- Miller L.A.
- Hurst S.D.
- Coffman R.L.
- Tyler N.K.
- Stovall M.Y.
- Chou D.L.
- Putney L.F.
- Gershwin L.J.
- Schelegle E.S.
- Plopper C.G.
- Hyde D.M.
- Schelegle E.S.
- Gershwin L.J.
- Miller L.A.
- Fanucchi M.V.
- Van Winkle L.S.
- Gerriets J.P.
- Walby W.F.
- Omlor A.M.
- Buckpitt A.R.
- Tarkington B.K.
- Wong V.J.
- Joad J.P.
- Pinkerton K.B.
- Wu R.
- Evans M.J.
- Hyde D.M.
- Plopper C.G.
- Seshasayee D.
- Lee W.P.
- Zhou M.
- Shu J.
- Suto E.
- Zhang J.
- Diehl L.
- Austin C.D.
- Meng Y.G.
- Tan M.
- Bullens S.L.
- Seeber S.
- Fuentes M.E.
- Labrijn A.F.
- Graus Y.M.
- Miller L.A.
- Schelegle E.S.
- Hyde D.M.
- Wu L.C.
- Hymowitz S.G.
- Martin F.
- Schelegle E.S.
- Gershwin L.J.
- Miller L.A.
- Fanucchi M.V.
- Van Winkle L.S.
- Gerriets J.P.
- Walby W.F.
- Omlor A.M.
- Buckpitt A.R.
- Tarkington B.K.
- Wong V.J.
- Joad J.P.
- Pinkerton K.B.
- Wu R.
- Evans M.J.
- Hyde D.M.
- Plopper C.G.
- Kelada S.N.
- Wilson M.S.
- Tavarez U.
- Kubalanza K.
- Borate B.
- Whitehead G.
- Maruoka S.
- Roy M.G.
- Olive M.
- Carpenter D.E.
- Brass D.M.
- Wynn T.A.
- Cook D.A.
- Evans C.M.
- Schwartz D.A.
- Collins F.S.
- Miller L.A.
- Hurst S.D.
- Coffman R.L.
- Tyler N.K.
- Stovall M.Y.
- Chou D.L.
- Putney L.F.
- Gershwin L.J.
- Schelegle E.S.
- Plopper C.G.
- Hyde D.M.
- Miller L.A.
- Hurst S.D.
- Coffman R.L.
- Tyler N.K.
- Stovall M.Y.
- Chou D.L.
- Putney L.F.
- Gershwin L.J.
- Schelegle E.S.
- Plopper C.G.
- Hyde D.M.
- Schelegle E.S.
- Gershwin L.J.
- Miller L.A.
- Fanucchi M.V.
- Van Winkle L.S.
- Gerriets J.P.
- Walby W.F.
- Omlor A.M.
- Buckpitt A.R.
- Tarkington B.K.
- Wong V.J.
- Joad J.P.
- Pinkerton K.B.
- Wu R.
- Evans M.J.
- Hyde D.M.
- Plopper C.G.
- Seshasayee D.
- Lee W.P.
- Zhou M.
- Shu J.
- Suto E.
- Zhang J.
- Diehl L.
- Austin C.D.
- Meng Y.G.
- Tan M.
- Bullens S.L.
- Seeber S.
- Fuentes M.E.
- Labrijn A.F.
- Graus Y.M.
- Miller L.A.
- Schelegle E.S.
- Hyde D.M.
- Wu L.C.
- Hymowitz S.G.
- Martin F.
Materials and Methods
Human Subjects
- Woodruff P.G.
- Boushey H.A.
- Dolganov G.M.
- Barker C.S.
- Yang Y.H.
- Donnelly S.
- Ellwanger A.
- Sidhu S.S.
- Dao-Pick T.P.
- Pantoja C.
- Erle D.J.
- Yamamoto K.R.
- Fahy J.V.
Rhesus Model of Allergic Asthma
- Seshasayee D.
- Lee W.P.
- Zhou M.
- Shu J.
- Suto E.
- Zhang J.
- Diehl L.
- Austin C.D.
- Meng Y.G.
- Tan M.
- Bullens S.L.
- Seeber S.
- Fuentes M.E.
- Labrijn A.F.
- Graus Y.M.
- Miller L.A.
- Schelegle E.S.
- Hyde D.M.
- Wu L.C.
- Hymowitz S.G.
- Martin F.
- Seshasayee D.
- Lee W.P.
- Zhou M.
- Shu J.
- Suto E.
- Zhang J.
- Diehl L.
- Austin C.D.
- Meng Y.G.
- Tan M.
- Bullens S.L.
- Seeber S.
- Fuentes M.E.
- Labrijn A.F.
- Graus Y.M.
- Miller L.A.
- Schelegle E.S.
- Hyde D.M.
- Wu L.C.
- Hymowitz S.G.
- Martin F.
- Schelegle E.S.
- Gershwin L.J.
- Miller L.A.
- Fanucchi M.V.
- Van Winkle L.S.
- Gerriets J.P.
- Walby W.F.
- Omlor A.M.
- Buckpitt A.R.
- Tarkington B.K.
- Wong V.J.
- Joad J.P.
- Pinkerton K.B.
- Wu R.
- Evans M.J.
- Hyde D.M.
- Plopper C.G.
- Schelegle E.S.
- Gershwin L.J.
- Miller L.A.
- Fanucchi M.V.
- Van Winkle L.S.
- Gerriets J.P.
- Walby W.F.
- Omlor A.M.
- Buckpitt A.R.
- Tarkington B.K.
- Wong V.J.
- Joad J.P.
- Pinkerton K.B.
- Wu R.
- Evans M.J.
- Hyde D.M.
- Plopper C.G.
- Schelegle E.S.
- Gershwin L.J.
- Miller L.A.
- Fanucchi M.V.
- Van Winkle L.S.
- Gerriets J.P.
- Walby W.F.
- Omlor A.M.
- Buckpitt A.R.
- Tarkington B.K.
- Wong V.J.
- Joad J.P.
- Pinkerton K.B.
- Wu R.
- Evans M.J.
- Hyde D.M.
- Plopper C.G.
- Schelegle E.S.
- Gershwin L.J.
- Miller L.A.
- Fanucchi M.V.
- Van Winkle L.S.
- Gerriets J.P.
- Walby W.F.
- Omlor A.M.
- Buckpitt A.R.
- Tarkington B.K.
- Wong V.J.
- Joad J.P.
- Pinkerton K.B.
- Wu R.
- Evans M.J.
- Hyde D.M.
- Plopper C.G.
Flow Cytometry
Total and HDM-Specific IgE ELISAs
Histopathology
Microarray Gene Expression Profiling
Statistical and Bioinformatic Analyses
Results
A Rhesus Asthma Model Exhibits Features of Allergic/Th2 Inflammation
- Seshasayee D.
- Lee W.P.
- Zhou M.
- Shu J.
- Suto E.
- Zhang J.
- Diehl L.
- Austin C.D.
- Meng Y.G.
- Tan M.
- Bullens S.L.
- Seeber S.
- Fuentes M.E.
- Labrijn A.F.
- Graus Y.M.
- Miller L.A.
- Schelegle E.S.
- Hyde D.M.
- Wu L.C.
- Hymowitz S.G.
- Martin F.
- Miller L.A.
- Hurst S.D.
- Coffman R.L.
- Tyler N.K.
- Stovall M.Y.
- Chou D.L.
- Putney L.F.
- Gershwin L.J.
- Schelegle E.S.
- Plopper C.G.
- Hyde D.M.
- Schelegle E.S.
- Gershwin L.J.
- Miller L.A.
- Fanucchi M.V.
- Van Winkle L.S.
- Gerriets J.P.
- Walby W.F.
- Omlor A.M.
- Buckpitt A.R.
- Tarkington B.K.
- Wong V.J.
- Joad J.P.
- Pinkerton K.B.
- Wu R.
- Evans M.J.
- Hyde D.M.
- Plopper C.G.


- Crapo R.O.
- Casaburi R.
- Coates A.L.
- Enright P.L.
- Hankinson J.L.
- Irvin C.G.
- MacIntyre N.R.
- McKay R.T.
- Wanger J.S.
- Anderson S.D.
- Cockcroft D.W.
- Fish J.E.
- Sterk P.J.
The Rhesus Asthma Model Exhibits a Th2 Inflammation Gene Expression Signature in the Lung Airways
- Woodruff P.G.
- Boushey H.A.
- Dolganov G.M.
- Barker C.S.
- Yang Y.H.
- Donnelly S.
- Ellwanger A.
- Sidhu S.S.
- Dao-Pick T.P.
- Pantoja C.
- Erle D.J.
- Yamamoto K.R.
- Fahy J.V.

Th2 Inflammation Genes Correlate with Physiologic Measures of Th2 Inflammation and Disease in the Rhesus Asthma Model
Entrez gene ID | Gene symbol | Gene Name | Human biopsy fold change | Rhesus biopsy fold change | BALF eosinophil | BALF lymphocyte | PB eosinophil | Total IgE | Serum HDM IgE | AHR (EC150) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ρ | P | ρ | P | ρ | P | ρ | P | ρ | P | ρ | P | |||||
10344 | CCL26 | Chemokine (C-C motif) ligand 26 | 4.06 | 3.22 | 0.736 | 0.001 | 0.225 | 0.37 | 0.283 | 0.292 | −0.075 | 0.767 | 0.628 | 0.005 | −0.604 | 0.008 |
84171 | LOXL4 | Lysyl oxidase-like 4 | 1.27 | 1.53 | 0.653 | 0.005 | −0.022 | 0.966 | 0.405 | 0.128 | −0.027 | 0.936 | 0.559 | 0.02 | −0.292 | 0.263 |
4843 | NOS2A | Nitric oxide synthase 2A (inducible, hepatocytes) | 1.39 | 1.42 | 0.245 | 0.328 | 0.389 | 0.11 | 0.615 | 0.007 | 0.112 | 0.656 | 0.238 | 0.341 | −0.568 | 0.014 |
948 | CD36 | CD36 molecule (thrombospondin receptor) | 1.66 | 1.33 | 0.211 | 0.401 | −0.302 | 0.224 | 0.468 | 0.062 | 0.195 | 0.436 | 0.465 | 0.052 | −0.464 | 0.052 |
1012 | CDH13 | Cadherin 13, H-cadherin (heart) | 1.24 | 1.30 | 0.433 | 0.073 | 0.003 | 0.99 | 0.643 | 0.005 | −0.096 | 0.705 | 0.418 | 0.084 | −0.322 | 0.192 |
58494 | JAM2 | Junctional adhesion molecule 2 | 1.40 | 1.29 | 0.513 | 0.029 | −0.313 | 0.206 | 0.509 | 0.037 | 0.061 | 0.811 | 0.458 | 0.056 | −0.22 | 0.38 |
51751 | HIGD1B | HIG1 domain family, member 1B | 1.54 | 1.18 | 0.159 | 0.528 | −0.1 | 0.693 | 0.176 | 0.5 | −0.015 | 0.954 | 0.326 | 0.187 | −0.587 | 0.01 |
1179 | CLCA1 | Chloride channel, calcium activated, family member 1 | 5.76 | 1.17 | 0.311 | 0.209 | 0.457 | 0.057 | 0.046 | 0.843 | 0.088 | 0.729 | 0.231 | 0.356 | −0.22 | 0.38 |
7855 | FZD5 | Frizzled homolog 5 (Drosophila) | 1.42 | 1.16 | 0.384 | 0.116 | 0.062 | 0.806 | 0.659 | 0.004 | 0.007 | 0.98 | 0.392 | 0.107 | −0.224 | 0.371 |
1470 | CST2 | Cystatin SA | 2.78 | 1.13 | 0.449 | 0.062 | 0.098 | 0.699 | −0.156 | 0.561 | −0.106 | 0.674 | 0.088 | 0.729 | −0.066 | 0.796 |
3497 | IGHE | Immunoglobulin heavy chain epsilon | 2.57 | 1.12 | 0.441 | 0.067 | 0.165 | 0.512 | −0.148 | 0.572 | −0.228 | 0.361 | 0.057 | 0.823 | −0.172 | 0.495 |
522 | ATP5J | ATP synthase, H+ transporting, subunit F6 | 1.42 | 1.12 | 0.382 | 0.118 | −0.065 | 0.799 | 0.681 | 0.003 | −0.026 | 0.921 | 0.351 | 0.153 | −0.208 | 0.409 |
246 | ALOX15 | Arachidonate 15-lipoxygenase | 1.44 | 1.12 | −0.132 | 0.602 | −0.104 | 0.681 | 0.256 | 0.31 | 0.24 | 0.335 | 0.187 | 0.457 | −0.462 | 0.054 |
26998 | FETUB | Fetuin B | 3.34 | 1.12 | 0.602 | 0.008 | 0.369 | 0.131 | 0.145 | 0.579 | 0.059 | 0.818 | 0.268 | 0.283 | −0.22 | 0.38 |
13 | AADAC | Arylacetamide deacetylase (esterase) | 1.48 | 1.10 | −0.138 | 0.585 | 0.154 | 0.542 | 0.347 | 0.187 | −0.148 | 0.558 | −0.072 | 0.776 | −0.195 | 0.438 |
84969 | C20orf100 | TOX high mobility group box family member 2 | 1.44 | 1.08 | 0.518 | 0.028 | −0.085 | 0.736 | 0.115 | 0.662 | −0.146 | 0.563 | 0.282 | 0.257 | −0.245 | 0.327 |
116372 | LYPD1 | LY6/PLAUR domain containing 1 | 1.44 | 1.08 | 0.583 | 0.011 | −0.095 | 0.709 | 0.327 | 0.222 | 0.051 | 0.843 | 0.441 | 0.067 | 0.103 | 0.684 |
116159 | CYYR1 | Cysteine/tyrosine-rich 1 | 1.24 | 1.07 | 0.306 | 0.444 | −0.229 | 0.569 | 0.575 | 0.132 | 0.015 | 0.88 | 0.664 | 0.042 | −0.208 | 0.417 |
9951 | HS3ST4 | Heparan sulfate (glucosamine) 3-O-sulfotransferase 4 | 2.78 | 1.06 | 0.5 | 0.035 | −0.019 | 0.941 | 0.141 | 0.622 | 0.187 | 0.456 | 0.377 | 0.123 | −0.306 | 0.218 |
1469 | CST1 | Cystatin SN | 3.21 | 1.06 | 0.195 | 0.438 | 0.018 | 0.944 | −0.251 | 0.339 | −0.226 | 0.366 | 0.062 | 0.806 | 0.041 | 0.873 |
3881 | KRT31 | Keratin 31 | 1.41 | 1.05 | 0.449 | 0.062 | −0.056 | 0.825 | −0.173 | 0.497 | 0.053 | 0.837 | 0.36 | 0.142 | −0.268 | 0.282 |
7850 | IL1R2 | Interleukin 1 receptor, type II | 1.33 | 1.02 | 0.315 | 0.203 | −0.313 | 0.206 | 0.092 | 0.688 | 0.154 | 0.541 | 0.404 | 0.097 | −0.233 | 0.353 |
390010 | NKX1-2 | NK1 homeobox 2 | 1.52 | 1.01 | −0.008 | 0.974 | 0.304 | 0.22 | 0.251 | 0.273 | −0.373 | 0.129 | 0.133 | 0.598 | 0.118 | 0.641 |
79861 | TUBAL3 | Tubulin, alpha-like 3 | 1.49 | 1.01 | −0.057 | 0.823 | 0.145 | 0.567 | −0.251 | 0.349 | −0.071 | 0.78 | 0.023 | 0.929 | −0.274 | 0.271 |
5587 | PRKD1 | Protein kinase D1 | 1.29 | 1.00 | −0.011 | 0.967 | 0.149 | 0.556 | −0.175 | 0.514 | −0.148 | 0.558 | −0.152 | 0.548 | 0.191 | 0.448 |
Comparison of Human, Rhesus, and Mouse Asthma Gene Expression Profiles Shows Common and Distinct Pathophysiologies

- Woodruff P.G.
- Boushey H.A.
- Dolganov G.M.
- Barker C.S.
- Yang Y.H.
- Donnelly S.
- Ellwanger A.
- Sidhu S.S.
- Dao-Pick T.P.
- Pantoja C.
- Erle D.J.
- Yamamoto K.R.
- Fahy J.V.

DAVID term (biology) | P |
---|---|
Extracellular region part | 4.19 × 10−5 |
Extracellular matrix | 8.08 × 10−5 |
Proteinaceous extracellular matrix | 1.90 × 10−4 |
Cellular component morphogenesis | 3.77 × 10−4 |
Cell morphogenesis involved in differentiation | 5.73 × 10−4 |
Cell morphogenesis | 0.00107 |
Cell projection organization | 0.00126 |
Axonogenesis | 0.00156 |
Cell projection morphogenesis | 0.00253 |
Neuron projection morphogenesis | 0.00267 |
Cell morphogenesis involved in neuron differentiation | 0.00294 |
Neuron projection development | 0.00313 |
Cell part morphogenesis | 0.00313 |
Extracellular matrix | 0.00415 |
Extracellular region | 0.0193 |
Biological adhesion | 0.0410 |
Cell motion | 0.0423 |
Axon guidance | 0.0426 |
Cell adhesion | 0.0429 |
Neuron development | 0.0429 |
Defense response | 0.0452 |
Response to extracellular stimulus | 0.0453 |
Neuron differentiation | 0.0460 |
Regulation of nervous system development | 0.0577 |
Angiogenesis | 0.0619 |
Extracellular space | 0.0643 |
Cell adhesion | 0.0753 |
Osteogenesis | 0.0865 |
Developmental protein | 0.0911 |
Cell junction | 0.0920 |
DAVID term (biology) | Agilent probe ID | Entrez gene ID | Gene symbol | Gene name |
---|---|---|---|---|
Extracellular matrix | A_23_P211212 | 80781 | COL18A1 | Collagen, type XVIII, alpha 1 |
A_23_P42322 | 1302 | COL11A2 | Collagen, type XI, alpha 2 | |
A_24_P334130 | 2335 | FN1 | Fibronectin 1 | |
A_23_P44291 | 100134403 | CRTAP | Cartilage associated protein | |
A_24_P179225 | 4147 | MATN2 | Matrilin 2 | |
A_23_P24870 | 960 | CD44 | CD44 molecule (Indian blood group) | |
A_23_P112554 | 1306 | COL15A1 | Collagen, type XV, alpha 1 | |
A_23_P7642 | 6678 | SPARC | Secreted protein, acidic, cysteine-rich (osteonectin) | |
A_24_P315821 | 339366 | ADAMTSL5 | ADAMTS-like 5 | |
A_23_P124084 | 4016 | LOXL1 | Lysyl oxidase-like 1 | |
A_23_P7727 | 1404 | HAPLN1 | Hyaluronan and proteoglycan link protein 1 | |
A_23_P159325 | 51129 | ANGPTL4 | Angiopoietin-like 4 | |
A_23_P59388 | 667 | DST | Dystonin | |
A_23_P204286 | 4256 | MGP | Matrix Gla protein | |
A_23_P20697 | 9719 | ADAMTSL2 | Similar to ADAMTS-like 2; ADAMTS-like 2 | |
A_24_P331918 | 1291 | COL6A1 | Collagen, type VI, alpha 1 | |
A_23_P68487 | 655 | BMP7 | Bone morphogenetic protein 7 | |
A_32_P32254 | 1291 | COL6A1 | Collagen, type VI, alpha 1 | |
A_23_P102117 | 80326 | WNT10A | Wingless-type MMTV integration site family, member 10A | |
A_23_P56578 | 5212 | VIT | Vitrin | |
A_23_P121533 | 10417 | SPON2 | Spondin 2, extracellular matrix protein | |
Axonogenesis | A_23_P7752 | 57556 | SEMA6A | Sema domain, transmembrane domain (TM), and cytoplasmic domain, (semaphorin) 6A |
A_32_P100974 | 6152 | RPL24 | Ribosomal protein L24; ribosomal protein L24 pseudogene 6 | |
A_23_P65307 | 84189 | SLITRK6 | SLIT and NTRK-like family, member 6 | |
A_24_P365807 | 1947 | EFNB1 | Ephrin-B1 | |
A_23_P59388 | 667 | DST | Dystonin | |
A_23_P55099 | 5578 | PRKCA | Protein kinase C, alpha | |
A_32_P152586 | 7080 | NKX2-1 | NK2 homeobox 1 | |
A_24_P519638 | 89884 | LHX4 | LIM homeobox 4 | |
A_23_P210756 | 6616 | SNAP25 | Synaptosomal-associated protein, 25kDa | |
A_23_P68487 | 655 | BMP7 | Bone morphogenetic protein 7 | |
A_23_P132175 | 65078 | RTN4R | Reticulon 4 receptor | |
A_24_P42624 | 8633 | UNC5C | Unc-5 homolog C (C. elegans) | |
A_23_P121533 | 10417 | SPON2 | Spondin 2, extracellular matrix protein | |
Defense response | A_23_P16384 | 199713 | NALP7 | NLR family, pyrin domain containing 7 |
A_23_P502464 | 4843 | NOS2A | Nitric oxide synthase 2, inducible | |
A_23_P26965 | 6357 | CCL13 | Chemokine (C-C motif) ligand 13 | |
A_23_P215484 | 10344 | CCL26 | Chemokine (C-C motif) ligand 26 | |
A_24_P334130 | 2335 | FN1 | Fibronectin 1 | |
A_23_P24870 | 960 | CD44 | CD44 molecule (Indian blood group) | |
A_23_P22660 | 10800 | CYSLTR1 | Cysteinyl leukotriene receptor 1 | |
A_24_P12573 | 10344 | CCL26 | Chemokine (C-C motif) ligand 26 | |
A_23_P25354 | 23676 | P2RX7 | Purinergic receptor P2X, ligand-gated ion channel, 7 | |
A_23_P143331 | 650 | BMP2 | Bone morphogenetic protein 2 | |
A_23_P209954 | 10578 | GNLY | Granulysin | |
A_23_P119295 | 51295 | ECSIT | ECSIT homolog (Drosophila) | |
Angiogenesis | A_23_P159325 | 51129 | ANGPTL4 | Angiopoietin-like 4 |
A_24_P7950 | 10451 | VAV3 | Vav 3 guanine nucleotide exchange factor | |
A_23_P48217 | 81575 | APOLD1 | Apolipoprotein L domain containing 1 | |
A_24_P334130 | 2335 | FN1 | Fibronectin 1 | |
A_32_P210642 | 51162 | EGFL7 | EGF-like-domain, multiple 7 | |
A_23_P112554 | 1306 | COL15A1 | Collagen, type XV, alpha 1 |
DAVID term (biology) | P |
---|---|
Extracellular structure organization | 0.00210 |
Sequence-specific DNA binding | 0.0160 |
Developmental protein | 0.0540 |
Embryonic organ development | 0.0720 |
Discussion
- Schelegle E.S.
- Gershwin L.J.
- Miller L.A.
- Fanucchi M.V.
- Van Winkle L.S.
- Gerriets J.P.
- Walby W.F.
- Omlor A.M.
- Buckpitt A.R.
- Tarkington B.K.
- Wong V.J.
- Joad J.P.
- Pinkerton K.B.
- Wu R.
- Evans M.J.
- Hyde D.M.
- Plopper C.G.
- Miller L.A.
- Hurst S.D.
- Coffman R.L.
- Tyler N.K.
- Stovall M.Y.
- Chou D.L.
- Putney L.F.
- Gershwin L.J.
- Schelegle E.S.
- Plopper C.G.
- Hyde D.M.
- Schelegle E.S.
- Gershwin L.J.
- Miller L.A.
- Fanucchi M.V.
- Van Winkle L.S.
- Gerriets J.P.
- Walby W.F.
- Omlor A.M.
- Buckpitt A.R.
- Tarkington B.K.
- Wong V.J.
- Joad J.P.
- Pinkerton K.B.
- Wu R.
- Evans M.J.
- Hyde D.M.
- Plopper C.G.
- Kelada S.N.
- Wilson M.S.
- Tavarez U.
- Kubalanza K.
- Borate B.
- Whitehead G.
- Maruoka S.
- Roy M.G.
- Olive M.
- Carpenter D.E.
- Brass D.M.
- Wynn T.A.
- Cook D.A.
- Evans C.M.
- Schwartz D.A.
- Collins F.S.
Acknowledgment
Supplementary data
- Supplemental Figure S1
Sensitization to HDM antigen induces inflammation in the bronchoalveolar lavage (BAL) of rhesus monkeys. Twelve rhesus monkeys were sensitized with a subcutaneous injection of HDM antigen extract and intranasal HDM, followed by regular exposure to aerosolized HDM for 2 to 3 hours twice a week, for a total of 18 months. Sensitized rhesus monkeys also received additional subcutaneous and intranasal HDM boosts at weeks 56, 71, and 75. Ten rhesus monkeys were subjected to control treatment with PBS injections and mock aerosol challenges. Data were collected at week −4 to −8 for the presensitization time point, week 15 for the postsensitization time point, and week 75 for the 18-month time point, whereby week 0 denotes the beginning of the sensitization protocol, for all 12 sensitized and all 10 nonsensitized monkeys, except for the 18-month time point, whereby data was collected for all 12 sensitized and only 4 of the 10 nonsensitized monkeys. Percentage of BALF neutrophils (A), number of BALF neutrophils (B), and percentage of BALF CD4 lymphocytes that are activated (C) in the sensitized and control groups at presensitization, postsensitization, and 18-month time points. Data are expressed as mean ± SD. *P < 0.05 versus nonsensitized animals, Wilcoxon/Kruskal-Wallis Test (rank sums).
- Supplemental Figure S2
Sensitized rhesus monkeys show an increase in airway hyperreactivity at the postsensitization time point, compared with nonsensitized rhesus monkeys. Eight animals in the sensitized group and 10 animals in the nonsensitized group lacked airway hyperreactivity at the presensitization time point, using a definition of airway hyperreactivity of a methacholine EC150 value of < 8 mg/mL. A: Baseline levels of airway reactivity at the presensitization time point are comparable between the 8 sensitized and 10 nonsensitized animals that were not hyperreactive before sensitization. B: The 8 sensitized animals showed a greater increase in airway reactivity at the postsensitization time point than did the 10 nonsensitized animals. Airway hyperreactivity is expressed as EC150, the effective concentration of methacholine required to increase airway resistance (Raw) to 150% of baseline, whereby a lower EC150 indicates greater airway hyperreactivity. The ratio of EC150 at the postsensitization time point to the EC150 at the presensitization time point was calculated for each animal. Data are expressed as mean ± SD. *P < 0.05 versus nonsensitized animals, Dunnett's test.
- Supplemental Figure S3
Th2 inflammation genes are correlated with the percentage of eosinophils in the BALF of sensitized rhesus monkeys. Twenty-five genes that represent a Th2 inflammation signature were identified by first applying filters of a fold change of >1.2 and a q-value of <0.05 to whole-genome expression profiles of lung airway biopsies from the Th2-high subset of asthmatic patients (comparing the Th2-high asthma subset with both the Th2-low asthma subset and the healthy control subjects), followed by an additional filter of increased expression (fold change > 1) in rhesus asthma lung airway biopsies compared with nonsensitized control rhesus lung airway biopsies. Expression levels for these 25 Th2 inflammation genes were compared with measures of BALF eosinophil relative abundance in the rhesus asthma model with the use of Spearman's correlation; ρ is the correlation coefficient. The dotted line is the significance threshold (corresponding to q-value = 0.2).
- Supplemental Table S1
- Supplemental Table S2
- Supplemental Table S3
- Supplemental Table S4
- Supplemental Table S5
References
- The reclassification of asthma based on subphenotypes.Curr Opin Allergy Clin Immunol. 2007; 7: 43-50
- Asthma: defining of the persistent adult phenotypes.Lancet. 2006; 368: 804-813
- Non-eosinophilic asthma: importance and possible mechanisms.Thorax. 2002; 57: 643-648
- Noneosinophilic asthma: a distinct clinical and pathologic phenotype.J Allergy Clin Immunol. 2007; 119 (quiz 1053–1044): 1043-1052
- Gene expression patterns of Th2 inflammation and intercellular communication in asthmatic airways.J Immunol. 2011; 186: 1861-1869
- T-helper type 2-driven inflammation defines major subphenotypes of asthma.Am J Respir Crit Care Med. 2009; 180: 388-395
- Vascular remodeling is airway generation-specific in a primate model of chronic asthma.Am J Respir Crit Care Med. 2006; 174: 1069-1076
- Nonhuman primate models of asthma.J Exp Med. 2005; 201: 1875-1879
- Immunostimulatory oligonucleotides attenuate airways remodeling in allergic monkeys.Am J Respir Crit Care Med. 2004; 170: 1153-1157
- Airway generation-specific differences in the spatial distribution of immune cells and cytokines in allergen-challenged rhesus monkeys.Clin Exp Allergy. 2005; 35: 894-906
- Allergic asthma induced in rhesus monkeys by house dust mite (Dermatophagoides farinae).Am J Pathol. 2001; 158: 333-341
- In vivo blockade of OX40 ligand inhibits thymic stromal lymphopoietin driven atopic inflammation.J Clin Invest. 2007; 117: 3868-3878
- Dust mite-induced asthma in cynomolgus monkeys.J Appl Physiol. 2004; 96: 1433-1444
- No audible wheezing: nuggets and conundrums from mouse asthma models.J Exp Med. 2005; 201: 1869-1873
- Airway mast cells in a rhesus model of childhood allergic airways disease.Toxicol Sci. 2010; 116: 313-322
- New asthma biomarkers: lessons from murine models of acute and chronic asthma.Am J Physiol Lung Cell Mol Physiol. 2009; 296: L185-L197
- Pulmonary chemokine expression is coordinately regulated by STAT1. STAT6, and IFN-gamma.J Immunol. 2004; 173: 7565-7574
- Strain-dependent genomic factors affect allergen-induced airway hyper-responsiveness in mice.Am J Respir Cell Mol Biol. 2011; ([Epub ahead of press])https://doi.org/10.1165/rcmb.2010-0315OC
- Dissecting asthma using focused transgenic modeling and functional genomics.J Allergy Clin Immunol. 2005; 116: 305-311
- Unique and overlapping gene expression patterns driven by IL-4 and IL-13 in the mouse lung.J Allergy Clin Immunol. 2009; 123 (795–804e798)
- Disease-specific gene expression profiling in multiple models of lung disease.Am J Respir Crit Care Med. 2008; 177: 376-387
- Genome-wide profiling of antigen-induced time course expression using murine models for acute and chronic asthma.Int Arch Allergy Immunol. 2008; 146: 44-56
- Clues to asthma pathogenesis from microarray expression studies.Pharmacol Ther. 2006; 109: 284-294
- Dissection of experimental asthma with DNA microarray analysis identifies arginase in asthma pathogenesis.J Clin Invest. 2003; 111: 1863-1874
- Modelling asthma in macaques: longitudinal changes in cellular and molecular markers.Eur Respir J. 2011; 37: 541-552
- Microarray profile of differentially expressed genes in a monkey model of allergic asthma.Genome Biol. 2002; 3 (research0020)
- Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids.Proc Natl Acad Sci U S A. 2007; 104: 15858-15863
- Guidelines for methacholine and exercise challenge testing-1999.Am J Respir Crit Care Med. 2000; 161: 309-329
- Expression and activation of 15-lipoxygenase pathway in severe asthma: relationship to eosinophilic phenotype and collagen deposition.Clin Exp Allergy. 2002; 32 (ChuHW): 1558-1565
- IgE in allergy and asthma today.Nat Rev Immunol. 2008; 8: 205-217
- Concerted expression of eotaxin-1, eotaxin-2, and eotaxin-3 in human bronchial epithelial cells.Cell Immunol. 2003; 225: 91-100
- Measurement of IL-13-induced iNOS-derived gas phase nitric oxide in human bronchial epithelial cells.Am J Respir Cell Mol Biol. 2007; 37: 97-104
- The role of histamine H1 and H4 receptors in allergic inflammation: the search for new antihistamines.Nat Rev Drug Discov. 2008; 7: 41-53
- IL-13 induces esophageal remodeling and gene expression by an eosinophil-independent.J Immunol. 2010; 185: 660-669
Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K, et al: Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 38:D5-D16
- DAVID: database for Annotation, Visualization, and Integrated Discovery.Genome Biol. 2003; 4: P3
- Usefulness and optimization of mouse models of allergic airway disease.J Allergy Clin Immunol. 2008; 121: 603-606
- Of mice and not men: differences between mouse and human immunology.J Immunol. 2004; 172: 2731-2738
- Insights into the pathogenesis of asthma utilizing murine models.Int Arch Allergy Immunol. 2004; 135: 173-186
- The mouse trap: It still yields few answers in asthma.Am J Respir Crit Care Med. 2006; 174: 1173-1178
- Remodeling in asthma and chronic obstructive lung disease.Am J Respir Crit Care Med. 2001; 164: S28-S38
- Airway remodeling contributes to the progressive loss of lung function in asthma: an overview.J Allergy Clin Immunol. 2005; 116 (quiz 487): 477-486
- Neurotrophins and asthma: novel insight into neuroimmune interaction.J Allergy Clin Immunol. 2006; 117: 67-71
- The airway neurogenic inflammation: clinical and pharmacological implications.Inflamm Allergy Drug Targets. 2009; 8: 176-181
- The role of nerves in asthma.Curr Allergy Asthma Rep. 2002; 2: 159-165
- Gene expression of vascular endothelial growth factor and its receptors and angiogenesis in bronchial asthma.J Allergy Clin Immunol. 2001; 107: 1034-1038
- Increased vascularity of the bronchial mucosa in mild asthma.Am J Respir Crit Care Med. 1997; 156: 229-233
- Bronchial angiogenesis in severe glucocorticoid-dependent asthma.Eur Respir J. 2000; 15: 1014-1021
- Vascular endothelial growth factor (VEGF) induces remodeling and enhances TH2-mediated sensitization and inflammation in the lung.Nat Med. 2004; 10: 1095-1103
- A potent antiangiogenic factor, endostatin prevents the development of asthma in a murine model.J Allergy Clin Immunol. 2005; 116: 1220-1227
- Regulated angiogenesis and vascular regression in mice overexpressing vascular endothelial growth factor in airways.Am J Pathol. 2004; 165: 1071-1085
Article info
Publication history
Footnotes
Supported by Genentech Inc. and NCRR grant RR00169.
A.R.A., J.K.J., S.L.B., D.F.C., G.F., M.T., B.-T.T., Y.G.M., L.D., H.F.C., Z.M., J.R.A., and L.C.W. are employed by Genentech, Inc.
Supplemental material for this article can be found at http://ajp.amjpathol.org or at doi: 10.1016/j.ajpath.2011.06.009.
Current address of S.L.B., Department of Translational Biology, BioMarin Pharmaceutical Inc., Novato, CA.
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy