- Weisenberger D.
- Siegmund K.
- Campan M.
- Young J.
- Long T.
- Faasse M.
- Kang G.
- Widschwendter M.
- Weener D.
- Buchanan D.
- Koh H.
- Simms L.
- Barker M.
- Leggett B.
- Levine J.
- Kim M.
- French A.
- Thibodeau S.
- Jass J.
- Haile R.
- Laird P.
- Spring K.
- Zhao Z.
- Karamatic R.
- Walsh M.
- Whitehall V.L.J.
- Pike T.
- Simms L.
- Young J.
- James M.
- Montgomery G.
- Appleyard M.
- Hewett D.
- Togashi K.
- Jass J.
- Leggett B.
- Kudo S.
- Lambert R.
- Allen J.
- Fujii H.
- Fujii T.
- Kashida H.
- Matsuda T.
- Mori M.
- Saito H.
- Shimoda T.
- Tanaka S.
- Watanabe H.
- Sung J.
- Feld A.
- Inadomi J.
- O'Brien M.
- Lieberman D.
- Ransohoff D.
- Soetikno R.
- Triadafilopoulos G.
- Zauber A.
- Teixeira C.
- Rey J.
- Jaramillo E.
- Rubio C.
- Van Gossum A.
- Jung M.
- Vieth M.
- Jass J.
- Hurlstone P.
- Kimura T.
- Yamamoto E.
- Yamano H.O.
- Suzuki H.
- Kamimae S.
- Nojima M.
- Sawada T.
- Ashida M.
- Yoshikawa K.
- Takagi R.
- Kato R.
- Harada T.
- Suzuki R.
- Maruyama R.
- Kai M.
- Imai K.
- Shinomura Y.
- Sugai T.
- Toyota M.
Materials and Methods
Study Population and Tissue Specimens
Endoscopic and Histological Analysis
- Kudo S.
- Lambert R.
- Allen J.
- Fujii H.
- Fujii T.
- Kashida H.
- Matsuda T.
- Mori M.
- Saito H.
- Shimoda T.
- Tanaka S.
- Watanabe H.
- Sung J.
- Feld A.
- Inadomi J.
- O'Brien M.
- Lieberman D.
- Ransohoff D.
- Soetikno R.
- Triadafilopoulos G.
- Zauber A.
- Teixeira C.
- Rey J.
- Jaramillo E.
- Rubio C.
- Van Gossum A.
- Jung M.
- Vieth M.
- Jass J.
- Hurlstone P.
MCAM Data
- Goto Y.
- Shinjo K.
- Kondo Y.
- Shen L.
- Toyota M.
- Suzuki H.
- Gao W.
- An B.
- Fujii M.
- Murakami H.
- Osada H.
- Taniguchi T.
- Usami N.
- Kondo M.
- Hasegawa Y.
- Shimokata K.
- Matsuo K.
- Hida T.
- Fujimoto N.
- Kishimoto T.
- Issa J.P.
- Sekido Y.
Methylation Analysis by Bisulfite Pyrosequencing
Gene | Primer/Target | Forward | Reverse | Product size (bp) |
---|---|---|---|---|
Methylation Analysis | ||||
CDKN2A | Pyroseq PCR | 5′-GGTTGTTTTGGTTGGTGTTTT-3′ | 5′-Bio-ACCCTATCCCTCAAATCCTCTAAAA-3′ | 169 |
Sequence primer | 5′-TTTTTTTGTTTGGAAAGAT-3′ | |||
Target | 5′-ATYGYG-3′ | |||
DFNA5 | Pyroseq PCR | 5′-GGYGGAGAGAGGGTTYGTT-3′ | 5′-Bio-RAACCCCTCCCRCAACCT-3′ | 91 |
Sequence primer | 5′-YGGGYGTTTTAGAGT-3′ | |||
Target | 5′-YGYGGGATTGGTYGTYG-3′ | |||
DKK2 | Pyroseq PCR | 5′-GGGTTTTTTGATTAATTAAGAGGAGA-3′ | 5′-Bio-TCTACAATAACTAAAAACAATCAAATAC-3′ | 179 |
Sequence primer | 5′-TAATTAAGAGGAGAGTTAAA-3′ | |||
Target | 5′-TYGTYGAGATTTYGGYG-3′ | |||
DLX4 | Pyroseq PCR | 5′-GGTTTYGGTTTAGTTTTGGATTTAGTT-3′ | 5′-Bio-CAATTCTACTCCCAAAAAACTCCCA-3′ | 182 |
Sequence primer | 5′-TGTTTYGTTTTATTTTAAGT-3′ | |||
Target | 5′-TGGYGTTATYGTTYG-3′ | |||
FZD10 | Pyroseq PCR | 5′-GGGATTTATTATAAAAGGAAGAGAAGAT-3′ | 5′-Bio-AATAATCCCCRACACCCCRAAAAC-3′ | 129 |
Sequence primer | 5′-AAAGGAAGAGAAGATGTATT-3′ | |||
Target | 5′-TYGYG-3′ | |||
GALNT14 | Pyroseq PCR | 5′-GAGYGGGAAAGTTTTTTTAGGTATAG-3′ | 5′-Bio-CCTAAACRCAACTCCCAAACCATC-3′ | 153 |
Sequence primer | 5′-GAAAGTTTTTTTAGGTATAG-3′ | |||
Target | 5′-YGTYGTTTGGYG-3′ | |||
IGF2BP1 | Pyroseq PCR | 5′-GAAGGGGTTTGTAGAGTTTTAGGGA-3′ | 5′-Bio-CCCACCCACCCTACAAAAAAAAACC-3′ | 157 |
Sequence primer | 5′-TTGAGTTTTTTATTTTTAGG-3′ | |||
Target | 5′-YGGGAGATTATYG-3′ | |||
IGFBP7 | Pyroseq PCR | 5′-AGGGTTYGGGGTAGGGGATTGGGGAT-3′ | 5′-Bio-AAAACCACACCCCRAAACRATAAAAACAC-3′ | 208 |
Sequence primer | 5′-YGGGTGTTYGTTTATTTT-3′ | |||
Target | 5′-TYGAYGTTAGTAGGAGYGYGYGYG-3′ | |||
KCNV1 | Pyroseq PCR | 5′-TAAGGAGAGGTAATTTTTTYGGGAGTT-3′ | 5′-Bio-CGCTAAAAAACATCTCTAACCCAATC-3′ | 150 |
Sequence primer | 5′-GGAGTTYGGGGAATTT-3′ | |||
Target | 5′-YGGTYG-3′ | |||
LRP1B | Pyroseq PCR | 5′-GATGTAAGATTAGAYGTATTTTGTATTG-3′ | 5′-Bio-AACCAATCAACCTTCTCCTACCTAA-3′ | 148 |
Sequence primer | 5′-TATTGAAAAGTTAAGATATA-3′ | |||
Target | 5′-YGGGYGTTTYGTTYGYG-3′ | |||
MEOX2 | Pyroseq PCR | 5′-TAGAGTTTGGAGGGTAGAGTTGTTGT-3′ | 5′-Bio-ATTCCACTTCCTATCTCCTACTAAAC-3′ | 137 |
Sequence primer | 5′-GGGTAGAGTTGTTGTTTTT-3′ | |||
Target | 5′-TYGGGYG-3′ | |||
MINT1 | Pyroseq PCR | 5′-GGTTTTTTGTTAGYGTTTGTATTT-3′ | 5′-Bio-ATTAATCCCTCTCCCCTCTAAACTT-3′ | 133 |
Sequence primer | 5′-TTTAGTAAAAATTTTTTGGG-3′ | |||
Target | 5′-GYGTTTGTTGTG-3′ | |||
MINT2 | Pyroseq PCR | 5′-YGTTATGATTTTTTTGTTTAGTTAAT-3′ | 5′-Bio-TACACCAACTACCCAACTACCTC-3′ | 203 |
Sequence primer | 5′-TTTTGTTTAGTTAATTGAATTT-3′ | |||
Target | 5′-GTYGTYGTTTYGAGTTTTAGG-3′ | |||
MINT12 | Pyroseq PCR | 5′-YGGGTTATGTTTTATTTTTTGTGTTT-3′ | 5′-Bio-CTCAAAAAAATCAAACAACCAACCAA-3′ | 190 |
Sequence primer | 5′-TAATTYGGATTTTAAATTAAATA-3′ | |||
Target | 5′-AAAYGTTTTTATTTT-3′ | |||
MINT31 | Pyroseq PCR | 5′-GAYGGYGTAGTAGTTATTTTGTT-3′ | 5′-Bio-CATCACCACCCCTCACTTTAC-3′ | 184 |
Sequence primer | 5′-TGTAGTTTTAGGAGAGTGAATA-3′ | |||
Target | 5′-AYGTTTAGGGGTGATGGTTTTAGTAAA-3′ | |||
MIR34B | Pyroseq PCR | 5′-GGTYGAGTGATTGTGGYGGGGG-3′ | 5′-Bio-CCTCCATCTTCTAAACRTCTCCCTTA-3′ | 176 |
Sequence primer | 5′-TAATYGTTTTTGGAATTT-3′ | |||
Target | 5′-YGYGGGTYGAGGGGYGGGGYGGGYGYG-3′ | |||
MLH1 | Pyroseq PCR | 5′-TTGGTATTTAAGTTGTTTAATTAATAGTTG-3′ | 5′-Bio-AAAATACCTTCAACCAATCACCTC-3′ | 119 |
Sequence primer | 5′-AGTTATAGTTGAAGGAAGAA-3′ | |||
Target | 5′-YGTGAGTAYG-3′ | |||
RASSF2 | Pyroseq PCR | 5′-GGTAGGGGTTGAAAAAGGTTAA-3′ | 5′-Bio-CRCRACTAAAAAACTACTTCAACT-3′ | 177 |
Sequence primer | 5′-GGYGTTYGGTTTTTA-3′ | |||
Target | 5′-GTYGYGYGGTTATYG-3′ | |||
RASSF5 | Pyroseq PCR | 5′-TYGTTATTAGTYGGGTATGGTTATGG-3′ | 5′-Bio-CRAAACCRCTCAAACTCTATAAATAAC-3′ | 110 |
Sequence primer | 5′-TATTYGTTATTATTGGATTT-3′ | |||
Target | 5′-YGAGTYGTYGYG-3′ | |||
SFRP1 | Pyroseq PCR | 5′-GTTTTGTTTTTTAAGGGGTGTTGAG-3′ | 5′-Bio-CTCCRAAAACTACAAAACTAAAATAC-3′ | 202 |
Sequence primer | 5′-GYGTTTGGTTTTAGTAAAT-3′ | |||
Target | 5′-TTGYGYGGGGYGGTTTYGAGGGTTYG-3′ | |||
SFRP2 | Pyroseq PCR | 5′-AATTTYGGATTGGGGTAAAATAAGTT-3′ | 5′-Bio-TTAAACAACAAACAAAAAAACCTAACC-3′ | 182 |
Sequence primer | 5′-YGTTTTYGTTAGTATTTGG-3′ | |||
Target | 5′-TYGYGAGGTYGTTYGYG-3′ | |||
SOX5 | Pyroseq PCR | 5′-GATTTGGAGGGAGYGGGAGTTTT-3′ | 5′-Bio-CAAAAACAAACAACACAATACRAATACA-3′ | 184 |
Sequence primer | 5′-GTYGTATTTTTYGGGG-3′ | |||
Target | 5′-YGGGYGTYG-3′ | |||
WIF1 | Pyroseq PCR | 5′-GTTTTYGTAGGTTTTTTGGTATTTAGG-3′ | 5′-Bio-GAACCATACTACTCAAAACCTCCTC-3′ | 174 |
Sequence primer | 5′-AGGTTTTTTGGTATTTAGG-3′ | |||
Target | 5′-TYGGGAGGYGAYGYGTTTAGTYGTTTAAAYG-3′ | |||
WNT5A | Pyroseq PCR | 5′-ATATTTGGGGTTGGAAAGTTTTAATTAT-3′ | 5′-Bio-AACCRACAACAAAAACAAAACCTAATC-3′ | 149 |
Sequence primer | 5′-GGTTGGAAAGTTTTAATTAT-3′ | |||
Target | 5′-YGTYGTYG-3′ | |||
ZNF569 | Pyroseq PCR | 5′-TAGTYGATTGTAAGAAGGAAGTGTTT-3′ | 5′-Bio-CRCAAAAAAACTCAACCTAAATTTTACA-3′ | 199 |
Sequence primer | 5′-GGTTTTTGGGAAATGTA-3′ | |||
Target | 5′-GTTYGGYG-3′ | |||
Mutation Analysis | ||||
AKT1 | Pyroseq PCR | 5′-Bio-AGTGTGCGTGGCTCTCACC-3′ | 5′-CATTCTTGAGGAGGAAGTAGCG-3′ | 83 |
Sequence primer | 5′-GCCAGGTCTTGATGTACT-3′ | |||
Target | 5′-YCCCTA-3′ |
Mutation and MSI Analysis
- Boland C.R.
- Thibodeau S.N.
- Hamilton S.R.
- Sidransky D.
- Eshleman J.R.
- Burt R.W.
- Meltzer S.J.
- Rodriguez Bigas M.A.
- Fodde R.
- Ranzani G.N.
- Srivastava S.
Array-Based Comparative Genomic Hybridization
- Igarashi S.
- Suzuki H.
- Niinuma T.
- Shimizu H.
- Nojima M.
- Iwaki H.
- Nobuoka T.
- Nishida T.
- Miyazaki Y.
- Takamaru H.
- Yamamoto E.
- Yamamoto H.
- Tokino T.
- Hasegawa T.
- Hirata K.
- Imai K.
- Toyota M.
- Shinomura Y.
Statistical Analysis
Results
Three Methylation Subclasses in Precancerous and Malignant Colorectal Tumors

Methylation Profiling Identified CIMP in Precancerous Lesions
- Suzuki H.
- Igarashi S.
- Nojima M.
- Maruyama R.
- Yamamoto E.
- Kai M.
- Akashi H.
- Watanabe Y.
- Yamamoto H.
- Sasaki Y.
- Itoh F.
- Imai K.
- Sugai T.
- Shen L.
- Issa J.P.
- Shinomura Y.
- Tokino T.
- Toyota M.
- Suzuki H.
- Watkins D.N.
- Jair K.W.
- Schuebel K.E.
- Markowitz S.D.
- Chen W.D.
- Pretlow T.P.
- Yang B.
- Akiyama Y.
- Van Engeland M.
- Toyota M.
- Tokino T.
- Hinoda Y.
- Imai K.
- Herman J.G.
- Baylin S.B.
Feature | Total (N = 192) | CIMP-H (n = 42) | CIMP-L (n = 46) | CIMP-N (n = 104) | P value |
---|---|---|---|---|---|
Precursor Lesion | |||||
Age (years) | 69.61 ± 9.68 | 72.14 ± 8.01 | 72.43 ± 9.82 | 67.34 ± 9.73 | <0.05 |
Sex | |||||
F | 73 (38.02) | 21 (50) | 26 (56.52) | 26 (25) | <0.001 |
M | 119 (61.98) | 21 (50) | 20 (43.48) | 78 (75) | |
Location | |||||
Right | 92 (47.92) | 32 (76.19) | 27 (58.7) | 33 (31.73) | <0.001 |
Left | 40 (20.83) | 5 (11.9) | 7 (15.22) | 28 (26.92) | |
Rectum | 60 (31.25) | 5 (11.9) | 12 (26.09) | 43 (41.35) | |
Size (mm) | 12.98 ± 9.61 | 13.73 ± 8.44 | 16.67 ± 12.55 | 8.38 ± 6.48 | <0.001 |
Morphological characteristics | |||||
Protruding type | 82 (42.71) | 17 (40.48) | 21 (45.65) | 44 (42.31) | |
Flat type | 110 (57.29) | 25 (59.52) | 25 (54.35) | 60 (57.69) | |
Depressed type | 0 | 0 | 0 | 0 | |
Histological features | |||||
HP | 28 (14.58) | 2 (4.76) | 5 (10.87) | 21 (20.19) | <0.001 |
SSA | 29 (15.1) | 26 (61.90) | 1 (2.17) | 2 (1.92) | |
TSA | 25 (13.02) | 6 (14.29) | 5 (10.87) | 14 (13.46) | |
Tubular adenoma | 53 (17.6) | 2 (4.76) | 7 (15.22) | 44 (42.31) | |
Tubulovillous adenoma | 57 (29.69) | 6 (14.29) | 28 (60.87) | 23 (22.12) | |
CIS | |||||
(N = 38) | (n = 8) | (n = 5) | (n = 25) | ||
Age (years) | 66.71 ± 13.77 | 75.75 ± 7.78 | 73.6 ± 5.5 | 62.44 ± 14.61 | <0.05 |
Sex | |||||
F | 13 (34.21) | 3 (37.5) | 2 (40) | 8 (32) | |
M | 25 (65.79) | 5 (62.5) | 3 (60) | 17 (68) | |
Location | |||||
Right | 18 (47.37) | 6 (75) | 4 (80) | 8 (32) | <0.05 |
Left | 9 (23.68) | 0 | 1 (20) | 8 (32) | |
Rectum | 11 (28.95) | 2 (25) | 0 | 9 (36) | |
Size (mm) | 17.66 ± 9.75 | 20.63 ± 12.96 | 19.6 ± 10.21 | 16.32 ± 8.64 | |
Morphological features | |||||
Protruding type | 20 (52.63) | 6 (75) | 1 (20) | 13 (52) | |
Flat type | 16 (42.11) | 2 (25) | 4 (80) | 10 (40) | |
Depressed type | 2 (5.26) | 0 | 0 | 2 (8) | |
CRC | |||||
(N = 100) | (n = 17) | (n = 15) | (n = 68) | ||
Age (years) | 67.81 ± 12.48 | 71 ± 9.54 | 72.13 ± 12.78 | 66.06 ± 12.82 | |
Sex | |||||
F | 43 (43) | 14 (82.35) | 8 (53.33) | 21 (30.88) | <0.01 |
M | 57 (57) | 3 (17.65) | 7 (46.67) | 47 (69.12) | |
Location | |||||
Right | 48 (48) | 16 (94.12) | 6 (40) | 26 (38.24) | <0.001 |
Left | 22 (22) | 1 (5.88) | 3 (20) | 18 (26.47) | |
Rectum | 30 (30) | 0 (0) | 6 (40) | 24 (35.29) | |
Stage (UICC) | |||||
I | 38 (38) | 8 (47.06) | 3 (20) | 27 (39.71) | |
II | 31 (31) | 4 (23.53) | 5 (33.33) | 22 (32.35) | |
III | 23 (23) | 5 (29.41) | 7 (46.67) | 11 (16.18) | |
IV | 8 (8) | 0 | 0 | 8 (11.76) |

Clinicopathological Features of CIMP-Positive Precursor Lesions
CNAs Are Late Events in Colorectal Tumorigenesis
- Cheng Y.W.
- Pincas H.
- Bacolod M.D.
- Schemmann G.
- Giardina S.F.
- Huang J.
- Barral S.
- Idrees K.
- Khan S.A.
- Zeng Z.
- Rosenberg S.
- Notterman D.A.
- Ott J.
- Paty P.
- Barany F.
Feature | C-cluster 1 (n = 49) | C-cluster 2 (n = 13) | C-cluster 3 (n = 22) | P value |
---|---|---|---|---|
Age (years) | 69.51 ± 11.01 | 69.54 ± 8.97 | 67 ± 10.55 | |
Sex | ||||
F | 14 (28.57) | 9 (69.23) | 4 (18.18) | |
M | 35 (71.43) | 4 (30.77) | 18 (81.82) | |
Location | ||||
Right | 27 (55.1) | 9 (69.23) | 6 (27.27) | |
Left | 8 (16.33) | 4 (30.77) | 7 (31.82) | |
Rectum | 14 (28.57) | 0 | 9 (40.91) | |
Precursor lesions | ||||
HP | 1 (2.04) | 0 | 0 | |
SSA | 2 (4.08) | 0 | 0 | |
TSA | 7 (14.29) | 1 (7.69) | 0 | |
Tubular adenoma | 3 (6.12) | 1 (7.69) | 0 | |
Tubulovillous adenoma | 1 (2.04) | 0 | 1 (4.55) | |
CIS | 0 | 0 | 2 (9.09) | |
CRCs | 9 (18.37) | 2 (15.38) | 8 (36.36) | |
SSA + CIS | ||||
SSA portion | 2 (4.08) | 0 | 0 | |
CIS portion | 1 (2.04) | 1 (7.69) | 0 | |
Tubulovillous adenoma + CIS | ||||
Tubulovillous adenoma portion | 12 (24.49) | 1 (7.69) | 0 | |
CIS portion | 4 (8.16) | 6 (46.15) | 3 (13.64) | |
Tubular adenoma + CIS | ||||
Tubular adenoma portion | 5 (10.2) | 0 | 3 (13.64) | |
CIS portion | 2 (4.08) | 1 (7.69) | 5 (22.73) | |
KRAS | ||||
Mut | 22 (45) | 11 (85) | 10 (45) | |
Wt | 27 (55) | 2 (15) | 12 (55) | |
BRAF | ||||
Mut | 10 (20) | 1 (8) | 0 | |
Wt | 39 (80) | 12 (92) | 22 (100) | |
CIMP | ||||
High | 17 (35) | 4 (31) | 0 | <0.01 |
Low | 11 (22) | 4 (31) | 1 (5) | |
Negative | 21 (43) | 5 (38) | 21 (95) |

Dynamics of the Molecular Signatures during the Progression of Colorectal Tumorigenesis
- Kudo S.
- Lambert R.
- Allen J.
- Fujii H.
- Fujii T.
- Kashida H.
- Matsuda T.
- Mori M.
- Saito H.
- Shimoda T.
- Tanaka S.
- Watanabe H.
- Sung J.
- Feld A.
- Inadomi J.
- O'Brien M.
- Lieberman D.
- Ransohoff D.
- Soetikno R.
- Triadafilopoulos G.
- Zauber A.
- Teixeira C.
- Rey J.
- Jaramillo E.
- Rubio C.
- Van Gossum A.
- Jung M.
- Vieth M.
- Jass J.
- Hurlstone P.

Precursor Lesion Plus Precursor Lesion | |||||||||
---|---|---|---|---|---|---|---|---|---|
Type II or III pit patterns (early potion) | Type IV pit pattern (advanced potion) | ||||||||
Pathological findings | Mutation | CIMP | C-cluster | MSI | Pathological findings | Mutation | CIMP | C-cluster | MSI |
(M-cluster) | (M-cluster) | ||||||||
SSA | BRAF | CIMP-H | ND | Negative | Adenoma | BRAF | CIMP-H | ND | Negative |
SSA | BRAF | CIMP-H | ND | Negative | Adenoma | BRAF | CIMP-H | ND | Negative |
SSA | KRAS | CIMP-H | ND | Negative | SSA | KRAS | CIMP-H | ND | Negative |
SSA | KRAS | CIMP-H | ND | Negative | Adenoma | KRAS | CIMP-H | ND | Negative |
SSA | BRAF | CIMP-H | 1 | Negative | Adenoma | BRAF | CIMP-H | 1 | Negative |
SSA | KRAS | CIMP-L | ND | Negative | SSA | KRAS | CIMP-H | ND | Negative |
HP | BRAF | CIMP-H | ND | Negative | SSA | BRAF | CIMP-H | ND | Negative |
HP | BRAF | CIMP-H | 1 | Negative | SSA | BRAF | CIMP-H | 1 | Negative |
TSA | KRAS | CIMP-L | 1 | Negative | TSA | KRAS | CIMP-H | 2 | Negative |
TSA | KRAS | CIMP-L | 1 | Negative | TSA | KRAS | CIMP-L | 1 | Negative |
TSA | KRAS | CIMP-N | ND | Negative | TSA | KRAS | CIMP-L | ND | Negative |
HP | BRAF | CIMP-N | ND | Negative | TSA | BRAF | CIMP-H | ND | Negative |
HP | BRAF | CIMP-N | 1 | Negative | TSA | BRAF | CIMP-H | 1 | Negative |
HP | BRAF | CIMP-N | ND | Negative | TSA | BRAF | CIMP-H | ND | Negative |
HP | WT | CIMP-N | ND | Negative | TSA | WT | CIMP-L | ND | Negative |
HP | BRAF | CIMP-N | ND | Negative | TSA | BRAF | CIMP-L | ND | Negative |
Tubular adenoma | KRAS | CIMP-N | 1 | Negative | Tubulovillous adenoma | KRAS | CIMP-H | 1 | Negative |
Tubulovillous adenoma | WT | CIMP-L | ND | Negative | Tubulovillous adenoma | WT | CIMP-L | ND | Negative |
Tubulovillous adenoma | WT | CIMP-L | ND | Negative | Tubulovillous adenoma | WT | CIMP-L | ND | Negative |
Tubular adenoma | KRAS | CIMP-N | 2 | Negative | Tubulovillous adenoma | KRAS | CIMP-N | 3 | Negative |
Tubular adenoma | WT | CIMP-N | 1 | Negative | Tubular adenoma | KRAS | CIMP-N | 1 | Negative |
Tubular adenoma | WT | CIMP-N | 1 | Negative | Tubular adenoma | KRAS | CIMP-N | 1 | Negative |
Precursor Lesion Plus CIS or CRC | |||||||||
Type II, III, or IV pit patterns (precursor potion) | Type V pit pattern (malignant potion) | ||||||||
Pathological findings | Mutation | CIMP | C-cluster | MSI | Pathological findings | Mutation | CIMP | C-cluster | MSI |
(M-cluster) | (M-cluster) | ||||||||
SSA | BRAF | CIMP-H | 1 | Negative | CIS | BRAF | CIMP-H | 1 | Positive |
SSA | BRAF | CIMP-H | ND | Negative | CIS | BRAF | CIMP-H | ND | Positive |
SSA | BRAF | CIMP-H | 1 | Negative | CIS | BRAF | CIMP-H | 2 | Positive |
Tubular adenoma | KRAS | CIMP-H | 1 | Negative | CIS | KRAS | CIMP-H | 1 | Negative |
Tubulovillous adenoma | KRAS | CIMP-H | 1 | Negative | CIS | KRAS | CIMP-H | 1 | Negative |
Tubulovillous adenoma | KRAS | CIMP-L | ND | Negative | CIS | BRAF, TP53 | CIMP-H | ND | Positive |
Tubulovillous adenoma | KRAS | CIMP-L | 1 | Negative | CIS | KRAS | CIMP-H | 2 | Negative |
Tubulovillous adenoma | KRAS | CIMP-L | 1 | Negative | CIS | KRAS | CIMP-L | 2 | Negative |
Tubulovillous adenoma | WT | CIMP-N | 1 | Negative | CIS | KRAS | CIMP-L | 2 | Negative |
Tubulovillous adenoma | KRAS | CIMP-N | 2 | Negative | CIS | KRAS | CIMP-L | 2 | Negative |
Tubular adenoma | KRAS | CIMP-N | 1 | Negative | CIS | KRAS, PIK3CA | CIMP-L | 2 | Negative |
Tubulovillous adenoma | KRAS | CIMP-N | 1 | Negative | CIS | KRAS | CIMP-N | 2 | Negative |
Tubulovillous adenoma | PIK3CA | CIMP-N | 1 | Negative | CRC | PIK3CA | CIMP-N | 2 | Negative |
Tubulovillous adenoma | WT | CIMP-N | 1 | Negative | CIS | KRAS | CIMP-N | 1 | Negative |
Tubulovillous adenoma | WT | CIMP-L | ND | Negative | CIS | KRAS | CIMP-L | ND | Negative |
Tubular adenoma | WT | CIMP-N | ND | Negative | CIS | WT | CIMP-L | ND | Negative |
Tubulovillous adenoma | KRAS | CIMP-L | 1 | Negative | CIS | KRAS, TP53 | CIMP-L | 1 | Negative |
Tubulovillous adenoma | KRAS | CIMP-N | 1 | Negative | CRC | KRAS | CIMP-N | 3 | Negative |
Tubulovillous adenoma | WT | CIMP-N | 1 | Negative | CIS | WT | CIMP-N | 3 | Negative |
Tubulovillous adenoma | WT | CIMP-N | 1 | Negative | CIS | KRAS | CIMP-N | 3 | Negative |
Tubular adenoma | WT | CIMP-N | 1 | Negative | CIS | WT | CIMP-N | 3 | Negative |
Tubular adenoma | KRAS | CIMP-L | 1 | Negative | CRC | KRAS, TP53 | CIMP-L | 3 | Negative |
Tubular adenoma | WT | CIMP-N | 3 | Negative | CIS | WT | CIMP-N | 3 | Negative |
Tubular adenoma | TP53 | CIMP-N | 3 | Negative | CIS | TP53 | CIMP-N | 3 | Negative |
Tubular adenoma | WT | CIMP-N | 3 | Negative | CIS | WT | CIMP-N | 3 | Negative |
Tubular adenoma | WT | CIMP-N | 1 | Negative | CIS | WT | CIMP-N | 1 | Negative |
Tubulovillous adenoma | WT | CIMP-N | 1 | Negative | CIS | WT | CIMP-N | 1 | Negative |
Discussion
- Jover R.
- Nguyen T.
- Prez-Carbonell L.
- Zapater P.
- Pay A.
- Alenda C.
- Rojas E.
- Cubiella J.
- Balaguer F.
- Morillas J.
- Clofent J.
- Bujanda L.
- Re J.
- Bessa X.
- Xicola R.
- Nicols-Prez D.
- Castells A.
- Andreu M.
- Llor X.
- Boland C.R.
- Goel A.
- Noushmehr H.
- Weisenberger D.J.
- Diefes K.
- Phillips H.S.
- Pujara K.
- Berman B.P.
- Pan F.
- Pelloski C.E.
- Sulman E.P.
- Bhat K.P.
- Verhaak R.G.
- Hoadley K.A.
- Hayes D.N.
- Perou C.M.
- Schmidt H.K.
- Ding L.
- Wilson R.K.
- Van Den Berg D.
- Shen H.
- Bengtsson H.
- Neuvial P.
- Cope L.M.
- Buckley J.
- Herman J.G.
- Baylin S.B.
- Laird P.W.
- Aldape K.
- Cheng Y.W.
- Pincas H.
- Bacolod M.D.
- Schemmann G.
- Giardina S.F.
- Huang J.
- Barral S.
- Idrees K.
- Khan S.A.
- Zeng Z.
- Rosenberg S.
- Notterman D.A.
- Ott J.
- Paty P.
- Barany F.
- Cheng Y.W.
- Pincas H.
- Bacolod M.D.
- Schemmann G.
- Giardina S.F.
- Huang J.
- Barral S.
- Idrees K.
- Khan S.A.
- Zeng Z.
- Rosenberg S.
- Notterman D.A.
- Ott J.
- Paty P.
- Barany F.

- Whitehall V.L.J.
- Rickman C.
- Bond C.
- Ramsnes I.
- Greco S.
- Umapathy A.
- McKeone D.
- Faleiro R.
- Buttenshaw R.
- Worthley D.
- Nayler S.
- Zhao Z.
- Montgomery G.
- Mallitt K.
- Jass J.
- Matsubara N.
- Notohara K.
- Ishii T.
- Leggett B.
- Weisenberger D.
- Siegmund K.
- Campan M.
- Young J.
- Long T.
- Faasse M.
- Kang G.
- Widschwendter M.
- Weener D.
- Buchanan D.
- Koh H.
- Simms L.
- Barker M.
- Leggett B.
- Levine J.
- Kim M.
- French A.
- Thibodeau S.
- Jass J.
- Haile R.
- Laird P.
- Yamauchi M.
- Morikawa T.
- Kuchiba A.
- Imamura Y.
- Qian Z.
- Nishihara R.
- Liao X.
- Waldron L.
- Hoshida Y.
- Huttenhower C.
- Chan A.
- Giovannucci E.
- Fuchs C.
- Ogino S.
- Kudo S.
- Lambert R.
- Allen J.
- Fujii H.
- Fujii T.
- Kashida H.
- Matsuda T.
- Mori M.
- Saito H.
- Shimoda T.
- Tanaka S.
- Watanabe H.
- Sung J.
- Feld A.
- Inadomi J.
- O'Brien M.
- Lieberman D.
- Ransohoff D.
- Soetikno R.
- Triadafilopoulos G.
- Zauber A.
- Teixeira C.
- Rey J.
- Jaramillo E.
- Rubio C.
- Van Gossum A.
- Jung M.
- Vieth M.
- Jass J.
- Hurlstone P.
Acknowledgments
Supplementary data
- Supplemental Figure S1
Colonoscopic and pathological findings for mixed lesions. A: Colonoscopic views of a representative protruding-type tumor with (right panel) and without (left panel) indigo carmine dye. Magnified views of potions indicated by the blue and red boxes are shown. Pit patterns in these portions are types IV and V, respectively, indicating that this lesion consists of tubulovillous adenoma and CIS. Two biopsy specimens are obtained from each portion to extract genomic DNA, after which the lesion is treated with endoscopic mucosal resection. B: Histological appearance of the tumor in A. Biopsy sites are indicated by blue and red arrows. Histological findings for the portions with types IV and V pits in A are confirmed to be tubulovillous adenoma and CIS, respectively (bottom panel).
- Supplemental Figure S2
Genome-wide CpG island methylation in precursor and malignant colorectal lesions. A: Workflow of MCAM analysis and selection of methylation marker genes. B: Unsupervised hierarchical clustering analysis of MCAM results. Each row represents a probe, and each column represents a sample (28 precursor lesions, 14 CISs, 28 CRCs, 16 samples of normal colonic tissue, and 2 CRC cell lines). We selected 1010 probe sets (indicated by a red box) that showed tumor-specific methylation patterns for subsequent K-means clustering analysis (see Figure 1A). C: Volcano plot analysis using the MCAM data shown in Figure 1A to identify genes methylated in the high- and intermediate-methylation subclasses. Genes for which there are significant differences between the two clusters (P < 0.05, fold change, more than twofold) are shown in red. D: MCAM analysis of precursor lesions in which CIMP-positive portions are present, along with CIMP-N portions. Top panel, Endoscopic findings from precursor lesions. Flat portions are CIMP negative, whereas protruding portions are CIMP positive, in all cases. Bottom panel, Hierarchical clustering analysis of the MCAM data obtained from the lesions shown above and three samples of normal colonic tissue. Thirty-six unique genes differentially methylated between the CIMP-positive and CIMP-N components (fold change, more than twofold; P < 0.05) are selected, after which hierarchical clustering analysis is performed. E: Venn diagram analysis of the methylated genes identified by MCAM analysis in C and D.
- Supplemental Figure S3
RT-PCR analysis of genes newly identified by MCAM analysis in a set of CRC cell lines, with and without 5-aza-2′-deoxycytidine treatment. Results from DNMT1−/− DNMT3B−/− HCT116 cells (DKO2) and a normal colonic tissue sample are also shown. Gene expression is restored by demethylating treatment in several CRC cell lines.
- Supplemental Figure S4
Methylation profiling in early and advanced colorectal lesions and its association with the histological findings. A: Summary of the principle component analysis (PCA) shown in Figure 1D. Variances of the first (left panel) and second (right panel) components in specimens with the indicated CIMP status (M-cluster 1, CIMP-H; M-cluster 2, CIMP-L; and M-cluster 3, and CIMP-N) are shown. Precursor and advanced lesions (CISs and CRCs) exhibit similar PCA patterns, suggesting that aberrant methylation is established early during colorectal tumorigenesis. B: Scatter plot of the corresponding analysis to compare the methylation profiles with the histological characteristics of colorectal lesions. Samples are divided into three subclasses according to their methylation profiles (M-clusters 1 to 3, red boxes) or five subclasses according to their histological type (circles). Significant similarities are found between M-cluster 1 (CIMP-H) and SSA and between M-cluster 2 (CIMP-L) and tubulovillous adenoma. C: Levels of methylation of group A to C genes in colorectal lesions of the indicated histological type. Methylation levels are shown as z scores.
- Supplemental Figure S5
Analysis of CNAs using array CGH. A: Summary of array CGH data showing the frequencies of gains (red) and losses (green) in colorectal lesions with the indicated CNA profiles (C-clusters 1 to 3; see also Figure 3A). B: Representative genes frequently amplified or deleted in colorectal tumors. Frequencies of gain or loss of the indicated genes in each C-cluster are shown. Chr, chromosome.
- Supplemental Figure S6
Association between copy number profiles, CIMP status, and BRAF/KRAS mutations. A: Ratios of the respective CIMP status in the precursor (left panel) and advanced (right panel) lesions with the indicated CNA profiles (C-clusters 1 to 3). B: Methylation of group A to C genes in colorectal lesions in the indicated C-clusters. Methylation levels in lesions with their respective CNA profiles are shown as z scores. The levels of methylation of group A and B genes are significantly lower in C-cluster 3 tumors than in other subclasses. NS, not significant. C: Ratios of the respective C-cluster subclasses in precursor and advanced lesions. Samples are divided into three groups according to their BRAF or KRAS mutation status, indicated at the top. Most precursor lesions with KRAS mutations are categorized as C-cluster 1, in which CNAs are lowest. By contrast, advanced lesions with KRAS mutations are distributed among all three C-cluster subclasses, suggesting that a subset of precursor lesions acquire CNAs during their progression to CISs and CRCs.
- Supplemental Figure S7
Changes in molecular signature during the progression of colorectal lesions. A: Left panel, Endoscopic and histological findings from a representative precursor lesion in which a flat portion with an early pit pattern (type II) is present, along with a protruding portion with advanced pits (type IV). Both components are histologically premalignant (tubular adenoma and tubulovillous adenoma). Biopsy specimens are obtained from the respective portions (blue and red boxes), after which methylation profiles are analyzed. Right panel, Two-dimensional scatter plot of the methylation levels of the indicated genes in the early and advanced potions. Methylation levels are significantly higher in the advanced portion than in the early portion. Bottom panel, Array CGH analysis of the early and advanced portions. CNAs are infrequent in both subcomponents. B: Left panel, Endoscopic and histological findings from a representative lesion in which an adenomatous portion is present, along with a dysplastic portion. Biopsy specimens are obtained from the respective portions (blue and red boxes), after which methylation profiles are analyzed. Right panel, Two-dimensional scatter plot of the methylation levels of the indicated genes in the adenomatous and dysplastic portions. Methylation levels are similar between the two components. Bottom panel, Array CGH analysis for the adenomatous (blue) and dysplastic (red) portions. Regions with gains are shown at the top, and those with losses are indicated at the bottom. Both gains and losses are significantly greater in the cancer portion than the adenomatous portion. Chr, chromosome.
- Supplemental Figure S8
A: Levels of methylation of group A to C genes in precursor lesions containing both early and advanced pit patterns. Methylation levels are compared between portions with early pits and those with advanced pits. Methylation levels are significantly higher in the advanced portions than in the early portions, suggesting that aberrant methylation accumulates during the progression of colorectal tumorigenesis. B: Methylation in colorectal lesions in which precursor portions are present, along with malignant portions (CISs or CRCs). There are no significant (NS) differences between the methylation levels in the two portions.
- Supplemental Table S1
- Supplemental Table S2
- Supplemental Table S3
- Supplemental Table S4
References
- Genetic alterations during colorectal-tumor development.N Engl J Med. 1988; 319: 525-532
- Genomic and epigenetic instability in colorectal cancer pathogenesis.Gastroenterology. 2008; 135: 1079-1099
- The epigenomics of cancer.Cell. 2007; 128: 683-692
- DNA methylation and cancer pathways in gastrointestinal tumors.Pharmacogenomics. 2008; 9: 1917-1928
- Epigenetics and colorectal cancer.Nat Rev Gastroenterol Hepatol. 2011; 8: 686-700
- CpG island methylation in colorectal cancer: past, present and future.Patholog Res Int. 2011; 2011: 902674
- CpG island methylator phenotype in colorectal cancer.Proc Natl Acad Sci U S A. 1999; 96: 8681-8686
- Distinct genetic profiles in colorectal tumors with or without the CpG island methylator phenotype.Proc Natl Acad Sci U S A. 2000; 97: 710-715
- CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer.Nat Genet. 2006; 38: 787
- Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer.Proc Natl Acad Sci U S A. 2007; 104: 18654
- Evaluation of a large, population-based sample supports a CpG island methylator phenotype in colon cancer.Gastroenterology. 2005; 129: 837-845
- CpG island methylator phenotype-low (CIMP-low) in colorectal cancer: possible associations with male sex and KRAS mutations.J Mol Diagn. 2006; 8: 582-588
- Genome-scale analysis of aberrant DNA methylation in colorectal cancer.Genome Res. 2012; 22: 271-282
- High prevalence of sessile serrated adenomas with BRAF mutations: a prospective study of patients undergoing colonoscopy.Gastroenterology. 2006; 131: 1400
- Role of the serrated pathway in colorectal cancer pathogenesis.Gastroenterology. 2010; 138: 2088-2100
- Mutations in both KRAS and BRAF may contribute to the methylator phenotype in colon cancer.Gastroenterology. 2008; 134: 1950
- The CpG island methylator phenotype and chromosomal instability are inversely correlated in sporadic colorectal cancer.Gastroenterology. 2007; 132: 127
- Diagnosis of colorectal tumorous lesions by magnifying endoscopy.Gastrointest Endosc. 1996; 44: 8-14
- Nonpolypoid neoplastic lesions of the colorectal mucosa.Gastrointest Endosc. 2008; 68: S3-S47
- A novel pit pattern identifies the precursor of colorectal cancer derived from sessile serrated adenoma.Am J Gastroenterol. 2012; 107: 460-469
- The Ras effector RASSF2 is a novel tumor-suppressor gene in human colorectal cancer.Gastroenterology. 2005; 129: 156-169
- Morphologic reappraisal of serrated colorectal polyps.Am J Surg Pathol. 2003; 27: 65-81
- Epigenetic profiles distinguish malignant pleural mesothelioma from lung adenocarcinoma.Cancer Res. 2009; 69: 9073-9082
- Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer.Cancer Res. 2008; 68: 4123-4132
- Colorectal cancer: mutations in a signalling pathway.Nature. 2005; 436: 792
- A unique method for mutation analysis of tumor suppressor genes in colorectal carcinomas using a crypt isolation technique.Arch Pathol Lab Med. 2000; 124: 382-386
- Molecular analysis of gastric differentiated-type intramucosal and submucosal cancers.Int J Cancer. 2010; 127: 2500-2509
- A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer.Cancer Res. 1998; 58: 5248-5257
- A novel correlation between LINE-1 hypomethylation and the malignancy of gastrointestinal stromal tumors.Clin Cancer Res. 2010; 16: 5114-5123
- IGFBP7 is a p53-responsive gene specifically silenced in colorectal cancer with CpG island methylator phenotype.Carcinogenesis. 2010; 31: 342-349
- Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer.Nat Genet. 2004; 36: 417-422
- Analysis of the association between CIMP and BRAF in colorectal cancer by DNA methylation profiling.PLoS One. 2009; 4: e8357
- 18q Loss of heterozygosity in microsatellite stable colorectal cancer is correlated with CpG island methylator phenotype-negative (CIMP-0) and inversely with CIMP-low and CIMP-high.BMC Cancer. 2007; 7: 72
- CpG island methylator phenotype associates with low-degree chromosomal abnormalities in colorectal cancer.Clin Cancer Res. 2008; 14: 6005-6013
- Breast cancer methylomes establish an epigenomic foundation for metastasis.Sci Transl Med. 2011; 3: 75ra25
- 5-Fluorouracil adjuvant chemotherapy does not increase survival in patients with CpG island methylator phenotype colorectal cancer.Gastroenterology. 2011; 140: 1174-1181
- Cancer Genome Atlas Research Network: Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma.Cancer Cell. 2010; 17: 510-522
- Comparative lesion sequencing provides insights into tumor evolution.Proc Natl Acad Sci U S A. 2008; 105: 4283-4288
- Intermediate methylation epigenotype and its correlation to KRAS mutation in conventional colorectal adenoma.Am J Pathol. 2012; 180: 616-625
- Advanced colorectal polyps with the molecular and morphological features of serrated polyps and adenomas: concept of a “fusion” pathway to colorectal cancer.Histopathology. 2006; 49: 121-131
- The chromosomal instability pathway in colon cancer.Gastroenterology. 2010; 138: 2059-2072
- Molecular correlates with MGMT promoter methylation and silencing support CpG island methylator phenotype-low (CIMP-low) in colorectal cancer.Gut. 2007; 56: 1564-1571
- Prognostic significance and molecular associations of 18q loss of heterozygosity: a cohort study of microsatellite stable colorectal cancers.J Clin Oncol. 2009; 27: 4591-4598
- PIK3CA mutations predict local recurrences in rectal cancer patients.Clin Cancer Res. 2009; 15: 6956-6962
- Phosphorylated AKT expression is associated with PIK3CA mutation, low stage, and favorable outcome in 717 colorectal cancers.Cancer. 2011; 117: 1399-1408
- Oncogenic PIK3CA mutations in colorectal cancers and polyps.Int J Cancer. 2012; 131: 813-820
- BRAF gene amplification can promote acquired resistance to MEK inhibitors in cancer cells harboring the BRAF V600E mutation.Sci Signal. 2010; 3: ra84
- Amplification of the driving oncogene, KRAS or BRAF, underpins acquired resistance to MEK1/2 inhibitors in colorectal cancer cells [Erratum appears in Sci Signal 2011, 4: er2].Sci Signal. 2011; 4: ra17
- Assessment of colorectal cancer molecular features along bowel subsites challenges the conception of distinct dichotomy of proximal versus distal colorectum.Gut. 2012; 61: 847-854
- Colorectal cancer: a tale of two sides or a continuum?.Gut. 2012; 61: 794-797
Article info
Publication history
Footnotes
Supported by a Grant-in-Aid for the Third-Term Comprehensive 10-Year Strategy for Cancer Control (M.T. and H.S.), a Grant-in-Aid for Cancer Research from the Ministry of Health, Labor, and Welfare, Japan (M.T. and H.S.), the A3 foresight program from the Japan Society for Promotion of Science (H.S.), Grants-in-Aid for Scientific Research (A) from the Japan Society for Promotion of Science (K.I.), The Japanese Foundation for Research and Promotion of Endoscopy Grant (E.Y.), and a Research Grant from the Princess Takamatsu Cancer Research Fund (09-24119 to M.T.).
Supplemental material for this article can be found at http://ajp.amjpathol.org or at http://dx.doi.org/10.1016/j.ajpath.2012.08.007.