- Tissier F.
- Cavard C.
- Groussin L.
- Perlemoine K.
- Fumey G.
- Hagneré A.M.
- René-Corail F.
- Jullian E.
- Gicquel C.
- Bertagna X.
- Vacher-Lavenu M.C.
- Perret C.
- Bertherat J.
- Gaujoux S.
- Grabar S.
- Fassnacht M.
- Ragazzon B.
- Launay P.
- Libé R.
- Chokri I.
- Audebourg A.
- Royer B.
- Sbiera S.
- Vacher-Lavenu M.C.
- Dousset B.
- Bertagna X.
- Allolio B.
- Bertherat J.
- Tissier F.
- Bartholdi D.
- Krajewska-Walasek M.
- Ounap K.
- Gaspar H.
- Chrzanowska K.H.
- Ilyana H.
- Kayserili H.
- Lurie I.W.
- Schinzel A.
- Baumer A.
- de Fraipont F.
- El Atifi M.
- Cherradi N.
- Le Moigne G.
- Defaye G.
- Houlgatte R.
- Bertherat J.
- Bertagna X.
- Plouin P.F.
- Baudin E.
- Berger F.
- Gicquel C.
- Chabre O.
- Feige J.J.
Materials and Methods
Frozen Human Tissues, Histopathology, and RNA isolation
Analysis of Human RNA Samples
- Almeida M.Q.
- Soares I.C.
- Ribeiro T.C.
- Fragoso M.C.
- Marins L.V.
- Wakamatsu A.
- Ressio R.A.
- Nishi M.Y.
- Jorge A.A.
- Lerario A.M.
- Alves V.A.
- Mendonca B.B.
- Latronico A.C.
Tissue Microarray of Human Samples and Analysis
UMHS Cohort
USP Cohort
- Almeida M.Q.
- Soares I.C.
- Ribeiro T.C.
- Fragoso M.C.
- Marins L.V.
- Wakamatsu A.
- Ressio R.A.
- Nishi M.Y.
- Jorge A.A.
- Lerario A.M.
- Alves V.A.
- Mendonca B.B.
- Latronico A.C.
Genomic Mutational Analysis of the CTNNB1 Gene
Mouse Models
Transgene | Primer | TA (°C) | Product size (bp) |
---|---|---|---|
Sf1-Cre | Fwd 5′-CAATTTACTGACCGTACAC-3′ | 61 | WT: no band |
Rev 5′-AGCTGGCCCAAATGTTGCTG-3′ | Cre: 280 | ||
ApcloxP/loxP | Fwd 5′-GTTCTGTATCATGGAAAGATAGGTGG-3′ | 55 | WT: 320 |
Rev 5′-CACTCAAAACGCTTTTGAGGGTTGAT-3′ | floxed: 370 | ||
Ctnnb1tm2kem | Fwd 5′-AAGGTAGAGTGATGAAAGTTGTT-3′ | 60 | WT: 300 |
Rev 5′-CACCATGTCCTCTGTCTATTC-3′ | floxed: 400 | ||
H19lxDMD/lxDMD | Fwd 5′-CACACAAAGGATTCTTTGCAGAGAG-3′ | 58 | WT: 297 |
Rev 5′-TGCAAGGAGACCATGCCTATTCTTG-3′ | floxed: 347 |
Immunoblot Analysis of Mouse Adrenal Lysates
Analysis of Mouse Adrenal Gland Histology and Immunohistochemistry
Analysis of Mouse RNA Samples
Human and Animal Research Statements
Results
Abnormal β-Catenin Staining and CTNNB1 Mutations Correlate with Poor Prognosis in Human ACCs
- Tissier F.
- Cavard C.
- Groussin L.
- Perlemoine K.
- Fumey G.
- Hagneré A.M.
- René-Corail F.
- Jullian E.
- Gicquel C.
- Bertagna X.
- Vacher-Lavenu M.C.
- Perret C.
- Bertherat J.
- Gaujoux S.
- Grabar S.
- Fassnacht M.
- Ragazzon B.
- Launay P.
- Libé R.
- Chokri I.
- Audebourg A.
- Royer B.
- Sbiera S.
- Vacher-Lavenu M.C.
- Dousset B.
- Bertagna X.
- Allolio B.
- Bertherat J.
- Tissier F.
- Bonnet S.
- Gaujoux S.
- Launay P.
- Baudry C.
- Chokri I.
- Ragazzon B.
- Libé R.
- René-Corail F.
- Audebourg A.
- Vacher-Lavenu M.C.
- Groussin L.
- Bertagna X.
- Dousset B.
- Bertherat J.
- Tissier F.

- Tissier F.
- Cavard C.
- Groussin L.
- Perlemoine K.
- Fumey G.
- Hagneré A.M.
- René-Corail F.
- Jullian E.
- Gicquel C.
- Bertagna X.
- Vacher-Lavenu M.C.
- Perret C.
- Bertherat J.
- Gaujoux S.
- Grabar S.
- Fassnacht M.
- Ragazzon B.
- Launay P.
- Libé R.
- Chokri I.
- Audebourg A.
- Royer B.
- Sbiera S.
- Vacher-Lavenu M.C.
- Dousset B.
- Bertagna X.
- Allolio B.
- Bertherat J.
- Tissier F.
- Gaujoux S.
- Grabar S.
- Fassnacht M.
- Ragazzon B.
- Launay P.
- Libé R.
- Chokri I.
- Audebourg A.
- Royer B.
- Sbiera S.
- Vacher-Lavenu M.C.
- Dousset B.
- Bertagna X.
- Allolio B.
- Bertherat J.
- Tissier F.
- Gaujoux S.
- Grabar S.
- Fassnacht M.
- Ragazzon B.
- Launay P.
- Libé R.
- Chokri I.
- Audebourg A.
- Royer B.
- Sbiera S.
- Vacher-Lavenu M.C.
- Dousset B.
- Bertagna X.
- Allolio B.
- Bertherat J.
- Tissier F.
- Gaujoux S.
- Grabar S.
- Fassnacht M.
- Ragazzon B.
- Launay P.
- Libé R.
- Chokri I.
- Audebourg A.
- Royer B.
- Sbiera S.
- Vacher-Lavenu M.C.
- Dousset B.
- Bertagna X.
- Allolio B.
- Bertherat J.
- Tissier F.
Cohort and effect | P value (Wald test) | Relative Risk (95% CI) |
---|---|---|
UMHS cohort | ||
β-catenin, nuclear vs membranous | 0.220 | 1.89 (0.69–5.21) |
Mitotic rate, log2-transformed | 0.020 | 1.84 (1.10–3.07) |
Stage III+IV vs I+II | 0.049 | 2.96 (1.00–8.70) |
USP cohort | ||
β-catenin, nuclear vs membranous | 0.92 | 1.07 (0.30–3.79) |
Mitotic rate, log2-transformed | 0.21 | 1.36 (0.84–2.20) |
Stage III+IV vs I+II | 0.0033 | 8.06 (2.00–32.36) |
Combined | ||
β-catenin, nuclear vs membranous | 0.29 | 1.54 (0.70–3.41) |
Mitotic rate, log2-transformed | 0.0016 | 1.55 (1.18–2.03) |
Stage III+IV vs I+II | 0.00085 | 4.14 (1.80–9.52) |
Cohort | Nuclear β-catenin with high stage or grade (n/N) | Membranous β-catenin with high stage or grade (n/N) | P value |
---|---|---|---|
Association of β-catenin and stage | |||
UMHS cohort | 4/8 | 7/15 | 1.0 |
USP cohort | 3/5 | 8/22 | 0.37 |
Combined | 7/13 | 15/37 | 0.52 |
Association of β-catenin and grade | |||
UMHS cohort | 8/8 | 9/15 | 0.058 |
USP cohort | 1/5 | 0/22 | 0.19 |
Combined | 9/13 | 9/37 | 0.007 |
- Berthon A.
- Sahut-Barnola I.
- Lambert-Langlais S.
- de Joussineau C.
- Damon-Soubeyrand C.
- Louiset E.
- Taketo M.M.
- Tissier F.
- Bertherat J.
- Lefrançois-Martinez A.M.
- Martinez A.
- Val P.
- Boulkroun S.
- Samson-Couterie B.
- Golib-Dzib J.F.
- Amar L.
- Plouin P.F.
- Sibony M.
- Lefebvre H.
- Louiset E.
- Jeunemaitre X.
- Meatchi T.
- Benecke A.
- Lalli E.
- Zennaro M.C.
- Gaujoux S.
- Grabar S.
- Fassnacht M.
- Ragazzon B.
- Launay P.
- Libé R.
- Chokri I.
- Audebourg A.
- Royer B.
- Sbiera S.
- Vacher-Lavenu M.C.
- Dousset B.
- Bertagna X.
- Allolio B.
- Bertherat J.
- Tissier F.
- Bonnet S.
- Gaujoux S.
- Launay P.
- Baudry C.
- Chokri I.
- Ragazzon B.
- Libé R.
- René-Corail F.
- Audebourg A.
- Vacher-Lavenu M.C.
- Groussin L.
- Bertagna X.
- Dousset B.
- Bertherat J.
- Tissier F.
UMHS cohort (no.) | USP cohort (no.) | |||
---|---|---|---|---|
Membranous β-catenin | Nuclear/cytoplasmic β-catenin | Membranous β-catenin | Nuclear/cytoplasmic β-catenin | |
Adrenocortical adenomas | ||||
Nonfunctional | 1 | 5 | 5 | 4 |
Functional | 13 | 3 | 21 | 6 |
Total | 14 | 8 | 26 | 10 |
Adrenocortical carcinomas | ||||
Nonfunctional | 9 | 1 | 2 | 1 |
Functional | 8 | 11 | 20 | 4 |
Total | 17 | 12 | 22 | 5 |
Abnormal β-Catenin Status Correlates with Changes in Gene Expression and an Enrichment of Up-Regulated LEF1 Target Genes
- Doghman M.
- Arhatte M.
- Thibout H.
- Rodrigues G.
- De Moura J.
- Grosso S.
- West A.N.
- Laurent M.
- Mas J.C.
- Bongain A.
- Zambetti G.P.
- Figueiredo B.C.
- Auberger P.
- Martinerie C.
- Lalli E.

Conditional Knock-Out of Apc Causes Stabilization of β-Catenin and Aberrant Expression of Adrenocortical Markers in Mice
- Gaujoux S.
- Grabar S.
- Fassnacht M.
- Ragazzon B.
- Launay P.
- Libé R.
- Chokri I.
- Audebourg A.
- Royer B.
- Sbiera S.
- Vacher-Lavenu M.C.
- Dousset B.
- Bertagna X.
- Allolio B.
- Bertherat J.
- Tissier F.
- Berthon A.
- Sahut-Barnola I.
- Lambert-Langlais S.
- de Joussineau C.
- Damon-Soubeyrand C.
- Louiset E.
- Taketo M.M.
- Tissier F.
- Bertherat J.
- Lefrançois-Martinez A.M.
- Martinez A.
- Val P.

- Mizusaki H.
- Kawabe K.
- Mukai T.
- Ariyoshi E.
- Kasahara M.
- Yoshioka H.
- Swain A.
- Morohashi K.
Conditional Knock-Out of Apc Leads to Adrenal Hyperplasia and Adenomas

Adrenocortical Dysplasia in APC KO Mice Is Dependent on β-Catenin Expression
Elevated IGF2 Expression in Human ACCs and Mouse Tumors

Loss of Imprinting at the IGF2/H19 Differentially Methylated Domain by Itself Does Not Induce Tumor Formation in Mice
Loss of Apc and Overexpression of Igf2 in Combination Accelerate Tumor Formation in Mice

Mouse model | Tumors with given percentage of Ki-67+ cells (no.) | Total adrenals evaluated | |||
---|---|---|---|---|---|
<1% | 1%–5% | 5%–10% | 10–20% | ||
Control (Cre−) | 4 | 2 | 0 | 0 | 6 |
H19ΔDMD | 6 | 2 | 0 | 0 | 8 |
APC KO | 5 | 6 | 3 | 1 | 15 |
APC KO-H19ΔDMD | 0 | 10 | 2 | 2 | 14 |

Age, sample size, and findings | H19ΔDMD [no. (%)] | APC KO [no. (%)] | APC KO-H19ΔDMD [no. (%)] |
---|---|---|---|
15 weeks | |||
Total examined | 3 | 10 | 7 |
Normal | 3 (100) | 0 | 0 |
Hyperplasia | 0 | 10 (100) | 7 (100) |
Microscopic adenoma | 0 | 0 | 0 |
Macroscopic adenoma | 0 | 0 | 0 |
Carcinoma | 0 | 0 | 0 |
30 weeks | |||
Total examined | 3 | 8 | 9 |
Normal | 3 (100) | 0 | 0 |
Hyperplasia | 0 | 8 (100) | 9 (100) |
Microscopic adenoma | 0 | 0 | 0 |
Macroscopic adenoma | 0 | 0 | 0 |
Carcinoma | 0 | 0 | 0 |
45 weeks | |||
Total examined | 6 | 6 | 12 |
Normal | 6 (100) | 0 | 1 (8.3) |
Hyperplasia | 0 | 5 (83.3) | 7 (58.3) |
Microscopic adenoma | 0 | 1 (16.7) | 1 (8.3) |
Macroscopic adenoma | 0 | 0 | 3 (25) |
Carcinoma | 0 | 0 | 0 |
>45 Weeks | |||
Total examined | 8 | 15 | 14 |
Normal | 8 (100) | 3 (20) | 0 |
Hyperplasia | 0 | 8 (53.3) | 8 (57.1) |
Microscopic adenoma | 0 | 2 (13.3) | 1 (7.1) |
Macroscopic adenoma | 0 | 2 (13.3) | 4 (28.6) |
Carcinoma | 0 | 0 | 1 (7.1) |

Discussion
- de Fraipont F.
- El Atifi M.
- Cherradi N.
- Le Moigne G.
- Defaye G.
- Houlgatte R.
- Bertherat J.
- Bertagna X.
- Plouin P.F.
- Baudin E.
- Berger F.
- Gicquel C.
- Chabre O.
- Feige J.J.
- Gicquel C.
- Raffin-Sanson M.L.
- Gaston V.
- Bertagna X.
- Plouin P.F.
- Schlumberger M.
- Louvel A.
- Luton J.P.
- Le Bouc Y.
- Berthon A.
- Sahut-Barnola I.
- Lambert-Langlais S.
- de Joussineau C.
- Damon-Soubeyrand C.
- Louiset E.
- Taketo M.M.
- Tissier F.
- Bertherat J.
- Lefrançois-Martinez A.M.
- Martinez A.
- Val P.
- Libé R.
- Tissier F.
- Bienvenu M.
- Groussin L.
- Joannidis S.
- Hignette C.
- Dousset B.
- Legmann P.
- Faraggi M.
- Richard B.
- Bertagna X.
- Tenenbaum F.
- Tissier F.
- Cavard C.
- Groussin L.
- Perlemoine K.
- Fumey G.
- Hagneré A.M.
- René-Corail F.
- Jullian E.
- Gicquel C.
- Bertagna X.
- Vacher-Lavenu M.C.
- Perret C.
- Bertherat J.
- Gaujoux S.
- Grabar S.
- Fassnacht M.
- Ragazzon B.
- Launay P.
- Libé R.
- Chokri I.
- Audebourg A.
- Royer B.
- Sbiera S.
- Vacher-Lavenu M.C.
- Dousset B.
- Bertagna X.
- Allolio B.
- Bertherat J.
- Tissier F.
- Tissier F.
- Cavard C.
- Groussin L.
- Perlemoine K.
- Fumey G.
- Hagneré A.M.
- René-Corail F.
- Jullian E.
- Gicquel C.
- Bertagna X.
- Vacher-Lavenu M.C.
- Perret C.
- Bertherat J.
- Gaujoux S.
- Grabar S.
- Fassnacht M.
- Ragazzon B.
- Launay P.
- Libé R.
- Chokri I.
- Audebourg A.
- Royer B.
- Sbiera S.
- Vacher-Lavenu M.C.
- Dousset B.
- Bertagna X.
- Allolio B.
- Bertherat J.
- Tissier F.
- Tissier F.
- Cavard C.
- Groussin L.
- Perlemoine K.
- Fumey G.
- Hagneré A.M.
- René-Corail F.
- Jullian E.
- Gicquel C.
- Bertagna X.
- Vacher-Lavenu M.C.
- Perret C.
- Bertherat J.
- Gaujoux S.
- Grabar S.
- Fassnacht M.
- Ragazzon B.
- Launay P.
- Libé R.
- Chokri I.
- Audebourg A.
- Royer B.
- Sbiera S.
- Vacher-Lavenu M.C.
- Dousset B.
- Bertagna X.
- Allolio B.
- Bertherat J.
- Tissier F.
- Bonnet S.
- Gaujoux S.
- Launay P.
- Baudry C.
- Chokri I.
- Ragazzon B.
- Libé R.
- René-Corail F.
- Audebourg A.
- Vacher-Lavenu M.C.
- Groussin L.
- Bertagna X.
- Dousset B.
- Bertherat J.
- Tissier F.
- Gaujoux S.
- Grabar S.
- Fassnacht M.
- Ragazzon B.
- Launay P.
- Libé R.
- Chokri I.
- Audebourg A.
- Royer B.
- Sbiera S.
- Vacher-Lavenu M.C.
- Dousset B.
- Bertagna X.
- Allolio B.
- Bertherat J.
- Tissier F.
- Bonnet S.
- Gaujoux S.
- Launay P.
- Baudry C.
- Chokri I.
- Ragazzon B.
- Libé R.
- René-Corail F.
- Audebourg A.
- Vacher-Lavenu M.C.
- Groussin L.
- Bertagna X.
- Dousset B.
- Bertherat J.
- Tissier F.
- Gaujoux S.
- Grabar S.
- Fassnacht M.
- Ragazzon B.
- Launay P.
- Libé R.
- Chokri I.
- Audebourg A.
- Royer B.
- Sbiera S.
- Vacher-Lavenu M.C.
- Dousset B.
- Bertagna X.
- Allolio B.
- Bertherat J.
- Tissier F.
- Berthon A.
- Sahut-Barnola I.
- Lambert-Langlais S.
- de Joussineau C.
- Damon-Soubeyrand C.
- Louiset E.
- Taketo M.M.
- Tissier F.
- Bertherat J.
- Lefrançois-Martinez A.M.
- Martinez A.
- Val P.
- Berthon A.
- Sahut-Barnola I.
- Lambert-Langlais S.
- de Joussineau C.
- Damon-Soubeyrand C.
- Louiset E.
- Taketo M.M.
- Tissier F.
- Bertherat J.
- Lefrançois-Martinez A.M.
- Martinez A.
- Val P.
- Berthon A.
- Sahut-Barnola I.
- Lambert-Langlais S.
- de Joussineau C.
- Damon-Soubeyrand C.
- Louiset E.
- Taketo M.M.
- Tissier F.
- Bertherat J.
- Lefrançois-Martinez A.M.
- Martinez A.
- Val P.
Acknowledgments
Supplementary data
- Supplemental Figure S1
Breeding schemes for APC KO, BCAT KO, and APC-BCAT KO mice. All mice were developed using the Sf1-Cre stochastic driver. A: APC KO mice were created by elimination of exon 14, resulting in a frameshift mutation that generates a null product. B: BCAT KO mice were created by elimination of exons 2 through 6, resulting in complete inactivation. C: APC-BCAT KO mice were created by crossing APC KO mice with BCAT KO mice.
- Supplemental Figure S2
Breeding schemes for H19ΔDMD and APC KO-H19ΔDMD mice. All mice were developed using the Sf1-Cre stochastic driver. A: H19ΔDMD mice are a result of loss of the differentially methylated region of the Igf2/H19 cistron, which causes Igf2 expression from both the maternal and paternal alleles. Mice with normal imprinting at this locus express Igf2 only from the paternal allele. B: APC KO-H19ΔDMD mice were bred to generate females with loxP sites surrounding both Apc exon 14 and the Igf2/H19 DMD. Mating with male mice expressing the Cre transgene that are heterozygous for Apc loxP sites results in both Cre− littermates and Cre+ mice with excision of Apc exon 14 and the imprinting control region of the Igf2/H19 region.
- Supplemental Figure S3
Genes up-regulated in ACCs with nuclear β-catenin staining annotated as having either of two DNA motifs for LEF1 binding. The genes selected were those that yielded P < 0.01 and an average expression increase of at least 1.5-fold in comparison of Bcat+ ACCs with Bcat− ACCs. Listed are genes with motifs CTTTGT_V$LEF1_Q2 and CTTTGA_V$LEF1_Q2, as given by version 3 of MSigDB. The MSigDB lists are for the region within 2 kb from the transcription start sites, and demand that the motif be conserved in mouse, rat, and dog. Data are expressed as the ratio to the median of ACCs. Red indicates the highest expression (ratio 4) and green indicates the lowest expression (ratio 1/4). All values are normalized to the median of ACCs.
- Supplemental Figure S4
Knock out of Apc in mice with Sf1-Cre complete driver results in a developmental defect. Embryos (embryonic day E16.5) were harvested and genotyped. Embryos of the WT, APC KO (stochastic driver), and APC-KO (complete driver) genotypes were processed, sectioned, and stained with H&E. Excision of Apc exon 14 with the Sf1-Cre stochastic driver resulted in apparently normal adrenal gland formation, as observed by H&E staining. When Apc was conditionally knocked out with the Sf1-Cre complete driver, a developmental defect was detected. Original magnification, ×100.
- Supplemental Figure S5
Adrenal gland histology of H19ΔDMD mice does not reveal a significantly altered phenotype. H&E analysis of adrenal glands from 15, 30, 45, or >45-week-old H19ΔDMD mice (A) and Cre− control mice (B) revealed no significant changes in morphology of the adrenal gland. Representative images are shown. Original magnification: ×40 (top row); ×100 (bottom row). Scale bars: 2 mm (top row); 50 μm (bottom row).
- Supplemental Figure S6
Adrenal gland mass of individual mice. Adrenal glands were harvested from mice at age 15, 30, 45, or >45 weeks and were weighed. The sum of the two adrenal gland masses for each mouse was measured, and these data were used to generate Figure 6. Here, the total adrenal mass of an individual mouse is plotted separately for female and male samples. Data points represent the total adrenal mass of one animal; horizontal lines represent the mean of each group of animals. Two outlier values (boxed) were eliminated from the analysis presented in Figure 6.
- Supplemental Table S1
- Supplemental Table S2
References
- Epidemiology of adrenocortical carcinoma.in: Hammer G.D. Else T. Adrenocortical Carcinoma: Basic Science and Clinical Concepts. Springer, New York2011: 23-30
- Adrenocortical carcinoma in the United States: treatment utilization and prognostic factors.Cancer. 2008; 113: 3130-3136
- Emerging treatment strategies for adrenocortical carcinoma: a new hope.J Clin Endocrinol Metab. 2006; 91: 14-21
- Adrenocortical cancer: pathophysiology and clinical management.Endocr Relat Cancer. 2007; 14: 13-28
- Pathogenesis of adrenocortical cancer.Best Pract Res Clin Endocrinol Metab. 2009; 23: 261-271
- Overview of genetic syndromes associated with adrenocortical cancer.in: Hammer G.D. Else T. Adrenocortical Carcinoma: Basic Science and Clinical Concepts. Springer, New York2011: 153-172
- WNT/β-catenin signaling in adrenocortical carcinoma.in: Hammer G.D. Else T. Adrenocortical Carcinoma: Basic Science and Clinical Concepts. Springer, New York2011: 263-282
- Targeted disruption of beta-catenin in Sf1-expressing cells impairs development and maintenance of the adrenal cortex.Development. 2008; 135: 2593-2602
- Mutations of beta-catenin in adrenocortical tumors: activation of the Wnt signaling pathway is a frequent event in both benign and malignant adrenocortical tumors.Cancer Res. 2005; 65: 7622-7627
- Detection of somatic beta-catenin mutations in primary pigmented nodular adrenocortical disease (PPNAD).Clin Endocrinol (Oxf). 2008; 69: 367-373
- Frequent mutations of beta-catenin gene in sporadic secreting adrenocortical adenomas.Clin Endocrinol (Oxf). 2008; 68: 264-270
- beta-catenin activation is associated with specific clinical and pathologic characteristics and a poor outcome in adrenocortical carcinoma.Clin Cancer Res. 2011; 17: 328-336
- The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3.Genes Dev. 1996; 10: 1443-1454
- The Wnt connection to tumorigenesis.Int J Dev Biol. 2004; 48: 477-487
- Wnt signalling and its impact on development and cancer.Nat Rev Cancer. 2008; 8: 387-398
- Epigenetic mutations of the imprinted IGF2-H19 domain in Silver-Russell syndrome (SRS): results from a large cohort of patients with SRS and SRS-like phenotypes.J Med Genet. 2009; 46: 192-197
- Beckwith-Wiedemann syndrome.in: Hammer G.D. Else T. Adrenocortical Carcinoma: Basic Science and Clinical Concepts. Springer, New York2011: 227-234
- The insulin-like growth factor system in adrenocortical growth control and carcinogenesis.in: Hammer G.D. Else T. Adrenocortical Carcinoma: Basic Science and Clinical Concepts. Springer, New York2011: 235-262
- Molecular classification and prognostication of adrenocortical tumors by transcriptome profiling.Clin Cancer Res. 2009; 15: 668-676
- Gene expression profiling of human adrenocortical tumors using complementary deoxyribonucleic acid microarrays identifies several candidate genes as markers of malignancy.J Clin Endocrinol Metab. 2005; 90: 1819-1829
- Molecular markers and long-term recurrences in a large cohort of patients with sporadic adrenocortical tumors.Cancer Res. 2001; 61: 6762-6767
- Expression profiling of adrenocortical neoplasms suggests a molecular signature of malignancy.Surgery. 2005; 138: 1087-1094
- Distinct transcriptional profiles of adrenocortical tumors uncovered by DNA microarray analysis.Am J Pathol. 2003; 162: 521-531
- Tumor origin, progression, immunogenicity, and immunotherapy.Transplant Proc. 1984; 16: 528-533
- Reflections on tumor origin, immunogenicity, and immunotherapy.Cancer Immunol Immunother. 1984; 18: 1-4
- Expression of insulin-like growth factor-II and its receptor in pediatric and adult adrenocortical tumors.J Clin Endocrinol Metab. 2008; 93: 3524-3531
- NCBI GEO: mining tens of millions of expression profiles–database and tools update.Nucleic Acids Res. 2007; 35 (Database issue): D760-D765
- Steroidogenic factor 1 overexpression and gene amplification are more frequent in adrenocortical tumors from children than from adults.J Clin Endocrinol Metab. 2010; 95: 1458-1462
- Genetic changes of Wnt pathway genes are common events in metaplastic carcinomas of the breast.Clin Cancer Res. 2008; 14: 4038-4044
- Development of a steroidogenic factor 1/Cre transgenic mouse line.Genesis. 2006; 44: 419-424
- Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene.Science. 1997; 278: 120-123
- Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development.Development. 2001; 128: 1253-1264
- Developmental profile of H19 differentially methylated domain (DMD) deletion alleles reveals multiple roles of the DMD in regulating allelic expression and DNA methylation at the imprinted H19/Igf2 locus.Mol Cell Biol. 2006; 26: 1245-1258
- Genetic removal of Smad3 from inhibin-null mice attenuates tumor progression by uncoupling extracellular mitogenic signals from the cell cycle machinery.Mol Endocrinol. 2007; 21: 2440-2457
- Dax-1 as one of the target genes of Ad4BP/SF-1.Mol Endocrinol. 1999; 13: 1267-1284
- High-throughput real-time quantitative reverse transcription PCR.Curr Protoc Mol Biol. 2006; (Chapter 15:Unit 15.8)
- Wnt/beta-catenin pathway activation in adrenocortical adenomas is frequently due to somatic CTNNB1-activating mutations, which are associated with larger and nonsecreting tumors: a study in cortisol-secreting and -nonsecreting tumors.J Clin Endocrinol Metab. 2011; 96: E419-E426
- Investigation of BRAF and CTNNB1 activating mutations in adrenocortical tumors.J Endocrinol Invest. 2009; 32: 597-600
- The argument for mitotic rate-based grading for the prognostication of adrenocortical carcinoma.Am J Surg Pathol. 2011; 35: 471-473
- Constitutive beta-catenin activation induces adrenal hyperplasia and promotes adrenal cancer development.Hum Mol Genet. 2010; 19: 1561-1576
- Aldosterone-producing adenoma formation in the adrenal cortex involves expression of stem/progenitor cell markers.Endocrinology. 2011; 152: 4753-4763
- Clinical presentation and initial diagnosis.in: Hammer G.D. Else T. Adrenocortical Carcinoma: Basic Science and Clinical Concepts. Springer, New York2011: 31-48
- HGF/c-Met related activation of beta-catenin in hepatoblastoma.J Exp Clin Cancer Res. 2011; 30: 96
- Interaction between human-breast cancer metastasis and bone microenvironment through activated hepatocyte growth factor/Met and beta-catenin/Wnt pathways.Eur J Cancer. 2010; 46: 1679-1691
- Met receptor signaling: a key effector in esophageal adenocarcinoma.Clin Cancer Res. 2006; 12: 5936-5943
- Nephroblastoma overexpressed/cysteine-rich protein 61/connective tissue growth factor/nephroblastoma overexpressed gene-3 (NOV/CCN3), a selective adrenocortical cell proapoptotic factor, is down-regulated in childhood adrenocortical tumors.J Clin Endocrinol Metab. 2007; 92: 3253-3260
- Gene expression profiling of childhood adrenocortical tumors.Cancer Res. 2007; 67: 600-608
- Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.Proc Natl Acad Sci USA. 2005; 102: 15545-15550
- Evidence of adrenal failure in aging Dax1-deficient mice.Endocrinology. 2011; 152: 3430-3439
- Dax-1 (dosage-sensitive sex reversal-adrenal hypoplasia congenita critical region on the X chromosome, gene 1) gene transcription is regulated by wnt4 in the female developing gonad.Mol Endocrinol. 2003; 17: 507-519
- Adrenocortical stem and progenitor cells: unifying model of two proposed origins.Mol Cell Endocrinol. 2011; 336: 206-212
- In search of adrenocortical stem and progenitor cells.Endocr Rev. 2009; 30: 241-263
- Progenitor cell expansion and organ size of mouse adrenal is regulated by sonic hedgehog.Endocrinology. 2010; 151: 1119-1128
- Shh signaling regulates adrenocortical development and identifies progenitors of steroidogenic lineages.Proc Natl Acad Sci USA. 2009; 106: 21185-21190
- Adrenal 20alpha-hydroxysteroid dehydrogenase in the mouse catabolizes progesterone and 11-deoxycorticosterone and is restricted to the X-zone.Endocrinology. 2007; 148: 976-988
- The multiple functions of tumour suppressors: it's all in APC.Nat Cell Biol. 2003; 5: 190-192
- Somatic TP53 mutations are relatively rare among adrenocortical cancers with the frequent 17p13 loss of heterozygosity.Clin Cancer Res. 2007; 13: 844-850
- Mechanisms of disease: adrenocortical tumors–molecular advances and clinical perspectives.Nat Clin Pract Endocrinol Metab. 2006; 2: 632-641
- Transactivation of Igf2 in a mouse model of Beckwith-Wiedemann syndrome.Nature. 1997; 389: 809-815
- Postnatal overexpression of insulin-like growth factor II in transgenic mice is associated with adrenocortical hyperplasia and enhanced steroidogenesis.Endocrinology. 1999; 140: 1537-1543
- Oppositely imprinted genes p57(Kip2) and Igf2 interact in a mouse model for Beckwith-Wiedemann syndrome.Genes Dev. 1999; 13: 3115-3124
- Signaling pathways in adrenocortical cancer.Ann N Y Acad Sci. 2002; 968: 222-239
- Molecular markers and the pathogenesis of adrenocortical cancer.Oncologist. 2008; 13: 548-561
- Adrenal masses are associated with familial adenomatous polyposis.Dis Colon Rectum. 2000; 43: 1739-1742
- Adrenal masses in patients with familial adenomatous polyposis.Dis Colon Rectum. 1997; 40: 1023-1028
- A case of familial adenomatous polyposis complicated by thyroid carcinoma, carcinoma of the ampulla of vater and adrenocortical adenoma.Jpn J Surg. 1991; 21: 234-240
- Structural and functional abnormalities at 11p15 are associated with the malignant phenotype in sporadic adrenocortical tumors: study on a series of 82 tumors.J Clin Endocrinol Metab. 1997; 82: 2559-2565
- Adrenocortical tumor with two distinct elements revealed by combined (18)F-fluorodeoxyglucose positron emission tomography and (131)I nor-cholesterol scintigraphy.J Clin Endocrinol Metab. 2009; 94: 3631-3632
- Adrenocortical stem and progenitor cells: implications for cancer.in: Hammer G.D. Else T. Adrenocortical Carcinoma: Basic Science and Clinical Concepts. Springer, New York2011: 285-304
- Approach to the patient with an adrenal incidentaloma.J Clin Endocrinol Metab. 2010; 95: 4106-4113
- “Dedifferentiated” adrenal cortical neoplasm.Int J Surg Pathol. 2009; 17: 343-344
- A case report in favor of a multistep adrenocortical tumorigenesis.J Clin Endocrinol Metab. 2003; 88: 998-1001
- Loss of insulin-like growth factor-II imprinting and the presence of screen-detected colorectal adenomas in women.J Natl Cancer Inst. 2004; 96: 407-410
- Consequences of postnatally elevated insulin-like growth factor-II in transgenic mice: endocrine changes and effects on body and organ growth.Endocrinology. 1994; 135: 1877-1886
- Loss of imprinting of Igf2 alters intestinal maturation and tumorigenesis in mice.Science. 2005; 307: 1976-1978
- MicroRNA profiling of adrenocortical tumors reveals miR-483 as a marker of malignancy.Cancer. 2011; 117: 1630-1639
- Oncogenic role of miR-483-3p at the IGF2/483 locus.Cancer Res. 2010; 70: 3140-3149
- Mutated beta-catenin evades a microRNA-dependent regulatory loop.Proc Natl Acad Sci USA. 2011; 108: 4840-4845
Article Info
Publication History
Footnotes
Supported in part by the University of Michigan's Millie Schembechler Adrenal Cancer Research Fund, NIH DK062027 and CA134606 (G.D.H.), NIH T32 DK07245 (M.A.W.), NIH T32 HD007505 (F.M.B), NIH T32-CA009676 (E.S.), NIH T32-CA009676 (R.K., T.J.G., and D.G.T), the National Council for Scientific and Technological Development of Brazil (CNPq 300209/2008-8 to A.C.L.), and the Coordination for Improvement of Higher Education (CAPES), Brazil (L.O.L).
J.H.H. and M.A.W. contributed equally to this work.
Supplemental material for this article can be found at http://ajp.amjpathol.org or at http://dx.doi.org/10.1016/j.ajpath.2012.05.026.
Identification
Copyright
User License
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy