- Mack U.
- Migliori G.B.
- Sester M.
- Rieder H.L.
- Ehlers S.
- Goletti D.
- Bossink A.
- Magdorf K.
- Holscher C.
- Kampmann B.
- Arend S.M.
- Detjen A.
- Bothamley G.
- Zellweger J.P.
- Milburn H.
- Diel R.
- Ravn P.
- Cobelens F.
- Cardona P.J.
- Kan B.
- Solovic I.
- Duarte R.
- Cirillo D.M.
- Thye T.
- Owusu-Dabo E.
- Vannberg F.O.
- van Crevel R.
- Curtis J.
- Sahiratmadja E.
- Balabanova Y.
- Ehmen C.
- Muntau B.
- Ruge G.
- Sievertsen J.
- Gyapong J.
- Nikolayevskyy V.
- Hill P.C.
- Sirugo G.
- Drobniewski F.
- van de Vosse E.
- Newport M.
- Alisjahbana B.
- Nejentsev S.
- Ottenhoff T.H.
- Hill A.V.
- Horstmann R.D.
- Meyer C.G.
- Krishnan N.
- Malaga W.
- Constant P.
- Caws M.
- Tran T.H.
- Salmons J.
- Nguyen T.N.
- Nguyen D.B.
- Daffe M.
- Young D.B.
- Robertson B.D.
- Guilhot C.
- Thwaites G.E.
- Tsenova L.
- Ellison E.
- Harbacheuski R.
- Moreira A.L.
- Kurepina N.
- Reed M.B.
- Mathema B.
- Barry 3rd, C.E.
- Kaplan G.
Materials and Methods
Bacteria and Chemicals
Rabbit Infection and Treatment
Histological Staining
Flow Cytometry Analysis
Measurement of Serum Anti-PPD IgG
Rabbit Lung Total RNA Isolation
Microarray Analysis of Rabbit Gene Expression
Pathway Analysis of Differentially Expressed Rabbit Genes
Real-Time qPCR Analysis
Gene | Primer | Sequence | Description | Gene ID |
---|---|---|---|---|
TLR2 | Forward | 5′-CTCTCGCAGAACTTCGTCAA-3′ | Toll-like receptor-2 | 100009578 |
Reverse | 5′-AGAATGGCGGCGTCGTTGTT-3′ | |||
TNFα | Forward | 5′-CTGAGTGACGAGCCTCTAGC-3′ | TNF-α | 100009088 |
Reverse | 5′-TTCATGCCGTTGGCCAGCAG-3′ | |||
CD14 | Forward | 5′-GCTATGCTGACGTAGTCAAG-3′ | Monocyte differentiation antigen | 100008983 |
Reverse | 5′-GGTGCCAGTTACCTCTATGT-3′ | |||
CAV1 | Forward | 5′-GCGACCCCAAGCATCTCA-3′ | Caveolin 1 | 100008837 |
Reverse | 5′-GATGGTAGACAGTAGGCG-3′ | |||
NP4 | Forward | 5′-TGGACGTGGCCGTCTACATT-3′ | Microbicidal peptide-beutrophil proteinase-4 | 100009135 |
Reverse | 5′-TGTGGCGGACTCCATTGACT-3′ | |||
VCAM1 | Forward | 5′-CTGGAGGATGCAGGAGTGTA-3′ | Vascular cell adhesion molecule-1 | 100008901 |
Reverse | 5′-GAGCACGAGAAGTTCAGG-3′ | |||
LGALS3 | Forward | 5′-AGGGAAGAAAGGCAGACGAC-3′ | Galactose- binding lectin, 3 | 100009187 |
Reverse | 5′-CATCATTGACCGCAACCTTG-3′ | |||
PRKC | Forward | 5′-CCATCGGTCTGTTCTTCCTA-3′ | Protein kinase C | 100037719 |
Reverse | 5′-GTCAGCGATCTTGATGTGTC-3′ | |||
MMP9 | Forward | 5′-CGCCAGCTACGACAAGGACA-3′ | MMP-9 | NM_001082203.1 |
Reverse | 5′-AAGTGGTGGCACACCAGAGG-3′ | |||
MMP12 | Forward | 5′-CCAACTGGCTGTGACCACAA-3′ | MMP-12 | NM_001082771.1 |
Reverse | 5′-AGCAGCCTCAATGCCTGAAG-3′ | |||
MMP14 | Forward | 5′-CCACAAGATGCCTCCTCAAC-3′ | MMP-14 | NM_001082793.1 |
Reverse | 5′-GTAGCCGTCCATCACTTGGT-3′ | |||
TIMP1 | Forward | 5′-AGACGGCCTTCTGCAACTCC-3′ | Tissue inhibitor of metalloproteinase-1 | 100009047 |
Reverse | 5′-AACTCCTCGCTGCGGTTCTG-3′ | |||
GAPDH | Forward | 5′-GGCGTGAACCACGAGAAGTA-3′ | Glyceraldehyde 3-phosphase dehydrogenase | 100009074 |
Reverse | 5′-TCCACAATGCCGAAGTGGTC-3′ |
Statistical Analysis
Results
Growth of Mtb CDC1551 in Infected Rabbits

Pathological and Histopathological Characteristics in Mtb CDC1551-Infected Rabbit Lungs

Mononuclear Cellular Composition in the Mtb CDC1551-Infected Rabbit Lungs
Time p.i. (weeks) | Nonlymphocyte mononuclear cells | Lymphocytes | CD4+ | CD8+ | B cells | Serum IgG |
---|---|---|---|---|---|---|
4 | 32.8 ± 4.6 | 66.7 ± 4.7 | 3.4 ± 0.5 | 3.9 ± 2.0 | 79.3 ± 6.3 | 2.0 ± 0.8 |
8 | 72.2 ± 2.9 | 27.3 ± 3.0 | 19.1 ± 1.5 | 6.1 ± 0.6 | 73.7 ± 4.0 | 3.2 ± 0.8 |
12 | 64.1 ± 7.4 | 35.7 ± 7.4 | 3.4 ± 0.6 | 2.0 ± 0.5 | 86.1 ± 2.4 | 3.0 ± 0.6 |
Spleen T-Cell Activation during Mtb CDC1551 Infection

Macrophage Activation in the Lungs and Spleen during Mtb CDC1551 Infection
Time p.i. (weeks) | Lung | Spleen | ||
---|---|---|---|---|
CD14+ | CD14+ TNF-α+ | CD14+ | CD14+ TNF-α+ | |
4 | 38.6 ± 11 | 10.5 ± 1.4 | 25.1 ± 11 | 9.1 ± 2.0 |
8 | 58.2 ± 4 | 38.4 ± 1.1 | 12.9 ± 1.0 | 15.5 ± 3.9 |
12 | 15.0 ± 2 | 7.8 ± 1.0 | 10.0 ± 1.4 | 6.8 ± 0.2 |
Transcriptional Analysis of Selected Cellular Pathway Genes in Rabbit Lungs during Mtb CDC1551 Infection


Lung Fibrosis in the Mtb CDC1551-Infected Rabbits

Discussion
- Mack U.
- Migliori G.B.
- Sester M.
- Rieder H.L.
- Ehlers S.
- Goletti D.
- Bossink A.
- Magdorf K.
- Holscher C.
- Kampmann B.
- Arend S.M.
- Detjen A.
- Bothamley G.
- Zellweger J.P.
- Milburn H.
- Diel R.
- Ravn P.
- Cobelens F.
- Cardona P.J.
- Kan B.
- Solovic I.
- Duarte R.
- Cirillo D.M.
- Lin P.L.
- Rutledge T.
- Green A.M.
- Bigbee M.
- Fuhrman C.
- Klein E.
- Flynn J.L.
- Kagina B.M.
- Abel B.
- Scriba T.J.
- Hughes E.J.
- Keyser A.
- Soares A.
- Gamieldien H.
- Sidibana M.
- Hatherill M.
- Gelderbloem S.
- Mahomed H.
- Hawkridge A.
- Hussey G.
- Kaplan G.
- Hanekom W.A.
- Singhal A.
- Aliouat el M.
- Herve M.
- Mathys V.
- Kiass M.
- Creusy C.
- Delaire B.
- Tsenova L.
- Fleurisse L.
- Bertout J.
- Camacho L.
- Foo D.
- Tay H.C.
- Siew J.Y.
- Boukhouchi W.
- Romano M.
- Mathema B.
- Dartois V.
- Kaplan G.
- Bifani P.
- Krishnan N.
- Malaga W.
- Constant P.
- Caws M.
- Tran T.H.
- Salmons J.
- Nguyen T.N.
- Nguyen D.B.
- Daffe M.
- Young D.B.
- Robertson B.D.
- Guilhot C.
- Thwaites G.E.
- Marquina-Castillo B.
- Garcia-Garcia L.
- Ponce-de-Leon A.
- Jimenez-Corona M.E.
- Bobadilla-Del Valle M.
- Cano-Arellano B.
- Canizales-Quintero S.
- Martinez-Gamboa A.
- Kato-Maeda M.
- Robertson B.
- Young D.
- Small P.
- Schoolnik G.
- Sifuentes-Osornio J.
- Hernandez-Pando R.
- Tsenova L.
- Ellison E.
- Harbacheuski R.
- Moreira A.L.
- Kurepina N.
- Reed M.B.
- Mathema B.
- Barry 3rd, C.E.
- Kaplan G.
Acknowledgments
Supplementary data
- Supplemental Figure S1
Representative images of gross lung pathology and histology of Mtb CDC1551-infected rabbits with or without Kenalog (immune suppression) treatment. A: Gross pathology of infected lungs. No visible sub-pleural lesions are present at any of the time points in both untreated and Kenalog treated animals. B–I: Histology of rabbit lung granulomas at 4, 8, 12, and 20 weeks p.i. showing progressive development, maturation, and resorption over time. H&E stained lung sections were photographed at ×10 (B–E) or ×40 (F–I) magnification.
- Supplemental Table S1
References
- Global Tuberculosis Control Report.World Health Organization, Geneva, Switzerland2011
- Drivers of tuberculosis epidemics: the role of risk factors and social determinants.Soc Sci Med. 2009; 68: 2240-2246
- LTBI: latent tuberculosis infection or lasting immune responses to M. tuberculosis?.Eur Respir J. 2009; 33: 956-973
- The occurrence of virulent tubercle bacilli in presumably non-tuberculous lung tissue.Am J Pathol. 1939; 15: 501-515
- The spectrum of latent tuberculosis: rethinking the biology and intervention strategies.Nat Rev Microbiol. 2009; 7: 845-855
- Incipient and subclinical tuberculosis: defining early disease states in the context of host immune response.J Infect Dis. 2011; 204: S1179-S1186
- Understanding latent tuberculosis: a moving target.J Immunol. 2010; 185: 15-22
- Variations in the NRAMP1 gene and susceptibility to tuberculosis in West Africans.N Engl J Med. 1998; 338: 640-644
- Common variants at 11p13 are associated with susceptibility to tuberculosis.Nat Genet. 2012; 44: 257-259
- Genetic susceptibility to tuberculosis associated with cathepsin Z haplotype in a Ugandan household contact study.Hum Immunol. 2011; 72: 426-430
- Association of IFNGR2 gene polymorphisms with pulmonary tuberculosis among the Vietnamese.Hum Genet. 2012; 131: 675-682
- Functional genetic diversity among Mycobacterium tuberculosis complex clinical isolates: delineation of conserved core and lineage-specific transcriptomes during intracellular survival.PLoS Pathog. 2010; 6: e1000988
- Clinical strains of Mycobacterium tuberculosis display a wide range of virulence in guinea pigs.Tuberculosis (Edinb). 2009; 89: 203-209
- Mycobacterium tuberculosis lineage influences innate immune response and virulence and is associated with distinct cell envelope lipid profiles.PLoS One. 2011; 6: e23870
- Differential monocyte activation underlies strain-specific Mycobacterium tuberculosis pathogenesis.Infect Immun. 2004; 72: 5511-5514
- Mycobacterium tuberculosis CDC1551 induces a more vigorous host response in vivo and in vitro, but is not more virulent than other clinical isolates.J Immunol. 1999; 162: 6740-6746
- Britton W.J. Experimental Animal Models of Tuberculosis. Wiley-VCH Verlag, Weinheim, Germany2008: 389-426
- Different strains of Mycobacterium tuberculosis cause various spectrums of disease in the rabbit model of tuberculosis.Infect Immun. 2003; 71: 6004-6011
- Virulence of Mycobacterium tuberculosis CDC1551 and H37Rv in rabbits evaluated by Lurie's pulmonary tubercle count method.Infect Immun. 1999; 67: 4931-4934
- Virulence of selected Mycobacterium tuberculosis clinical isolates in the rabbit model of meningitis is dependent on phenolic glycolipid produced by the bacilli.J Infect Dis. 2005; 192: 98-106
- Pulmonary tuberculosis in the rabbit.in: Leong F.J. Dartois V. Dick T. A Color Atlas of Comparative Pathology of Pulmonary Tuberculosis. CRC Press, Taylor & Francis Group, Singapore2010: 107-129
- Animal models of tuberculosis.Tuberculosis (Edinb). 2005; 85: 277-293
- A review of murine models of latent tuberculosis infection.Scand J Infect Dis. 2011; 43: 848-856
- Letting sleeping dos lie: does dormancy play a role in tuberculosis?.Annu Rev Microbiol. 2010; 64: 293-311
- Experimental Mycobacterium tuberculosis infection of cynomolgus macaques closely resembles the various manifestations of human M. tuberculosis infection.Infect Immun. 2003; 71: 5831-5844
- Quantitative comparison of active and latent tuberculosis in the cynomolgus macaque model.Infect Immun. 2009; 77: 4631-4642
- Mechanisms of latency in Mycobacterium tuberculosis.Trends Microbiol. 1998; 6: 107-112
- Strain specific transcriptional response in Mycobacterium tuberculosis infected macrophages.Cell Commun Signal. 2012; 10: 2
- Phosphodiesterase-4 inhibition combined with isoniazid treatment of rabbits with pulmonary tuberculosis reduces macrophage activation and lung pathology.Am J Pathol. 2011; 179: 289-301
- Chronic pulmonary cavitary tuberculosis in rabbits: a failed host immune response.Open Biol. 2011; 1: 110016
- Phosphodiesterase-4 inhibition alters gene expression and improves isoniazid-mediated clearance of Mycobacterium tuberculosis in rabbit lungs.PLoS Pathog. 2011; 7: e1002262
- The Mycobacterium marinum mel2 locus displays similarity to bacterial bioluminescence systems and plays a role in defense against reactive oxygen and nitrogen species.BMC Microbiol. 2007; 7: 4
- The immunological aspects of latency in tuberculosis.Clin Immunol. 2004; 110: 2-12
- Latent tuberculosis: what the host “sees”?.Immunol Res. 2011; 50: 202-212
- Understanding the generation and function of memory T cell subsets.Curr Opin Immunol. 2005; 17: 326-332
- Functional capacity of Mycobacterium tuberculosis-specific T cell responses in humans is associated with mycobacterial load.J Immunol. 2011; 187: 2222-2232
- Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs.J Exp Med. 2008; 205: 105-115
- Control of latent Mycobacterium tuberculosis infection is dependent on CD8 T cells.Eur J Immunol. 2000; 30: 3689-3698
- Initiation and regulation of T-cell responses in tuberculosis.Mucosal Immunol. 2011; 4: 288-293
- Distinct functions of antigen-specific CD4 T cells during murine Mycobacterium tuberculosis infection.Proc Natl Acad Sci U S A. 2010; 107: 19408-19413
- Differential organization of the local immune response in patients with active cavitary tuberculosis or with nonprogressive tuberculoma.J Infect Dis. 2005; 192: 89-97
- Local immune responses in human tuberculosis: learning from the site of infection.J Infect Dis. 2012; 205: S316-S324
- Mice deficient in CD4 T cells have only transiently diminished levels of IFN-gamma, yet succumb to tuberculosis.J Immunol. 1999; 162: 5407-5416
- Reactivation of latent tuberculosis: variations on the Cornell murine model.Infect Immun. 1999; 67: 4531-4538
- CD4 T cell depletion exacerbates acute Mycobacterium tuberculosis while reactivation of latent infection is dependent on severity of tissue depletion in cynomolgus macaques.AIDS Res Hum Retroviruses. 2012; ([Epub ahead of press])https://doi.org/10.1089/aid.2012.0028
- Immunological protection against tuberculosis.S Afr Med J. 2007; 97: 973-977
- Specific T cell frequency and cytokine expression profile do not correlate with protection against tuberculosis after bacillus Calmette-Guerin vaccination of newborns.Am J Respir Crit Care Med. 2010; 182: 1073-1079
- Macrophages and control of granulomatous inflammation in tuberculosis.Mucosal Immunol. 2011; 4: 271-278
- Alternative activation of macrophages: mechanism and functions.Immunity. 2010; 32: 593-604
- Immunopathologic effects of tumor necrosis factor alpha in murine mycobacterial infection are dose dependent.Infect Immun. 2000; 68: 6954-6961
- TNF in host resistance to tuberculosis infection.Curr Dir Autoimmun. 2010; 11: 157-179
- Intracellular signalling cascades regulating innate immune responses to Mycobacteria: branching out from Toll-like receptors.Cell Microbiol. 2007; 9: 1087-1098
- The role of toll-like receptor 2 in survival strategies of Mycobacterium tuberculosis in macrophage phagosomes.Anticancer Res. 2009; 29: 907-910
- Toll-like receptor 2-deficient mice succumb to Mycobacterium tuberculosis infection.Am J Pathol. 2004; 164: 49-57
- Determinant role for Toll-like receptor signalling in acute mycobacterial infection in the respiratory tract.Microbes Infect. 2006; 8: 1790-1800
- Discriminating between latent and active tuberculosis with multiple biomarker responses.Tuberculosis (Edinb). 2011; 91: 250-256
- Messenger RNA expression of IL-8, FOXP3, and IL-12beta differentiates latent tuberculosis infection from disease.J Immunol. 2007; 178: 3688-3694
- Matrix metalloproteinases in tuberculosis.Eur Respir J. 2011; 38: 456-464
- Tuberculosis immunopathology: the neglected role of extracellular matrix destruction.Sci Transl Med. 2011; 3
- 71ps76
- Mycobacterial lipomannan induces matrix metalloproteinase-9 expression in human macrophagic cells through a Toll-like receptor 1 (TLR1)/TLR2- and CD14-dependent mechanism.Infect Immun. 2005; 73: 7064-7068
- Pattern of matrix metalloproteinases-9, P53 and BCL-2 proteins in Egyptian patients with pulmonary Mycobacterium tuberculosis.Acta Microbiol Immunol Hung. 2010; 57: 123-133
- Multinucleate giant cells release functionally unopposed matrix metalloproteinase-9 in vitro and in vivo.J Infect Dis. 2007; 196: 1076-1079
- Elevated levels of circulating adhesion molecules in patients with active pulmonary tuberculosis.Respirology. 2003; 8: 326-331
- Lazy, dynamic or minimally recrudescent?.Infection. 2009; 37: 87-95
- Latent tuberculosis: models, mechanisms, and novel prospects for eradication.Semin Pediatr Infect Dis. 2002; 13: 263-272
- Experimental tuberculosis in the Wistar rat: a model for protective immunity and control of infection.PLoS One. 2011; 6: e18632
- Virulence, immunopathology and transmissibility of selected strains of Mycobacterium tuberculosis in a murine model.Immunology. 2009; 128: 123-133
- Strain-dependent CNS dissemination in guinea pigs after Mycobacterium tuberculosis aerosol challenge.Tuberculosis (Edinb). 2011; 91: 386-389
- In vivo phenotypic dominance in mouse mixed infections with Mycobacterium tuberculosis clinical isolates.J Infect Dis. 2005; 192: 600-606
- Tuberculosis genes expressed during persistence and reactivation in the resistant rabbit model.Tuberculosis (Edinb). 2009; 89: 17-21
- Penitentiary or penthouse condo: the tuberculous granuloma from the microbe's point of view.Cell Microbiol. 2010; 12: 301-309
- Life and death in the granuloma: immunopathology of tuberculosis.Immunol Cell Biol. 2007; 85: 103-111
- Variation of the expression of Mycobacterium tuberculosis ppe44 gene among clinical isolates.FEMS Immunol Med Microbiol. 2007; 51: 381-387
- A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response.Nature. 2004; 431: 84-87
- Differential expression of PE and PE_PGRS genes in Mycobacterium tuberculosis strains.Gene. 2003; 318: 75-81
Article info
Publication history
Footnotes
Supported by a grant from the NIH/National Institute of Allergy and Infectious Diseases (RO1 54338 to G.K.).
Supplemental material for this article can be found at http://ajp.amjpathol.org or at http://dx.doi.org/10.1016/j.ajpath.2012.07.019.
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy