. 1999; 20: 369-372
- Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells.J Clin Invest. 2009; 118: 1359-1372
- Mechanisms of hepatotoxicity.Toxicol Sci. 2002; 65: 166-176
- Peroxisomal and mitochondrial fatty acid beta-oxidation in mice nullizygous for both peroxisome proliferator-activated receptor alpha and peroxisomal fatty acyl-CoA oxidase.J Biol Chem. 1999; 274: 19228-19236
- TRB3, a novel ER stresss-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death.EMBO J. 2005; 24: 1243-1255
- Cell death an dendoplasmic reticulum stress: disease relevance and therapeutic opportunities.Nat Rev Drug Discov. 2008; 7: 1013-1030
- GRP78 and Raf-1 cooperatively confer resistance to endoplasmic reticulum-induced apoptosis.J Cell Physiol. 2008; 215: 627-635
- Enhanced selenium effect on growth arrest by BiP/GRP78 knockdown in p53-null human prostate cancer cells.Oncogene. 2006; 25: 546-554
- An elevated bax/bcl-2 ratio corresponds with the onset of prostate epithelial cell apoptosis.Cell Death Differentiation. 1999; 6 (1): 48-54
- PGC-1 promotes insulin resistance in liver through PPAR-α-dependent induction of TRB-3.Nat Med. 2004; 10: 530-534
- TRB3 is stimulated in diabetic kidneys, regulated by the ER stress marker CHOP and is a suppressor of podocyte MCP-1.Am J Physiol Renal Physiol. 2010; 299: F965-F972
- Fatty acids and β-cell toxicity.Curr Opin Clin Nutr Metab Care. 2009; 12: 117-122
- The murine p8 gene promoter is activated by activating factor 4 (ATF4) in the gonadotrope-derived LβT2 cell line.Endocrine. 2006; 30: 81-91
- Transcription coactivator Mediator subunit Med1 is required for the development of fatty liver in the mouse.Hepatology. 2011; 53: 1164-1174
Article info
Publication history
Footnotes
Supported in part by National Institutes of Health grants GM23750 and DK083163 (J.K.R) and by the China Scholarship Council (L.B.).
Supplemental material for this article can be found at http://ajp.amjapthol.org or at doi: 10.1016/j.ajpath.2011.04.030.
Identification
Copyright
User license
Elsevier user license |
Permitted
For non-commercial purposes:
- Read, print & download
- Text & data mine
- Translate the article
Not Permitted
- Reuse portions or extracts from the article in other works
- Redistribute or republish the final article
- Sell or re-use for commercial purposes
Elsevier's open access license policy