- Balthasar N.
- Dalgaard L.T.
- Lee C.E.
- Yu J.
- Funahashi H.
- Williams T.
- Ferreira M.
- Tang V.
- McGovern R.A.
- Kenny C.D.
- Christiansen L.M.
- Edelstein E.
- Choi B.
- Boss O.
- Aschkenasi C.
- Zhang C.Y.
- Mountjoy K.
- Kishi T.
- Elmquist J.K.
- Lowell B.B.
Materials and Methods
Animals
- Balthasar N.
- Dalgaard L.T.
- Lee C.E.
- Yu J.
- Funahashi H.
- Williams T.
- Ferreira M.
- Tang V.
- McGovern R.A.
- Kenny C.D.
- Christiansen L.M.
- Edelstein E.
- Choi B.
- Boss O.
- Aschkenasi C.
- Zhang C.Y.
- Mountjoy K.
- Kishi T.
- Elmquist J.K.
- Lowell B.B.
Blood Analysis
Hepatic TG Content
Histologic Analysis
- Itoh M.
- Suganami T.
- Satoh N.
- Tanimoto-Koyama K.
- Yuan X.
- Tanaka M.
- Kawano H.
- Yano T.
- Aoe S.
- Takeya M.
- Shimatsu A.
- Kuzuya H.
- Kamei Y.
- Ogawa Y.
Quantitative RT-PCR
- Itoh M.
- Suganami T.
- Satoh N.
- Tanimoto-Koyama K.
- Yuan X.
- Tanaka M.
- Kawano H.
- Yano T.
- Aoe S.
- Takeya M.
- Shimatsu A.
- Kuzuya H.
- Kamei Y.
- Ogawa Y.
Genes | Primers |
---|---|
ACC1 | |
Forward | 5′-TGAGATTGGCATGGTAGCCTG-3′ |
Reverse | 5′-CTCGGCCATCTGGATATTCAG-3′ |
Catalase | |
Forward | 5′-GGAGGCAGAAACTTTCCCATT-3′ |
Reverse | 5′-GGCCAAACCTTGGTCAGATC-3′ |
COL1A1 | |
Forward | 5′-CCTCAGGGTATTGCTGGACAAC-3′ |
Reverse | 5′-ACCACTTGATCCAGAAGGACCTT-3′ |
CPT1A | |
Forward | 5′-CCTGCATTCCTTCCCATTTG-3′ |
Reverse | 5′-TGCCCATGTCCTTGTAATGTG-3′ |
F4/80 | |
Forward | 5′-CTTTGGCTATGGGCTTCCAGT-3′ |
Reverse | 5′-GCAAGGAGGACAGAGTTTATCGTG-3′ |
FAS | |
Forward | 5′-CCTGGATAGCATTCCGAACCT-3′ |
Reverse | 5′-AGCACATCTCGAAGGCTACACA-3′ |
gp91phox | |
Forward | 5′-CCAGTGCGTGTTGCTCGA-3′ |
Reverse | 5′-AGTGAGGTTCCTGTCCAGTTGTCT-3′ |
MMP-2 | |
Forward | 5′-CCCCATGAAGCCTTGTTTACC-3′ |
Reverse | 5′-TTGTAGGAGGTGCCCTGGAA-3′ |
MTP | |
Forward | 5′-ACAGGTCCTCGAGCGTGTCT-3′ |
Reverse | 5′-CAGTGCTCCGCCAGAGAAG-3′ |
p22phox | |
Forward | 5′-CATGGAGCGATGTGGACAGA-3′ |
Reverse | 5′-CCCGAAAAGCTTCACCACAG-3′ |
p40phox | |
Forward | 5′-CAGCCAACATCGCTGACATC-3′ |
Reverse | 5′-CAAAGTGGCTGGTGAAGCCC-3′ |
p47phox | |
Forward | 5′-ACTCTCACTGAATACTTCAACG-3′ |
Reverse | 5′-TCATCAGGCCGCACTTT-3′ |
p67phox | |
Forward | 5′-AAGCAAAAAGAGCCCAAGGAA-3′ |
Reverse | 5′-CATGTAAGGCATAGGCACGCT-3′ |
PPARα | |
Forward | 5′-AGGAAGCCGTTCTGTGACAT-3′ |
Reverse | 5′-AATCCCCTCCTGCAACTTCT-3′ |
SOD1 | |
Forward | 5′-GCAGGACCTCATTTTAATCCTCACT-3′ |
Reverse | 5′-AGGTCTCCAACATGCCTCTCTTC-3′ |
SREBP1c | |
Forward | 5′-GGCACTAAGTGCCCTCAACCT-3′ |
Reverse | 5′-GCCACATAGATCTCTGCCAGTGT-3′ |
TGFβ1 | |
Forward | 5′-CCTGAGTGGCTGTCTTTTGACG-3′ |
Reverse | 5′-AGTGAGCGCTGAATCGAAAGC-3′ |
TIMP1 | |
Forward | 5′-CATCACGGGCCGCCTA-3′ |
Reverse | 5′-AAGCTGCAGGCACTGATGTG-3′ |
TNFα | |
Forward | 5′-ACCCTCACACTCAGATCATCTTC-3′ |
Reverse | 5′-TGGTGGTTTGCTACGACGT-3′ |
36B4 | |
Forward | 5′-GGCCCTGCACTCTCGCTTTC-3′ |
Reverse | 5′-TGCCAGGACGCGCTTGT-3′ |
Measurement of Serum Hydroperoxides
TG Secretion Rate
Statistical Analysis
Results
Metabolic Phenotypes of MC4R-KO Mice

WT mice | MC4R-KO mice | |||
---|---|---|---|---|
Variable | SD | HFD | SD | HFD |
Blood glucose (ad lib, mg/dL) | 117.3 ± 5.8 | 133.0 ± 8.3 | 167.4 ± 10.3 | 170.1 ± 12.4 |
HOMA-IR | 0.8 ± 0.3 | 15.5 ± 3.7 | 17.0 ± 4.0 | 21.8 ± 3.7 |
TG (mg/dL) | 84.6 ± 9.8 | 46.3 ± 1.2 | 135.8 ± 18.4 | 92.7 ± 8.1 |
FFA (mEq/L) | 0.27 ± 0.02 | 0.26 ± 0.01 | 0.34 ± 0.02 | 0.51 ± 0.06 |
TC (mg/dL) | 51.6 ± 2.8 | 189.7 ± 6.4 | 143.0 ± 9.5 | 294.5 ± 9.2 |
Adiponectin (μg/mL) | 15.4 ± 1.7 | 19.8 ± 1.7 | 13.5 ± 1.0 | 8.2 ± 0.9 |
Leptin (ng/mL) | 1.7 ± 0.3 | 97.2 ± 8.3 | 57.7 ± 6.0 | 112.6 ± 9.2 |
IL-6 (pg/mL) | 0.84 ± 0.64 | 2.21 ± 1.68 | 3.25 ± 0.75 | 6.80 ± 0.71 |
ALT (IU/L) | 36.9 ± 1.1 | 129.9 ± 19.6 | 191.9 ± 29.2 | 623.9 ± 50.8 |
Lipid Metabolism and Oxidative Stress in Liver from MC4R-KO Mice

Lipid Accumulation and Fibrosis in Liver from MC4R-KO Mice


Development of HCC in MC4R-KO Mice

Inflammatory and Fibrotic Changes in Adipose Tissue from MC4R-KO Mice

Discussion
- Suganami T.
- Tanimoto-Koyama K.
- Nishida J.
- Itoh M.
- Yuan X.
- Mizuarai S.
- Kotani H.
- Yamaoka S.
- Miyake K.
- Aoe S.
- Kamei Y.
- Ogawa Y.
- Nogueiras R.
- Wiedmer P.
- Perez-Tilve D.
- Veyrat-Durebex C.
- Keogh J.M.
- Sutton G.M.
- Pfluger P.T.
- Castaneda T.R.
- Neschen S.
- Hofmann S.M.
- Howles P.N.
- Morgan D.A.
- Benoit S.C.
- Szanto I.
- Schrott B.
- Schurmann A.
- Joost H.G.
- Hammond C.
- Hui D.Y.
- Woods S.C.
- Rahmouni K.
- Butler A.A.
- Farooqi I.S.
- O'Rahilly S.
- Rohner-Jeanrenaud F.
- Tschop M.H.
- Inoue H.
- Ogawa W.
- Asakawa A.
- Okamoto Y.
- Nishizawa A.
- Matsumoto M.
- Teshigawara K.
- Matsuki Y.
- Watanabe E.
- Hiramatsu R.
- Notohara K.
- Katayose K.
- Okamura H.
- Kahn C.R.
- Noda T.
- Takeda K.
- Akira S.
- Inui A.
- Kasuga M.
- Uno K.
- Katagiri H.
- Yamada T.
- Ishigaki Y.
- Ogihara T.
- Imai J.
- Hasegawa Y.
- Gao J.
- Kaneko K.
- Iwasaki H.
- Ishihara H.
- Sasano H.
- Inukai K.
- Mizuguchi H.
- Asano T.
- Shiota M.
- Nakazato M.
- Oka Y.
Acknowledgments
Supplementary data
- Supplemental Figure S1
Hepatic mRNA expression and a serum marker related to oxidative stress in MC4R-KO and WT mice fed the HFD for 8 weeks. Hepatic mRNA expression of NADPH oxidase components (p40phox, p47phox, p67phox, gp91phox, and p22phox) (A) and antioxidant enzymes (superoxide dismutase 1 and catalase) (B). C: Serum concentrations of derivatives of reactive oxidative metabolite. S, standard diet; H, high-fat diet. ††P < 0.01 versus WT-S; **P < 0.01. WT-S and WT-H, n = 5; MC4R-S, n = 5; MC4R-H, n = 6.
- Supplemental Figure S2
Histologic analysis of liver from MC4R-KO and WT mice fed the HFD for 1 year. Fibrillar collagen deposition evaluated using Sirius red staining (A) and quantification of the area positive for Sirius red (B) after 1 year of HFD feeding. Original magnification, ×200. Scale bar = 50 μm. C, central vein. **P < 0.01, n = 5.
- Supplemental Figure S3
Comparison of MC4R-KO and WT mice before the HFD feeding. Body weight (A) and tissue weights (B) of 8-week-old MC4R-KO and WT mice. mRNA expression of tumor necrosis factor-α in the epididymal fat (C) and genes related to fibrogenesis (transforming growth factor-β1; and collagen, type 1, α1) and inflammation (tumor necrosis factor-α and F4/80) in the liver (D). n.s., not significant. *P < 0.05; **P < 0.01; n = 8.
- Supplemental Table S1
- Supplemental Table S2
References
- Nonalcoholic steatohepatitis: summary of an AASLD single topic conference.Hepatology. 2003; 37: 1202-1219
- Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome.Hepatology. 2003; 37: 917-923
- Non-alcoholic steatohepatitis and animal models: understanding the human disease.Int J Biochem Cell Biol. 2009; 41: 969-976
- Steatohepatitis: a tale of two “hits”?.Gastroenterology. 1998; 114: 842-845
- Molecular mediators of hepatic steatosis and liver injury.J Clin Invest. 2004; 114: 147-152
- Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites.Hepatology. 2010; 52: 774-788
- From fat to inflammation.Gastroenterology. 2006; 130: 207-210
- Adipokines in liver diseases.Hepatology. 2009; 50: 957-969
- Leptin is essential for the hepatic fibrogenic response to chronic liver injury.J Hepatol. 2002; 37: 206-213
- Upregulation of proinflammatory and proangiogenic cytokines by leptin in human hepatic stellate cells.Hepatology. 2005; 42: 1339-1348
- Leptin in hepatic fibrosis: evidence for increased collagen production in stellate cells and lean littermates of ob/ob mice.Hepatology. 2002; 35: 762-771
- Hypoadiponectinemia accelerates hepatic tumor formation in a nonalcoholic steatohepatitis mouse model.J Hepatol. 2007; 47: 556-564
- Divergence of melanocortin pathways in the control of food intake and energy expenditure.Cell. 2005; 123: 493-505
- Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity.J Clin Invest. 2000; 106: 253-262
- Leptin and the regulation of body weight in mammals.Nature. 1998; 395: 763-770
- Response of melanocortin-4 receptor–deficient mice to anorectic and orexigenic peptides.Nat Genet. 1999; 21: 119-122
- Targeted disruption of the melanocortin-4 receptor results in obesity in mice.Cell. 1997; 88: 131-141
- Impaired coordination of nutrient intake and substrate oxidation in melanocortin-4 receptor knockout mice.Endocrinology. 2004; 145: 243-252
- Diet-genotype interactions in the development of the obese, insulin-resistant phenotype of C57BL/6J mice lacking melanocortin-3 or -4 receptors.Endocrinology. 2006; 147: 2183-2196
- Transplantation of bone marrow cells reduces CCl4-induced liver fibrosis in mice.Hepatology. 2004; 40: 1304-1311
- Role of central leptin signaling in renal macrophage infiltration.Endocr J. 2010; 57: 61-72
- Blockade of CCR2 ameliorates progressive fibrosis in kidney.Am J Pathol. 2004; 165: 237-246
- Increased adiponectin secretion by highly purified eicosapentaenoic acid in rodent models of obesity and human obese subjects.Arterioscler Thromb Vasc Biol. 2007; 27: 1918-1925
- Generalizability of the Nonalcoholic Steatohepatitis Clinical Research Network Histologic Scoring System for Nonalcoholic Fatty Liver Disease.J Clin Gastroenterol. 2010; 45: 55-58
- Impact of a single intracoronary administration of adiponectin on myocardial ischemia/reperfusion injury in a pig model.Circ Cardiovasc Interv. 2010; 3: 166-173
- Ezetimibe improves liver steatosis and insulin resistance in obese rat model of metabolic syndrome.FEBS Lett. 2007; 581: 5664-5670
- Molecular basis and mechanisms of progression of non-alcoholic steatohepatitis.Trends Mol Med. 2008; 14: 72-81
- Obesity is associated with macrophage accumulation in adipose tissue.J Clin Invest. 2003; 112: 1796-1808
- Gluttony, sloth and the metabolic syndrome: a roadmap to lipotoxicity.Trends Endocrinol Metab. 2010; 21: 345-352
- Prevention of hepatic fibrosis in a murine model of metabolic syndrome with nonalcoholic steatohepatitis.Am J Pathol. 2008; 173: 993-1001
- Longitudinal analysis of murine steatohepatitis model induced by chronic exposure to high-fat diet.Hepatol Res. 2007; 37: 50-57
- Roles of adipose restriction and metabolic factors in progression of steatosis to steatohepatitis in obese, diabetic mice.J Gastroenterol Hepatol. 2009; 24: 1658-1668
- Spontaneous oxidative stress and liver tumors in mice lacking methionine adenosyltransferase 1A.FASEB J. 2002; 16: 1292-1294
- Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas.J Clin Invest. 2004; 113: 1774-1783
- Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression.Cell. 2010; 140: 197-208
- A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor α.Arterioscler Thromb Vasc Biol. 2005; 25: 2062-2068
- Role of the Toll-like receptor 4/NF-κB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages.Arterioscler Thromb Vasc Biol. 2007; 27: 84-91
- Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI.Mol Cell Biol. 2009; 29: 1575-1591
- Fibrosis in human adipose tissue: composition, distribution, and link with lipid metabolism and fat mass loss.Diabetes. 2010; 59: 2817-2825
- Downregulation of adipose tissue fatty acid trafficking in obesity: a driver for ectopic fat deposition?.Diabetes. 2011; 60: 47-55
- Melanocortin-4 receptor expression in a vago-vagal circuitry involved in postprandial functions.J Comp Neurol. 2010; 518: 6-24
- The central melanocortin system directly controls peripheral lipid metabolism.J Clin Invest. 2007; 117: 3475-3488
- Role of hepatic STAT3 in brain-insulin action on hepatic glucose production.Cell Metab. 2006; 3: 267-275
- Neuronal pathway from the liver modulates energy expenditure and systemic insulin sensitivity.Science. 2006; 312: 1656-1659
- Leptin augments inflammatory and profibrogenic responses in the murine liver induced by hepatotoxic chemicals.Hepatology. 2001; 34: 288-297
- Modern science versus the stigma of obesity.Nat Med. 2004; 10: 563-569
- Recent advances in understanding leptin signaling and leptin resistance.Am J Physiol Endocrinol Metab. 2009; 297: E1247-E1259
Article info
Publication history
Footnotes
Supported in part by grants-in-aid for scientific research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, the Ministry of Health, Labour and Welfare of Japan, Japan Science and Technology Agency, and research grants from Takeda Science Foundation, Ono Medical Research Foundation, The Naito Foundation, Yamaguchi Endocrine Research Foundation, and Usage/Research Program of Medical Research Institute, Tokyo Medical and Dental University.
Supplemental material for this article can be found on http://ajp.amjpathol.org or at doi: 10.1016/j.ajpath.2011.07.014.
Identification
Copyright
User license
Elsevier user license |
Permitted
For non-commercial purposes:
- Read, print & download
- Text & data mine
- Translate the article
Not Permitted
- Reuse portions or extracts from the article in other works
- Redistribute or republish the final article
- Sell or re-use for commercial purposes
Elsevier's open access license policy