- Voorhoeve P.M.
- le Sage C.
- Schrier M.
- Gillis A.J.
- Stoop H.
- Nagel R.
- Liu Y.P.
- van Duijse J.
- Drost J.
- Griekspoor A.
- Zlotorynski E.
- Yabuta N.
- De Vita G.
- Nojima H.
- Looijenga L.H.
- Agami R.
- Mestdagh P.
- Fredlund E.
- Pattyn F.
- Schulte J.H.
- Muth D.
- Vermeulen J.
- Kumps C.
- Schlierf S.
- De Preter K.
- Van Roy N.
- Noguera R.
- Laureys G.
- Schramm A.
- Eggert A.
- Westermann F.
- Speleman F.
- Vandesompele J.
- Roman-Gomez J.
- Agirre X.
- Jimenez-Velasco A.
- Arqueros V.
- Vilas-Zornoza A.
- Rodriguez-Otero P.
- Martin-Subero I.
- Garate L.
- Cordeu L.
- San Jose-Eneriz E.
- Martin V.
- Castillejo J.A.
- Bandres E.
- Calasanz M.J.
- Siebert R.
- Heiniger A.
- Torres A.
- Prosper F.
Materials and Methods
Cell Lines and Normal B Cells
miRNA Expression Levels
Primer name | Sequence | Purpose |
---|---|---|
miR-17∼92-pri-F | 5′-CAGTAAAGGTAAGGAGAGCTCAATCTG-3′ | RT-PCR |
miR-17∼92-pri-R | 5′-CATACAACCACTAAGCTAAAGAATAATCTGA-3′ | RT-PCR |
RPL13A-F | 5′-ACCGTCTCAAGGTGTTTGACG-3′ | RT-PCR (normalization) |
RPL13A-R | 5′-GTACTTCCAGCCAACCTCGTG-3′ | RT-PCR (normalization) |
ODC1-F | 5′-TGGGCGCTCTGAGGTGAGGG-3′ | ChIP of ODC1 (positive control) |
ODC1-R | 5′-ATCCAGCCGCGGGAGAACCC-3′ | ChIP of ODC1 (positive control) |
C13orf25-1-F | 5′-AAACGTTCTGAATGTTCTGGATTGT-3′ | ChIP of site 1 |
C13orf25-1-R | 5′-CACAGCCTTCTCAAGTCAGCTAAA-3′ | ChIP of site 1 |
C13orf25-2-F | 5′-AAGGAAGTATGAGCGAAACCCT-3′ | ChIP of site 2 |
C13orf25-2-R | 5′-CAGGTTTCTTAGCAGGAGTTATTCA-3′ | ChIP of site 2 |
C13orf25-3-F | 5′-GACTTGTACAATCACGAACCAGTG-3′ | ChIP of site 3 |
C13orf25-3-R | 5′-TCTGGGTTCTCCAGTAGAAATAGC-3′ | ChIP of site 3 |
C13orf25-4-F | 5′-TTTATGCTAATGAGGGAGTGG-3′ | ChIP of site 4 |
C13orf25-4-R | 5′-GCTTTACTACGACCGGAGG-3′ | ChIP of site 4 |
C13orf25-5-F | 5′-GACGGCGAACACAATGGC-3′ | ChIP of site 5 |
C13orf25-5-R | 5′-GCGTACAAAGTTTGGGGAACC-3′ | ChIP of site 5 |
C13orf25-6-F | 5′-AAGAATAGTCTGTGGGCTGCT-3′ | ChIP of site 6 |
C13orf25-6-R | 5′-GCTATTTTCCAACCTCCTAACAGC-3′ | ChIP of site 6 |
Cloning and deletions | ||
LucSeqR2 | 5′-CCAGGAACCAGGGCGTATC-3′ | Preparing promoter deletions and mutations |
P482-F | 5′-atttggtaccGCTCCCGGCTCCCGCTCTC-3′ | Preparing P482 deletion |
P435-F | 5′-atttggtacCGGGGCCTGCGGTGATTGG-3′ | Preparing P435 deletion |
P512-F | 5′-ataggtaccgagGGGGAAGGCTG-3′ | Preparing 3′ promoter deletions |
P339-R | 5′-gaaactcgagCCCGCGAGGAGAGCTTCG-3′ | Preparing P339 deletion |
301-R | 5′-caaactcgaGCGGCGCTGCGGTAGTCGTC-3′ | Preparing P301 deletion |
217-R | 5′-caaactcgagGGCACCTCGAAGGACCATG-3′ | Preparing P217 deletion |
IntronA-F | 5′-gaaaggatccCGGACGGCGAACACAATG-3′ | Cloning “intron A” from BAC |
IntronA-R | 5′-cattgtcgaCCTCCTTTGTGTCCCCCAG-3′ | Cloning “intron A” from BAC |
IntronB-F | 5′-caaaggatccCTGGGGGACACAAAGGAG-3′ | Cloning “intron B” from BAC |
IntronB-R | 5′-catagtcgacCTTTTACTCTCTAAGAAACCAATCC-3′ | Cloning “intron B” from BAC |
Mutations by overlap PCR | ||
P512-F2 | 5′-gtttttcgtacgaattcCCGGGGAAGGCTGC-3′ | Preparing promoter mutations |
NFYmut-F | 5′-GGCCTGCGGTGGCTAGCGGGCGGGCG-3′ | Preparing promoter NFY mutation |
NFYmut-R | 5′-CGCCCGCCCGCTAGCCACCGCAGGCC-3′ | Preparing promoter NFY mutation |
SP1mut1-F | 5′-CGAGCCGCCGTTAACCGGGCCTGCGGTG-3′ | Preparing promoter SP1 mutation 1 |
SP1mut1-R | 5′-CGAGCCGCCGTTAACCGGGCCTGCGGTG-3′ | Preparing promoter SP1 mutation 1 |
SP1mut2-F | 5′-GGTGATTGGCGAGAATTCGGGGAGGTCGG-3′ | Preparing promoter SP1 mutation 2 |
SP1mut2-R | 5′-CCGACCTCCCCGAATTCTCGCCAATCACC-3′ | Preparing promoter SP1 mutation 2 |
ETSmut-F | 5′-GCGGGGAGGTCCGCGGTACTTTGTTTTTTATG-3′ | Preparing promoter ETS mutation |
ETSmut-R | 5′-CATAAAAAACAAAGTACCGCGGACCTCCCCGC-3′ | Preparing promoter ETS mutation |
OCTmut-F | 5′-CTTTGTTTTTTATCGATTTGAGGGAGTGGG p-3′ | Reparing promoter OCT mutation |
OCTmut-R | 5′-CCCACTCCCTCAAATCGATAAAAAACAAAG-3′ | Preparing promoter OCT mutation |
Ebox1mut-F | 5′-CCTTCATTCACCCGATCGGTCCTTCGAG-3′ | Preparing promoter E-box mutation |
Ebox1mut-R | 5′-CTCGAAGGACCGATCGGGTGAATGAAGG-3′ | Preparing promoter E-box mutation |
E2Fmut1-F | 5′-CTGCGCCTTGGGCCCACTTCGCGCCCTCGGGCG-3′ | Preparing promoter E2F mutation 1 |
E2Fmut1-R | 5′-CGCCCGAGGGCGCGAAGTGGGCCCAAGGCGCAG-3′ | Preparing promoter E2F mutation 1 |
E2Fmut2-F | 5′-CGCCACTTCGGTACCTCGGGCGAG-3′ | Preparing promoter E2F mutation 2 |
E2Fmut2-R | 5′-CTCGCCCGAGGTACCGAAGTGGCG-3′ | Preparing promoter E2F mutation 2 |
E2Fmut1,2-F | 5′-CCTTGGGCCCACTTCGGTACCTCGGGCGAGGCC-3′ | Preparing combined E2F mutations 1 & 2 |
E2Fmut1,2-R | 5′-CGCCCGAGGTACCGAAGTGGGCCCAAGGCGCAG-3′ | Preparing combined E2F mutations 1 & 2 |
Ebox2mut-F | 5′-GCGGCGGCGGCGATCGGGGCAGGCCG-3′ | Preparing intron E-box mutation 2 |
Ebox2mut-R | 5′-CGGCCTGCCCCGATCGCCGCCGCCGC-3′ | Preparing intron E-box mutation 2 |
Ebox3mut-F | 5′-CCTTGTGCGACGATCGCTGCCGGCCC-3′ | Preparing intron E-box mutation 3 |
Ebox3mut-R | 5′-GGGCCGGCAGCGATCGTCGCACAAGG-3′ | Preparing intron E-box mutation 3 |
Ebox4mut-F | 5′-CCAGTCATACGATCGGACCTAACTGC-3′ | Preparing intron E-box mutation 4 |
Ebox4mut-R | 5′-GCAGTTAGGTCCGATCGTATGACTGG-3′ | Preparing intron E-box mutation 4 |
Plasmids
Luciferase Reporter Assays
ChIP
Labeling and Hybridization of ChIP Samples to a Custom Oligonucleotide Chip
Analysis of Publicly Available ChIP-Seq Data
Results
Expression of the miR-17-92 Cluster in B Cells

Elements Required for Full Promoter Activity Extend Approximately from −159 to 112 bp Relative to the Transcriptional Start Site


The Promoter Is Regulated by the Collaborative Activity of Several Transcription Factors, Most of Which Individually Have Only a Moderate Effect

Histone Modifications in the C13orf25 Locus

Enhancers for the C13orf25 Locus

E-Box Motif Function in the C13orf25 Locus
MXI1 Binds to the Promoter

Discussion
- Cawley S.
- Bekiranov S.
- Ng H.H.
- Kapranov P.
- Sekinger E.A.
- Kampa D.
- Piccolboni A.
- Sementchenko V.
- Cheng J.
- Williams A.J.
- Wheeler R.
- Wong B.
- Drenkow J.
- Yamanaka M.
- Patel S.
- Brubaker S.
- Tammana H.
- Helt G.
- Struhl K.
- Gingeras T.R.
- Meroni G.
- Reymond A.
- Alcalay M.
- Borsani G.
- Tanigami A.
- Tonlorenzi R.
- Lo Nigro C.
- Messali S.
- Zollo M.
- Ledbetter D.H.
- Brent R.
- Ballabio A.
- Carrozzo R.
Acknowledgments
Supplementary data
- Supplemental Figure S1
Quantification of copy number of C13orf25 in various B-cell lines. A: Quantification by real-time PCR and normalization to the RPL13 locus. Quantitative real-time PCR was performed as described in the methods for ChIP. The values for cell lines DHL6, OCI-Ly1, OCI-Ly3, and JVM2 were similar, and their average was set at 1. As discussed in the text, JeKo-1 shows marked amplification, and Granta and Z138C, which are also mantle cell lymphoma cell lines from American Type Culture Collection, likely show a small copy number gain. DHL16 shows either a normal 2N copy number or a gain of 1. B: Quantification by comparing hybridization of input DNA used for ChIP-chip. The fraction of hybridization signal of the input DNA (before IP) from nucleosomal DNA to the C13orf25 locus (see Figure 5) was compared with the hybridization signal to the entire custom array interrogating ≥100 genes. The ratio of this value to that obtained for normal naive B cells and for normal centroblasts was calculated for IP experiments in each of four histone modifications. The mean values are shown. Error bars are standard deviations.
References
- The functions of animal microRNAs.Nature. 2004; 431: 350-355
- MicroRNAs: genomics, biogenesis, mechanism, and function.Cell. 2004; 116: 281-297
- MicroRNAs: small RNAs with a big role in gene regulation.Nat Rev Genet. 2004; 5: 522-531
- Ribo-gnome: the big world of small RNAs.Science. 2005; 309: 1519-1524
- A microRNA polycistron as a potential human oncogene.Nature. 2005; 435: 828-833
- Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship.Proc Natl Acad Sci U S A. 2010; 107: 2183-2188
- RAS is regulated by the let-7 microRNA family.Cell. 2005; 120: 635-647
- c-Myc-regulated microRNAs modulate E2F1 expression.Nature. 2005; 435: 839-843
- Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice.Proc Natl Acad Sci U S A. 2006; 103: 7024-7029
- A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors.Cell. 2006; 124: 1169-1181
- A microRNA component of the p53 tumour suppressor network.Nature. 2007; 447: 1130-1134
- MYCN/c-MYC-induced microRNAs repress coding gene networks associated with poor outcome in MYCN/c-MYC-activated tumors.Oncogene. 2010; 29: 1394-1404
- Regression of murine lung tumors by the let-7 microRNA.Oncogene. 2010; 29: 1580-1587
- Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma.Cancer Res. 2004; 64: 3087-3095
- A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation.Cancer Res. 2005; 65: 9628-9632
- A microRNA cluster as a target of genomic amplification in malignant lymphoma.Leukemia. 2005; 19: 2013-2016
- Concomitant MYC and microRNA cluster miR-17-92 (C13orf25) amplification in human mantle cell lymphoma.Leuk Lymphoma. 2007; 48: 410-412
- Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage.Cell. 2008; 132: 860-874
- Targeted deletion reveals essential and overlapping functions of the miR-17∼92 family of miRNA clusters.Cell. 2008; 132: 875-886
- Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes.Nat Immunol. 2008; 9: 405-414
- An E2F/miR-20a autoregulatory feedback loop.J Biol Chem. 2007; 282: 2135-2143
- miR-17 and miR-20a temper an E2F1-induced G1 checkpoint to regulate cell cycle progression.Oncogene. 2009; 28: 140-145
- Direct regulation of an oncogenic micro-RNA cluster by E2F transcription factors.J Biol Chem. 2007; 282: 2130-2134
- Repression of the miR-17-92 cluster by p53 has an important function in hypoxia-induced apoptosis.EMBO J. 2009; 28: 2719-2732
- Interleukin-6 modulates the expression of the bone morphogenic protein receptor type II through a novel STAT3-microRNA cluster 17/92 pathway.Circ Res. 2009; 104: 1184-1191
- Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 oncogene in endometrial cancer.Cancer Res. 2009; 69: 9038-9046
- Epigenetic regulation of microRNAs in acute lymphoblastic leukemia.J Clin Oncol. 2009; 27: 1316-1322
- Epigenetic control of the expression of a primate-specific microRNA cluster in human cancer cells.Epigenetics. 2009; 4: 587-592
- Epigenetics and microRNAs.Pediatr Res. 2007; 61: 17R-23R
- Epigenetic activation of tumor suppressor microRNAs in human cancer cells.Cell Cycle. 2006; 5: 2220-2222
- BCL6 promoter interacts with far upstream sequences with greatly enhanced activating histone modifications in germinal center B cells.Proc Natl Acad Sci U S A. 2010; 107: 11930-11935
- Posttranscriptional regulation of miRNAs harboring conserved terminal loops.Mol Cell. 2008; 32: 383-393
- Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs.RNA. 2004; 10: 1957-1966
- Expression of members of the miRNA17-92 cluster during development and in carcinogenesis.J Cell Physiol. 2011; 226: 2257-2266
- MicroRNA expression in zebrafish embryonic development.Science. 2005; 309: 310-311
- Dominant negative analogs of NF-YA.J Biol Chem. 1994; 269: 20340-20346
- Aligning multiple genomic sequences with the threaded blockset aligner.Genome Res. 2004; 14: 708-715
- Combinatorial patterns of histone acetylations and methylations in the human genome.Nat Genet. 2008; 40: 897-903
- Mapping of transcription factor binding regions in mammalian cells by ChIP: comparison of array- and sequencing-based technologies.Genome Res. 2007; 17: 898-909
- A systems approach to measuring the binding energy landscapes of transcription factors.Science. 2007; 315: 233-237
- Of Myc and Mnt.J Cell Sci. 2006; 119: 208-216
- The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a.Nat Struct Mol Biol. 2007; 14: 591-596
- Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs.Cell. 2004; 116: 499-509
- Sp1: emerging roles–beyond constitutive activation of TATA-less housekeeping genes.Biochem Biophys Res Commun. 2008; 372: 1-13
- The cancer epigenome–components and functional correlates.Genes Dev. 2006; 20: 3215-3231
- Histone modification patterns and epigenetic codes.Biochim Biophys Acta. 2009; 1790: 863-868
- The epigenomics of cancer.Cell. 2007; 128: 683-692
- Deciphering the transcriptional histone acetylation code for a human gene.Cell. 2002; 111: 381-392
- Transcriptional analysis of the B cell germinal center reaction.Proc Natl Acad Sci USA. 2003; 100: 2639-2644
- Signatures of the immune response.Immunity. 2001; 15: 375-385
- The BCL6 transcriptional program features repression of multiple oncogenes in primary B cells and is deregulated in DLBCL.Blood. 2009; 113: 5536-5548
- The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome.PLoS Genet. 2008; 4: e1000138
- CTCF: master weaver of the genome.Cell. 2009; 137: 1194-1211
- Myc-binding-site recognition in the human genome is determined by chromatin context.Nat Cell Biol. 2006; 8: 764-770
- Expression of the TAF4b gene is induced by MYC through a non-canonical, but not canonical, E-box which contributes to its specific response to MYC.Int J Oncol. 2008; 33: 1271-1280
- Rox, a novel bHLHZip protein expressed in quiescent cells that heterodimerizes with Max, binds a non-canonical E box and acts as a transcriptional repressor.EMBO J. 1997; 16: 2892-2906
Article info
Publication history
Footnotes
Supported by University of Nebraska Medical Center Eppley Cancer Center pilot grants (T.W.M. and K.F.), a clinical investigator career development award from Lymphoma Research Foundation/Millennium Pharmaceuticals Inc. (K.F.), a National Cancer Institute grant (U01-CA114778-03 to W.C.C.), and a National Institute of General Medical Sciences grant (GM-080751 to A.R.).
M.J. and E.R. contributed equally to this work.
Supplemental material for this article can be found at http://ajp.amjpathol.org or at doi: 10.1016/j.ajpath.2011.06.008.
Identification
Copyright
User license
Elsevier user license |
Permitted
For non-commercial purposes:
- Read, print & download
- Text & data mine
- Translate the article
Not Permitted
- Reuse portions or extracts from the article in other works
- Redistribute or republish the final article
- Sell or re-use for commercial purposes
Elsevier's open access license policy