Duchenne muscular dystrophy (DMD) is a severe disorder characterized by progressive muscle wasting, respiratory and cardiac impairments, and premature death. No treatment exists so far, and the identification of active substances to fight DMD is urgently needed. We found that tamoxifen, a drug used to treat estrogen-dependent breast cancer, caused remarkable improvements of muscle force and of diaphragm and cardiac structure in the mdx5Cv mouse model of DMD. Oral tamoxifen treatment from 3 weeks of age for 15 months at a dose of 10 mg/kg/day stabilized myofiber membranes, normalized whole body force, and increased force production and resistance to repeated contractions of the triceps muscle above normal values. Tamoxifen improved the structure of leg muscles and diminished cardiac fibrosis by 50%. Tamoxifen also reduced fibrosis in the diaphragm, while increasing its thickness, myofiber count, and myofiber diameter, thereby augmenting by 72% the amount of contractile tissue available for respiratory function. Tamoxifen conferred a markedly slower phenotype to the muscles. Tamoxifen and its metabolites were present in nanomolar concentrations in plasma and muscles, suggesting signaling through high-affinity targets. Interestingly, the estrogen receptors ERα and ERβ were several times more abundant in dystrophic than in normal muscles, and tamoxifen normalized the relative abundance of ERβ isoforms. Our findings suggest that tamoxifen might be a useful therapy for DMD. (Am J Pathol 2013, 182: 485–504; http://dx.doi.org/10.1016/j.ajpath.2012.10.018)
So far, the only pharmacologic treatments that have been clinically validated for patients with DMD are the glucocorticoids, prednisolone, and deflazacort. However, these drugs prolong muscle strength and ambulation of patients only for a short term, and adverse effects lead some patients with DMD to discontinue treatment. The identification of additional pharmacologic compounds that would decrease the course of the disease remains a major goal for research.

Estrogens have long been regarded as female sex hormones. The expression of the estrogen receptors (ERs) ERα and ERβ, which mediate most estrogen actions, and aromatase, the rate-limiting enzyme that produces estrogens from androgens, was found in skeletal muscle. In fact, skeletal muscles are major sites of estrogen production in men and postmenopausal women. Overall, estrogens increase force output, enhance muscle recovery from disuse atrophy, protect skeletal muscle membrane from contraction-induced injury, and reduce the risk of developing cardiovascular diseases.

Selective estrogen receptor modulators (SERMs) are compounds that either mimic or antagonize estrogens in a tissue-dependent manner. Tamoxifen (TAM), a first-generation SERM with antiestrogenic activity on the mammary gland, has been used to prevent and treat breast cancers for 20 years. At the same time, its prooestrogenic activity on bone has made it attractive for the treatment of osteoporosis. TAM has shown efficacy in scavenging peroxy radicals, stabilizing biological membranes, preventing apoptosis, inhibiting fibrosis, and modulating calcium homeostasis. Because these features all contribute to the pathogenesis of DMD, we hypothesized that dystrophic muscles could benefit from chronic TAM treatment.

We found that oral administration of TAM at a dose of 10 mg/kg/day for 15 months to mdx5Cre mice, a commonly used model for DMD, remarkably improved dystrophic muscle structure and function. Specifically, TAM improved the whole body force of living mice, increased the force of leg muscles above that of normal mice, rendered these muscles more resistant to fatigue, induced a shift toward a slower phenotype, stabilized muscle fiber membrane, and normalized their diameter. Importantly, TAM decreased the development of fibrotic tissue in the DIA and in the heart and considerably increased the amount of contractile muscle tissue in the DIA. All these effects were obtained with plasma and muscle concentrations of TAM and its active metabolites being in the low nanomolar range, well below the levels displayed by patients with breast cancer under standard TAM therapy (ie, 20 mg/day). ERα and ERβ proteins were both overexpressed several fold in dystrophic muscles, and TAM altered the relative abundance of the ERβ isoforms ERβ1 and ERβ2 at both the mRNA and at the protein levels. Because ERβ2 may function as an inhibitor of ERβ1 and the ERβ2-to-ERβ1 ratio partly controls ER signaling, these alterations of ER levels are likely significant in the exceptional responsiveness of dystrophic muscles to TAM.

Because TAM has a good safety profile, not only in adults but also in children, our findings suggest that TAM might be helpful for the treatment of patients with DMD.

Materials and Methods

While this study was ongoing, we contributed to the elaboration of standard operating procedures for preclinical investigations in the dystrophic mouse. Whenever possible, the present study was performed in accordance with the experts’ recommendations.

Mice and Treatments

All procedures involving animals complied with the Swiss Federal Law on Animal Welfare. Colonies of dystrophic mdx5Cre mice (The Jackson Laboratory, Bar Harbor, ME), and wild-type (wt) C57BL/6J mice (Charles River France, Saint Germain sur l’Arbresle, France) were maintained at the School of Pharmaceutical Sciences. Mice were housed in plastic cages containing wood granule bedding, kept on a 12-hour dark/12-hour light cycle, and allowed unlimited access to food and water.

Tamoxifen [(Z)-tamoxifen, catalog number T-5648; Sigma-Aldrich, Buchs, Switzerland] was incorporated into standard rodent diet at 100 mg/kg (Provimi-Kliba, Kaiseraugst, Switzerland). Both control and TAM-containing pellets were stored at −20°C in 0.5-kg vacuum-sealed bags. Male pups were marked by microtattooing of the toes under slight ketamine-xylazine sedation. Three groups were treated for approximately 15 months (63 ± 1 week) starting on postnatal day 21, that is, at the time when necrosis starts in most leg muscles: 14 dystrophic males were given control diet (Dys group), 12 dystrophic males were given TAM-containing diet (TAM group), and 12 wt males were given control diet (wt group). Body weights and food consumption were monitored weekly. A group of 9 dystrophic females fed control diet (FEM group) was included for comparison of certain end points with the groups of male mice.

Wire Grip Test

After 58 to 60 weeks of treatment, a wire test was used to assess whole body force. The mice were allowed to grasp by their four paws a 2-mm diameter metal wire maintained horizontally 35 cm above a thick layer of soft bedding. The length of time until the mice fell from the wire was recorded. After each fall, the mice were allowed to recover for 1 minute. Each session consisted of three trials from which the scores were averaged. The final grid test score was calculated as the average value from three sessions performed at 1-week intervals.

Muscle Contraction Properties

At the end of the treatment period, mice were anesthetized, and muscle responses to electrical stimulations were recorded isometrically in the right triceps surae as previously.
described.31–36 At the end of the treatment period, mice were anesthetized by an i.p. injection of a mixture of urethane (1.5 g/kg) and diazepam (5 mg/kg). In brief, the knee joint was firmly immobilized, and the Achilles tendon was linked to a force transducer coupled to a LabView interface (National Instruments, Austin, TX). Two thin steel electrodes were inserted intramuscularly, and 0.5-ms pulses of controlled intensity and frequency were delivered. After manual settings of optimal muscle length (L_m) and optimal current intensity, five phasic twitches were recorded at a sampling rate of 3 kHz to determine the absolute peak twitch force (P_t), the time to peak twitch tension (TTP), the time for half relaxation from peak twitch tension ($RT_{1/2}$), the maximum rate of tension development (T_{dev}), and the maximum rate of tension loss (T_{loss}). After a 3-minute pause, muscles were subjected to a force-frequency test: 200-ms long stimuli of increasing frequencies (10 to 100 Hz by increments of 10 Hz) were delivered at intervals of 30 seconds. When necessary, further stimulations at 120, 150, and 200 Hz were delivered to obtain the maximum response, which was taken as the absolute optimal tetanic tension (P_{ot}). After another 3-minute pause, the resistance of the triceps to repeated tetani was assayed. Frequency was set at 60 Hz, and muscle tension was recorded while stimulations were repeatedly delivered, each consisting of a 1-second burst and a 3-second rest. The responses were expressed as the percentage of the maximal tension. Absolute phasic and tetanic tensions were converted into specific tensions (in mN per mm2 of muscle section) after normalization for the muscle cross-sectional area. The cross-sectional area values (in mm2) were determined by dividing the triceps surae muscle mass (in mg) by the product of the optimal muscular length (in mm) and the density of mammalian skeletal muscle (1.06 mg/mm3).

Tissue Collection and Plasma CK

Immediately after isometric force recording, heparin was injected into the heart (30 μL, 3000 IU/mL), the mice were bled, and plasma was prepared by centrifugation (1000 × g, 10 minutes, 4°C). Skeletal muscles and other selected organs were dissected and weighed. Plasma creatine kinase (CK) levels were determined with a commercial kit (Cat cachem; Investcare Vet, Middlesex, UK) according to the manufacturer’s recommendations.

Quantification of TAM and of Its Metabolites

The concentrations of the TAM isomers (E)-TAM and (Z)-TAM, and the TAM metabolites (E)-4-hydroxytamoxifen (OH-TAM), (Z)-4-OH-TAM, (E)-N-desmethyl-TAM, (Z)-N-desmethyl-TAM, (E)-4-hydroxy-N-desmethyl-TAM, (Z)-4-hydroxy-N-desmethyl-TAM (endoxifen), in the plasma of the TAM-treated mice were determined by an ultra performance liquid chromatography–tandem mass spectrometry assay as described.37 The levels of these compounds were also determined in the gastrocnemius (GAS) muscles from TAM-treated mice with the use of a modification of the method used for plasma. Briefly, the GAS muscles were pulverized in liquid nitrogen-cooled mortars. Twenty milligrams of the muscle powder was homogenized for 30 seconds with a tissue tearor (Omni International, Kennesaw, GA) in a mixture composed of 900 μL of absolute ethanol and 100 μL of deuterated internal standards solution (25 ng/mL TAM-d5, N-desmethyl-TAM-d5, 4-OH-TAM-d5, and 50 ng/mL endoxifen-d5, 1:1 E/Z mixture, in methanol). The tissue suspension was then centrifuged (4°C for 10 minutes at 16000 × g). Seven hundred microliters of the supernatant fluid was transferred into a propylene tube and dried under nitrogen at room temperature. The residue was reconstituted in 100 μL of acetonitrile, vortex-mixed, diluted with 200 μL of a buffer solution (10 mmol/L ammonium formate, containing 0.25% formic acid) and centrifuged again as above. Supernatant fluid (150 μL) was introduced in a high performance liquid chromatography glass microvial, and 20 μL was injected into the high performance liquid chromatography system. Ultra performance liquid chromatography–tandem mass spectrometry conditions (mobile phases, elution gradient, and mass spectrometer conditions) were identical to those described for plasma levels measurements.37 Calibration curves for tissue samples, prepared in ethanolic matrix (20 mg tissue/mL), ranged from 0.05 to 3 ng/mL for (E)-endoxifen, 0.025 to 3 ng/mL for (Z)-endoxifen, and 0.013 to 3 ng/mL for (Z)-4-OH-TAM, (Z)-N-desmethyl-TAM, and (Z)-TAM. In this specific setting, the method was precise and accurate with the interassay precision (CV %) and accuracy (bias %) ranging between 1% and 13% and −8.9% and 6.1%, respectively.

For plasma and muscle sample, (E)-TAM, (E)-N-desmethyl-TAM, and (E)-4-OH-TAM levels were quantified with the calibration curves of their corresponding Z isomers. In plasma and tissue samples, E-TAM isomer was chromatographically identified by comparison of its retention time with that of the purchased pure standard (Toronto Research Chemicals Inc., North York, ON, Canada). (E)-N-desmethyl-TAM and (E)-4-OH-TAM isomers were tentatively identified by comparison of their retention times with those of E isomers produced \textit{in vitro} by exposing methanic solutions of the corresponding Z isomers to UV light (254 nm) for ∼3 hours. The results are expressed as ng/mL of plasma, ng/g of tissue, and nmol/L. A qualitative analysis of the food pellets confirmed that (Z)-TAM was the only form of TAM in the TAM-containing diet and that the control diet was devoid of TAM and metabolites.

Histologic Examination of Skeletal Muscles and Morphometry

The extensor digitorum longus (EDL), GAS, soleus, and tibialis anterior (TA) muscles from the right leg and the right hemi-DIA were embedded in tragacanth gum, frozen in
liquid nitrogen-cooled isopentane, and stored at −80°C until processed further. Transverse sections 10 μm thick were stained with H&E according to standard procedures, and images covering the entire muscle sections were acquired either with a Spot Insight camera (Visitron Systems, Puchheim, Germany) mounted on an Axiovert 200M microscope (Zeiss, Feldbach, Switzerland) or with an Axioacam camera (Zeiss), fitted on a Mirax Midi automated microscope (Zeiss), at a final magnification of ×50 or ×200, respectively. In dystrophic mice, skeletal muscles undergo repeated cycles of necrosis and regeneration with progressive accumulation of adipose and connective tissues. In normal fibers, the nuclei are located close to the sarcolemma (“peripheral nuclei”), whereas in regenerated fibers the nuclei remain internalized. On the basis of these morphologic features, both normal and regenerated fibers were counted. Regenerated fibers are expressed as the percentage of the total muscle fibers.

Sections were incubated with 2 μg/mL wheat germ agglutinin conjugated to Alexa Fluor 488 (WGA-AF488; Molecular Probes, Invitrogen, Basel, Switzerland) in phosphate-buffered saline for 1 hour at room temperature to stain the connective tissue as described.36 Fluorescence images from the whole muscle surface were taken with a Mirax Midi microscope as described above. The area covered by the connective tissue was measured with the Metamorph software version 5.07 (Visitron Systems, Puchheim, Germany) and expressed as the percentage of the total muscle area. In addition, the minimum fiber diameter was determined in the GAS, DIA, EDL, TA, and soleus muscles with the use of the Metamorph software as described.38 For each muscle >500 fibers were counted from four to six fields taken at a final magnification of ×200.

Fiber typing was performed by immunohistochemistry with the use of mouse monoclonal antibodies against specific myosin heavy chains (MyHCs), according to standard procedures. The primary monoclonal antibodies BA-D5, SC-71, BF-35, and BF-F3 (Developmental Studies Hybridoma Bank, Iowa City, IA) were used to reveal fibers expressing type I, type IIA, all types but IIX, and type IIB MyHCs, respectively. The BA-D5, SC-71, and BF-35 antibodies were detected with a goat anti-mouse IgG antibody conjugated to Alexa Fluor 594 (Molecular Probes), and the connective tissue was counterstained with WGA-AF488 as described above. The BF-F3 antibody was detected with a goat antimouse IgM antibody conjugated to Alexa Fluor 488 (Molecular Probes). Fibers of type I and of type IIA were counted on separate sections. Other sections were double-stained with the anti-type IIB and all anti-types but IIX as above, and the connective tissue was counterstained with WGA-AF594 (Molecular Probes). The negative fibers were classified as IIX, and the yellow fibers (resulting from the superimposition of the green and red staining) were classified as IIB. The number of fibers expressing a given MyHC was determined with ImageJ version 1.46r (NIH, Bethesda, MD) from the whole TA, EDL, and soleus muscles, from the right hemi-DIA, and from the lateral GAS muscle and was expressed as the percentage of the total fiber count.

Further morphometric analyses were performed on the right hemi-DIA after H&E staining as follows. Approximately 10 images at a final magnification of ×100 were needed to capture the whole surface. Each image was viewed with ImageJ software, and lines were drawn at three preset locations equally distributed perpendicularly to the long axis of the DIA. At these locations, the thickness of the DIA was measured, and the number of myofibers crossing these lines was counted. The adipose tissue was identified as unstained “empty” fibers demarcated by perimysial connective structures. The foci of adipose tissue were demarcated with Photoshop software version 7.0 (Adobe, San Jose, CA). Then, the corresponding areas were quantified with ImageJ software and expressed as the percentage of the total muscle area. An approximate value of the area occupied by muscle cells (both normal and regenerated fibers) in the DIA was obtained by subtracting the surfaces of adipose and connective tissues from the total muscle surface.

Determination of Cardiac Fibrosis

Hearts were fixed in 4% buffered paraformaldehyde. After inclusion in paraffin, 5-μm-thick sections across the ventricles were collected 1.50 mm, 2.25 mm, and 3.00 mm from the apex and stained with Masson trichrome. The entire cross-sections were microphotographed with a Mirax Midi microscope at a final magnification of ×200. Each virtually reconstructed section was divided into four images from which the area covered by fibrotic deposits (appearing as a blue staining on a red background) was quantified with ImageJ software and expressed as the percentage of the total tissue surface. Finally, the values obtained from the three sections were averaged.

ER mRNA Expression

The left GAS muscle was snap-frozen in liquid nitrogen and stored at −80°C until processed. The muscles were ground to a fine powder in mortars cooled in liquid nitrogen. RNA were extracted from 10 mg of muscle powder (RNeasy Fibrous Tissue mini kit; Qiagen, Hombrechtikon, Switzerland), and 100 ng of total RNA was reverse-transcribed with Super-Script II Reverse Transcriptase (Invitrogen). The cDNA corresponding to 1 ng of reverse-transcribed total RNA was subjected to quantitative PCR (qPCR) amplification with the use of SYBR detection. To quantify the overall ERβ or ERα variants, primers were designed in regions that are not affected by alternative splicing. The expression levels of ERα and ERβ relative to the levels in the Dys group were determined with the TATA box-binding protein (TBP) as the invariant housekeeping gene.

The identification of the ERβ mRNA variants encoding the ERβ1, ERβ2, ERβ5, ERβ5A, and ERβ6 isoforms (as defined under the Accession number O08537 of the...
UniProtKB/Swiss-Prot database) in the GAS muscle was performed by PCR as described. Briefly, 1 μL of GAS muscle cDNA was subjected to PCR amplification with the use of primers annealing to exons 5 and 10 and under the following conditions: 95°C for 60 seconds; 40 cycles consisting of 95°C for 20 seconds, 55°C for 30 seconds, and 72°C for 60 seconds; and a final elongation step at 72°C for 5 minutes. As positive controls, mRNA from ovaries and brain were run in parallel. Three microliters (GAS muscle) or 0.1 μL (ovary) of the PCR product was resolved on denaturing polyacrylamide-urea gels (5W, 2 hours, 57°C) as described. After silver staining, the gels were air-dried between two sheets of cellophane and scanned, and densitometric analysis of the signals was performed with ImageJ software. Alternatively, 1000-fold dilutions of the PCR products were used as templates for a second round of PCR amplification with the use of primers hybridizing to exons 6 and 8. The conditions were as described above, except that 35 cycles were performed and the annealing temperature was set to 60°C. Ten microliters (GAS muscle), 3 μL (brain), or 0.3 μL (ovary) of the second PCR products were resolved on 1.2% agarose gels and stained with ethidium bromide before quantification of ERβ1 and ERβ2 signals.

The primers used are shown in Table 1. They were designed from the sequences published under the NCBI Accession numbers NM_007956.4 (mouse ERα2), NM_010157.3 (mouse ERβ1), NM_207707.1 (mouse ERβ2), and NM_013684.3 (mouse TATA box-binding protein).

Protein Expression

Muscle extracts were prepared from the left GAS muscle powder as described. The final protein concentration was adjusted to 3 μg/μL with reducing Laemmli buffer. Muscle extracts (30 to 60 μg/lane) were resolved by SDS-PAGE, and proteins were transferred onto nitrocellulose membranes according to standard procedures. Equal loading and transfer efficiency were verified by staining with Ponceau Red. Membranes were blocked for 1 hour in TBST (20 mmol/L Tris-base, 150 mmol/L NaCl, 0.1% Tween-20, pH 7.5) containing 5% nonfat dry milk and incubated overnight at 4°C with a primary antibody (see Table 2 for detailed information on the primary antibodies used, providers, clonality, working dilutions, and nature of the competiting protein). After extensive washing, membranes were incubated for 1 hour with an appropriate horseradish peroxidase-conjugated secondary antibody in TBST containing 5% milk. The bound antibody against ERβ2 was detected with protein G–horseradish peroxidase in TBST-milk. Proteins were revealed by chemiluminescence (ECL plus kit; Amersham, GE Healthcare Europe, Glattbrugg, Switzerland) after exposure to Fuji X-ray films (Fujiﬁlm Europe, Dusseldorf, Germany). The films were scanned, and densitometric analysis was performed with ImageJ software. Signals were normalized to the MyHC content (determined on separate gels stained with Coomassie Blue) and corrected for the intensity of a reference sample loaded several times on every gel for the purpose of intragel and intergel comparisons.

Data and Statistical Analysis

One wt mouse and one Dys mouse died at 55 and 64 weeks of age, respectively. Two Dys mice, one TAM mouse, and one FEM mouse died on preterminal anesthesia. Thus, the data presented here were collected from 11 to 14 males and from 8 to 9 females and expressed as the means ± SEMs. GraphPad Prism software version 5.03 (GraphPad, San Diego, CA) was used for constructing the graphs and for performing the statistical analyses. The differences between groups were assessed by one-way analysis of variance followed by Tukey’s multiple comparison posttest. Differences with P values ≤ 0.05 were considered significant.

Results

Effects of TAM Treatment on Mouse Behavior, Body Weight, and Food Intake

The mice did not show noticeable alterations of their behavior during the 15 months of TAM treatment. Overall,
the groups of untreated Dys males and of untreated wt males showed similar growth curves (Supplemental Figure S1A). The mice treated with TAM for 15 months (TAM) were significantly smaller throughout the study and, at sacrifice, they weighed the same as the untreated dystrophic females (FEM; Supplemental Figure S1, A and B). From the food consumption curves (Supplemental Figure S1C), we calculated that TAM intake decreased from 14 to 10 mg/kg/day during the first 17 weeks of treatment and then remained at \(\sim 10 \) mg/kg/day until the end of the study.

Effects of TAM Treatment on the Weight of Organs and Muscles

The Dys mice had larger livers and testes than the wt mice. TAM treatment fully normalized the relative weights of these organs (Supplemental Table S1). The mice in the TAM group had significantly less white fat and more brown fat than the untreated Dys mice (Supplemental Table S1). TAM treatment did not change the relative weights of the other organs examined, such as the heart and the kidneys.

The Dys mice exhibited a significantly less white fat and more brown fat than the untreated Dys mice (Supplemental Table S1). TAM treatment did not change the relative weights of the other organs examined, such as the heart and the kidneys.

The mice treated with TAM for 15 months (TAM) were significantly smaller throughout the study and, at sacrifice, they weighed the same as the untreated dystrophic females (FEM; Supplemental Figure S1, A and B). From the food consumption curves (Supplemental Figure S1C), we calculated that TAM intake decreased from 14 to 10 mg/kg/day during the first 17 weeks of treatment and then remained at \(\sim 10 \) mg/kg/day until the end of the study.

Effects of TAM Treatment on the Weight of Organs and Muscles

The Dys mice had larger livers and testes than the wt mice. TAM treatment fully normalized the relative weights of these organs (Supplemental Table S1). The mice in the TAM group had significantly less white fat and more brown fat than the untreated Dys mice (Supplemental Table S1). TAM treatment did not change the relative weights of the other organs examined, such as the heart and the kidneys.

The Dys mice exhibited a significant hypertrophy of all of the skeletal muscles examined (Supplemental Table S1), which is a common feature of the dystrophic mouse models. Hypertrophy of the GAS, plantaris, soleus, and TA muscles was partly rescued by TAM. The relative weight of the triceps surae was completely normalized (Table 3). Overall, TAM diminished the relative weights of the muscles close to those of FEM mice, which showed less hypertrophy than the Dys group. In marked contrast, TAM increased the weight of the EDL muscle and the DIA. The relative weights of the heart were similar in all groups.

Table 3 Effect of TAM treatment on the mechanical properties of the triceps surae muscle

<table>
<thead>
<tr>
<th></th>
<th>Dys</th>
<th>TAM</th>
<th>wt</th>
<th>FEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phasic and tetanic isometric tensions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| \(P_l \), (mN) | 902.0 | 1001.5 | 1192.8 & 35.7* | 516.6 & 19.0***
| \(P_l \), (mN/mm²) | 81.9 & 2.9 | 162.3 & 16.6*** | 109.9 & 3.3† | 66.1 & 2.4***
| \(P_o \), (mN) | 3013 & 160 | 2835 & 85 | 4573 & 197***††† | 2108 & 66***†††
| \(P_o \), (mN/mm²) | 273.9 & 11.3 | 465.4 & 9.3*** | 421.0 & 16.8***† | 269.3 & 6.7††† |
| **Kinetics of contraction and relaxation** | | | | |
| \(TTP \), (ms) | 14.9 & 0.3 | 23.2 & 1.5*** | 16.4 & 0.3*†† | 15.1 & 0.6†††
| \(RT_{1/2} \), (ms) | 15.9 & 0.5 | 27.3 & 1.1*** | 16.9 & 0.4†† | 18.1 & 1.2†††
| \(T_{dev} \), (%max/ms) | 14.75 & 0.50 | 9.42 & 0.77*** | 15.28 & 0.31†† | 13.83 & 0.68††† |
| \(T_{loss} \), (%max/ms) | 4.09 & 0.25 | 2.53 & 0.16*** | 4.15 & 0.18† | 3.37 & 0.26† |
| **Structural characteristics of the triceps surae** | | | | |
| Mass, (mg) | 190.2 & 3.4 | 112.1 & 4.3*** | 189.0 & 3.8††† | 131.7 & 3.6***
| Mass, (mg/g) | 5.26 & 0.11 | 4.43 & 0.12*** | 4.70 & 0.09*** | 4.47 & 0.11***
| \(L_s \), (mm) | 16.40 & 0.19 | 17.28 & 0.20** | 16.41 & 0.20†† | 15.86 & 0.17†††
| CSA, (mm²) | 10.95 & 0.22 | 6.12 & 0.20*** | 10.87 & 0.19††† | 7.84 & 0.21***

Data represent means ± SEMs from 8 to 11 mice.

* \(P < 0.05 \), ** \(P < 0.01 \), and *** \(P < 0.001 \) compared with the Dys group.

† \(P < 0.05 \), †† \(P < 0.01 \), and ††† \(P < 0.001 \) compared with the TAM group.

CSA, cross-sectional area; \(L_s \), optimal muscle length; \(P_l \), optimal tetanic tension; \(P_o \), peak twitch tension; \(T_{dev} \), tension development; \(T_{loss} \), tension loss; \(TTP \), time to peak twitch tension.
Effect of TAM Treatment on the Wire Test Performance

Within the last weeks of the treatment period, a wire test was used to assess whole body force. Typically, soon after the mice were allowed to grasp the horizontal wire, they started to move along the wire and tried to flip around their body’s axis to explore the wire in the other direction (Figure 1A). The Dys animals rapidly lost the grip of their hind paws, causing them to hang onto the wire with their fore limbs only. From this position, the mice were rarely able to bring their hind paws back onto the wire and were unable to sustain their own body weight for more than a few seconds at each testing (Figure 1A). By contrast, both the wt and the TAM mice were able to move their fore limbs and chest into an extended position over the wire, to bring their hind limbs back onto the wire, and to turn around their body’s axis to flip from one direction of the wire toward the other. The TAM group performed much better than the Dys group and equally well as the wt group (Figure 1B). The FEM group performed significantly better than the Dys group but remained significantly weaker than the TAM group. Given that the smaller body weight of the dystrophic females and TAM-treated males could increase their score at the wire test, we also expressed the physical impulse as the product of the wire test score (in seconds) and the mouse body weight (in g). The improved performance of the TAM group compared with the Dys group was still marked, whereas the FEM group performed as poorly as the Dys group (Figure 1C).

Effect of TAM Treatment on Plasma CK Activity

Plasma CK activity was approximately three times higher in dystrophic males than in normal males, revealing an increased fragility of dystrophic muscle membrane (Figure 2). CK levels were much lower in dystrophic females than in dystrophic males, suggesting a role for estrogens in stabilizing muscle membranes. TAM treatment reduced plasma CK levels to values not significantly different from those of normal males and of dystrophic females (Figure 2).

Effects of TAM Treatment on Muscle Contractile Properties

The isometric contractile characteristics of the triceps surae muscle were determined at the end of the treatment period. The muscle mechanics data are summarized in Table 3 and the most remarkable findings are shown in Figure 3. After correction for the body weight, the dystrophic triceps presented a slight hypertrophy compared with wt triceps. This was normalized by TAM (Table 3). Both phasic tension (P_t) and tetanic tension (P_o) were reduced in dystrophic mice compared with normal mice. Although the actual size of the triceps of the TAM group was reduced compared with the Dys group, the P_t and P_o outputs were similar in both groups (Table 3). Correction for the muscle cross-sectional area showed that the P_t and P_o developed by the TAM-treated mice were considerably higher than those of the untreated Dys mice (Figure 3, A and C). In fact, TAM treatment for 15 months increased the specific P_t and P_o of the dystrophic triceps by 100% and 70%, respectively. Remarkably, the triceps of TAM-treated mice became significantly stronger per surface unit than those of normal mice (Table 3 and Figure 3, A and C).

The time required to achieve maximum contraction (TTP) was slightly longer in the wt group than in the Dys group, whereas the time for RT_{1/2} was similar in both groups.

![Figure 1](effect_of_tamTreatment_on_the_wire_test_performance.png)

Figure 1 Effect of TAM treatment on the wire test score. A wire test was used to assess whole body force of male dystrophic mice (Dys), male dystrophic mice treated with 10 mg/kg per day of tamoxifen for 15 months (TAM), male wild-type mice (wt), and female dystrophic mice (FEM). A: Different views of a Dys mouse during the wire test. The mice were allowed to grasp a metal wire maintained horizontally above a thick layer of soft bedding. The Dys animals rapidly lost grip of their hind paws and hung onto the wire with their forelimbs only. From this position, they were unable to sustain their own body weight for more than a few seconds before falling. B: The length of time until the mice fell from the wire was recorded and showed that TAM normalized the ability of the dystrophic mice to maintain their grip. C: The physical impulse was calculated to take into account the smaller body weight of the dystrophic females and the TAM-treated males. The values represent means ± SEMs of 9 to 14 mice. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001 compared with the Dys group; †P ≤ 0.05, ††P ≤ 0.01 compared with the TAM group.
against repeated tetanic contractions (Figure 3E). Previous studies from our laboratory suggested that this drastic assay showed the nonrecoverable fragility of the muscle toward damage contractions rather than fatigue resulting, for instance, from limitation in oxygen supply or changes in the redox balance.31 The triceps surae of the Dys group exhibited a marked leftward shift of the curve connecting the tension output to the frequency of stimulation (Figure 3D). Accordingly, the rates of maximum tension development during contraction or of maximum tension loss during relaxation were 36% and 38% smaller, respectively (Table 3). Consistent with the slower contraction, the TAM group showed the nonrecoverable fragility of the muscle toward limiting the muscle resistance of the TAM group to contraction-induced loss of force showed a significant improvement compared with the Dys group (Figure 3E). After a few tetani, the resistance of the TAM group to contraction-induced loss of force was significantly higher (76%) and thicker (59%) than those of untreated Dys mice (Figure 4, D and E). Further analysis demonstrated that these DIAs presented a significantly higher number of fibers (67%) and more fiber layers (48%) (Figure 4, F–H). The number of centronucleated fibers was significantly increased (33%), suggesting that more regeneration occurred (Figure 4I). In addition, the mean fiber diameter was increased close to that of the wt mice (Figure 4J), and the fraction of muscle cells to the total muscle surface was increased (21%) (Figure 4C). When combining the increased thickness of the DIA with the increased surface occupied by the myofibers, TAM augmented the amount of contractile tissue in the DIA by 72%.

Effects of TAM Treatment on Heart Fibrosis

Fibrosis was ~3.5 times higher in Dys hearts than in the wt hearts (3.04% and 0.87% of the heart cross-sections, respectively) (Figure 5A–C). Cardiac fibrosis was similar in the FEM group and in the Dys group. After TAM treatment, fibrosis was reduced to 1.86% of the ventricular surface, showing that TAM prevented the development of fibrosis in dystrophic hearts by ~53% (Figure 5C).

Effects of TAM Treatment on Fiber Type Distribution

Fiber typing was performed with fluorescent antibodies directed against specific MyHC isoforms. We found subtle differences in the distribution of MyHCs between the Dys and wt groups (Supplemental Figure S4, A–E). In all leg muscles tested, except the GAS muscle, TAM caused an accumulation of the type I fibers (fatigue-resistant,
Effects of TAM Treatment on the Expression of Muscle Markers

Proteins from GAS muscle extracts were analyzed by Western blot analysis. Their levels were corrected for MyHC content and normalized to the levels in the Dys group (Figure 6). Compared with the wt mice, the GAS muscle of the Dys mice contained significantly more utrophin, calsequestrin 2, SERCA2, and calcineurin but less calsequestrin 1. Treatment of Dys mice for 15 months with TAM significantly enhanced the expression of utrophin (+27%), α7 integrin (+36%), zβ-crystallin (+61%), calsequestrin 2 (+39%), and calcineurin (+38%) and reduced the levels of parvalbumin (−35%), calsequestrin 1 (−28%), SERCA1 (−25%), and SERCA2 (−18%) (Figure 6, A–J).

Effects of TAM Treatment on Expression of ERs

The expression levels of ERα and ERβ were explored in the GAS muscle. RT-qPCR showed that ERα mRNA levels were similar in all groups (Figure 7A). In contrast, total ERβ mRNA levels were 2.3 times more abundant in the Dys mice than in the wt mice. These levels were further increased (+40%) by TAM treatment, resulting in ERβ mRNAs being 3.2 times higher than in the wt mice (Figure 7B). As shown by nested PCR with the use of primers flanking exon 7 (Figure 7C), the levels of ERβ1 mRNA, encoding the physiologically active ERβ subtype, were unchanged on TAM treatment. We found that the increase in ERβ mRNAs was mostly caused by the accumulation of the mRNA encoding ERβ2, a variant having an extended ligand-binding domain with lower affinity for estrogen (Figure 7D).28,39 The ERβ2/ERβ1 mRNA

slow-contracting fibers) or type IIA fibers (fatigue-resistant, fast-contracting fibers), with a concomitant reduction in the type IIX and IIB fibers (fatigue-sensitive, fast-contracting fibers). By contrast, the DIA showed an opposite response to TAM. As a result of these fiber type shifts, the ratio of types (I + IIA) to IIB fibers was normalized in the EDL, the soleus, the TA, and the DIA muscles of TAM-treated mice (Supplemental Figure S4, F–J).

Figure 3 Effects of TAM treatment on the mechanical properties of the triceps muscle. Isometric force characteristics were determined on male dystrophic mice (Dys), male dystrophic mice treated with 10 mg/kg per day of tamoxifen for 15 months (TAM), male wild-type mice (wt), and female dystrophic mice (FEM). A: Phasic twitch traces normalized for muscle cross section showing that TAM-treated triceps developed much higher force than the other groups. B: Phasic twitch traces normalized to their maximum peak value, highlighting the slower kinetics of contraction and relaxation of TAM-treated triceps. C: Tetanic tensions normalized for muscle cross section showing that TAM-treated triceps were as strong as normal ones. D: Curves connecting the frequency of stimulation to muscle tension output, showing the slower contractile phenotype of the TAM-treated triceps. E: Loss of muscle tension on repeated tetanic contractions, showing that TAM made the triceps more resistant to fatigue. F: Average force drop calculated from the curves in E, showing that TAM prevented contraction-induced loss of force. The values represent means ± SEMs of 8 to 11 mice. *P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001 compared with the Dys group; †P ≤ 0.05, ††P ≤ 0.1, and †††P ≤ 0.001 compared with the TAM group.
Figure 4 Effects of TAM treatment on diaphragm morphology. A: H&E-stained diaphragms from male dystrophic mice (Dys), male dystrophic mice treated with 10 mg/kg day of tamoxifen for 15 months (TAM), male wild-type mice (wt), and female dystrophic mice (FEM) (left to right). Scale bar = 200 μm. B: Fluorescent wheat germ agglutinin-stained diaphragms of the same groups as in A. The microphotograph of the FEM group was omitted. C: The surfaces occupied by myofibers (dark gray columns), connective tissue (light gray columns), and adipose tissue (white columns) were expressed as the percentage of the total diaphragm cross-sectional area. The relative weight (D), thickness (E), fiber number (F), and fiber layers (G) of the diaphragms were increased by TAM treatment. H: The number of fiber layers per millimeter was not changed by TAM, but an increase of centronucleated myofibers (I) and mean fiber diameter (J) was noted. For clarity, the scatter plots in J show the diameter of 500 individual fibers per group of >6000 fibers analyzed. The statistical analyses were performed on the total fiber populations. The values in C–I represent the means ± SEMs of 8 to 11 mice. *P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001 compared with the Dys group; †P ≤ 0.05, ††P ≤ 0.01, and †††P ≤ 0.001 compared with the TAM group.
ratio was seven times lower in Dys mice than in wt mice (Figure 7E). TAM treatment elevated the ERβ2/ERβ1 ratio more than fourfold, bringing it close to that of wt mice (Figure 7E). The mRNAs encoding shorter ERβ variants (ERβ5, ERβ5A, and ERβ6), which are expressed in the ovaries, were not detected in the GAS muscles from any group (Figure 7F). Western blot analysis showed that ERz and ERβ1 proteins were, respectively, 4.3 times and 3.5 times more abundant in Dys muscles than in wt muscles (Figure 7G and H), whereas ERβ2 was expressed at similar levels in both groups (Figure 7I). TAM did not modify ERz and ERβ1 protein expression but caused a fourfold accumulation of the ERβ2 isoform in dystrophic muscle (Figure 7I), resulting in complete normalization of the relative ERβ2/ERβ1 protein ratio (Figure 7J).

Levels of TAM and Its Metabolites in Plasma and Muscle

We determined the concentrations of the E and Z isomers of TAM and of three major TAM metabolites in the plasma and in the GAS muscle of the TAM group. Results and representative chromatographic profiles are shown in Table 4 and Supplemental Figures S5 and S6, respectively. TAM isomers were the major species, followed by 4-OH-TAM, 4-hydroxy-N-desmethyl-TAM (also known as endoxifen), and N-desmethyl-TAM isomers. The latter were below the limit of quantification of the assay for the plasma. The compounds were 9 to 20 times more abundant in the GAS muscle than in the plasma. The levels of TAM and its metabolites in the muscle and the plasma of the TAM-treated mice were in the low nanomolar range. Unexpectedly, these levels were up to two to three orders of magnitude lower than those found in the same tissues of patients with breast cancer under standard TAM treatment41,42 or of normal mice and rats.43 In addition, in our TAM-treated mice, the E and Z isomers were present in roughly similar quantities, which contrasts with humans treated for breast cancer whereby the E isomers are usually only present in trace amounts.37,44 Of note, we analyzed the food pellets and ruled out a Z-to-E interconversion during the preparation and the storage of the modified chow.

Discussion

TAM, a first-generation SERM, administrated orally for 15 months at 10 mg/kg/day to mdx5Cv mice caused remarkable muscular improvements: i) the ability of the mice to maintain their grip was increased, suggesting that the body musculature was able to develop more force; ii) the triceps surae, a large group of muscles in the leg, displayed a striking enhancement of contractile features; iii) the DIA, the most severely affected muscle in dystrophic mice, became bigger, contained more fibers, but less fibrotic deposits; and iv) the heart showed a significant reduction in the extent of
fibrosis. To the best of our knowledge, this is the first report on the use of TAM on a model of muscular dystrophy.

Rationale for Using TAM

TAM and its active metabolites have been intensively studied for their ability to control survival, growth, and other functions of estrogen-dependent cell populations in the mammary glands, uterus, ovaries, and bones. Apart from these effects, other actions, including prevention of oxidative stress, protection against contraction-induced membrane damage, modulation of calcium handling, and inhibition of fibrosis, have been documented for TAM and its metabolites. These processes contribute to the pathogenic mechanisms at work in dystrophic muscle, and targeted interventions have been shown to improve the phenotype of dystrophic muscle to some extent. Therefore, we reasoned that TAM should ameliorate the structure and the function of dystrophic muscles in mice. The findings described in the present report show that TAM remarkably ameliorated the function and the structure of murine dystrophic muscles.

All of the effects reported in the present study were obtained with tissue levels of TAM and its major metabolites much lower than those reported in prior studies on normal rodents. In addition, we found that the E isomers accounted for an important part of the total TAM and metabolites. In humans, the unusual occurrence of high levels of the E isomers has been correlated with breast cancer resistance to TAM therapy and specific profiles of TAM-metabolizing cytochrome P450 enzymes. More work is needed to clarify why the dystrophic mice display lower levels of TAM and its metabolites compared with normal mice and high amounts of E isomers compared with humans.

TAM Tolerability

As judged by the relative weight of selected organs and overall behavior, long-term administration of TAM to dystrophic mice was well tolerated. TAM significantly diminished the weight gain of the treated mice, which is likely because of the reduction of white fat. At the end of the treatment period, the TAM-treated males weighed the same as age-matched females.

Protective Actions of TAM on Muscle Function and Supporting Molecular Findings

Using several techniques, we have demonstrated that TAM ameliorates various force parameters of dystrophic muscle.

Figure 6 Effects of TAM treatment on the expression of muscle markers. Western blot analyses were performed on gastrocnemius extracts prepared from male dystrophic mice (Dys), male dystrophic mice treated with 10 mg/kg per day of tamoxifen for 15 months (TAM), and male wild-type mice (wt). A–J: The myosin heavy chains (A), shown by Coomassie Blue staining, were used for correcting the signals of the following muscle markers: utrophin (B), a7 integrin (C), aB-crystallin (D), parvalbumin (E), calasequestrin 1 (F), calasequestrin 2 (G), SERCA1 (H), SERCA2 (I), and calcineurin (J). The position of the molecular weight markers is indicated (in kDa). The values were normalized to the average value of the Dys group and represent the means ± SEMs of 11 mice per group. *P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001 compared with the Dys group; †††P ≤ 0.001 compared with the TAM group.

Dorchies et al
Tamoxifen Ameliorates Muscular Dystrophy

Figure 7 Effects of TAM treatment on the expression of estrogen receptors. Total protein and mRNA extracts were prepared from gastrocnemius muscles of male dystrophic mice (Dys), male dystrophic mice treated with 10 mg/kg per day of tamoxifen for 15 months (TAM), and male wild-type mice (wt). Brain (Bra) and ovary (Ova) extracts were included for comparison. The levels of ERα (A) and ERβ (B) mRNAs were determined by real-time qPCR. C–E: The relative abundance of the ERβ1 and ERβ2 isoforms were evaluated after nested PCR, followed by gel electrophoresis and densitometric analysis of the bands. D: Representative agarose gel, showing PCR amplification of the ERβ1 and ERβ2 isoforms. The molecular weight markers are shown (base pairs). E: Relative abundance of the ERβ1 and ERβ2 isoforms, normalized to the total ERβ content in the Dys group. F: Denaturing urea-polyacrylamide gel electrophoresis showed that gastrocnemius muscles did not express small ERβ isoforms (ERβ5, ERβ5A, ERβ6) that can be found in ovaries (arrows). The molecular weight markers are shown (bases). Western blot quantification of ERα (G), ERβ1 (H), and ERβ2 (I). The position of the molecular weight markers is indicated (in kDa). J: ERβ2-to-ERβ1 mRNA ratio normalized to the values of the Dys group. The data represent the means ± SEMs of 11 mice per group. *P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001 compared with the Dys group; †P ≤ 0.01, ††P ≤ 0.001 compared with the TAM group.

The wire test, like other hanging tests, is a rather stringent assay that challenges many muscles simultaneously, including those of the limbs as well as the trunk, abdominal, and back muscles.40 The much-increased score at the wire test showed that TAM greatly improved overall muscle function of active dystrophic mice. This score could be affected by changes in force, fatigability, and possibly also balance. Therefore, we extended the evaluation of muscle function with the use in situ isometric contractions of the triceps surae, a large muscle group of the lower leg that is representative of most locomotor muscles. In agreement with the grid test findings, we found that the P0 and the P0 developed per unit of muscle cross section were much higher in the TAM-treated triceps than in triceps from untreated dystrophic mice. In addition, and as shown by longer TTP and RT1/2 and smaller maximum rates of tension development and tension loss, TAM conferred much slower contraction kinetics to the triceps surae. The resistance of muscle to repeated tetanic contractions was also much higher in TAM-treated mice than in wt mice.

It has been established by others that the transient estrogen rise during the menstrual cycle correlates with enhanced muscle force,12 and in certain paradigms estrogens conferred slower contraction and relaxation rates to the muscles, involving either an alteration in calcium handling or a decrease in type IIb fibers.54

TAM made dystrophic muscles even stronger than wt muscles, which one may find surprising. By contrast to what is expected with strategies aimed at re-introducing the missing dystrophin, the mechanisms of action of active pharmacologic compounds do not necessarily involve the restoration of impaired signaling pathways and homeostatic...
balances back to normal levels. Moreover, it should be noted that the force developed by unexercised normal muscle does not represent an absolute upper limit that can in no condition be reached or exceeded. Instead, the force of normal muscles can be augmented by several conditions, including the use of doping substances and exercise that causes muscles to display an optimal redox balance and to ensure adaptation to the novel energy demand and structural requirements.56–59 We suggest that TAM may have triggered and enhanced alternative pathways and compensatory mechanisms that could collectively ameliorate dystrophic muscle function and force output, possibly to levels above those of wt muscle.

Our findings of a slower rate of contraction and an enhanced resistance to fatigue in muscles from TAM-treated mice are of significance for the pathophysiology of muscular dystrophy. We established that the slower twitches resulted from a fast-to-slow fiber type shift and were accompanied by a molecular signature typical of slow-contracting muscles:

First, the slow-twitch phenotype is partly governed by the protein phosphatase calcineurin.60 Our finding that TAM enhanced calcineurin expression in the GAS muscle suggests a fast-to-slow phenotype transition. This is in agreement with data showing that chronic activation of calcineurin in normal skeletal muscle promoted fast-to-slow fiber transition, increased endurance, improved resistance to fatigue, and enhanced mitochondrial oxidative function.61,62 In support of a protective role for calcineurin in dystrophic muscle, reports indicate that inhibition of calcineurin activity by cyclosporin A aggravated the mdx phenotype, whereas constitutively active calcineurin protected mdx muscles from damage.63

Second, it is established that the fast-contracting type IIB fibers of both patients with DMD and mdx mice are more susceptible to damage than the slow-twitch type I fibers.64,65 This might be because of higher antioxidant defense mechanisms and accumulation of utrophin, a dystrophin homologue, in slow compared with fast fibers.66 The EDL, TA, and soleus muscles of the TAM-treated mice contained an increased number of type I fibers or of fast-twitch, fatigue-resistant type IIA fibers and, consequently, displayed an increased value of the (I + IIA)/IIB fiber ratio, which was restored to normal. This index was also normalized in the DIA, although this was achieved through a relative reduction of the type I and IIA fibers, which might result from a protection of the fragile type IIB fibers in that muscle.

Third, fiber type shift did not occur in the GAS muscle because the (I + IIA)/IIB fiber index was similar in all groups, which is in agreement with studies by others showing similar fiber type compositions in normal and dystrophic GAS muscle.67 However, Western blot analyses showed changes in the levels of calcium handling proteins, again suggestive of a transition toward a slower phenotype. The GAS muscle from TAM-treated mice contained more of the slow type–specific protein calsequestrin-2 together with reduced levels of the fast type–specific proteins SERCA1, calsequestrin-1, and parvalbumin (reviewed in Berchtold et al68 and Reggiani and Kronnie69). SERCA2 levels in dystrophic GAS muscle were also reduced by TAM close to normal amounts. Interestingly, SERCA2 was found to be overexpressed in the fast-twitch EDL muscle in mdx mice, likely as a compensatory mechanism.70 We suggest that the TAM-induced reduction of SERCA2 in GAS muscle might result from an alleviation of the dystrophic symptoms.

We have also established that TAM treatment enhanced the accumulation of several structural proteins, such as the dystrophin homologue utrophin, α7 integrin, and zB-crystallin. When overexpressed in mdx mice, utrophin and α7 integrin have proven to be of therapeutic interest by acting as surrogates for the missing dystrophin.32,71,72 zB-crystallin is a small heat shock protein that is much more abundant in slow-twitch than in fast-twitch muscles.73 It acts as a chaperone for several myofibrillar proteins such as desmin, a muscle-specific intermediate filament that is critical for maintaining the integrity of the myofilaments, and for ensuring their proper anchoring to other binding partners.73 Of note, mutations in either desmin or zB-crystallin result in a variety of muscular disorders.74 In support of a protective role for TAM-induced accumulation

Table 4 Levels of TAM and its metabolites in plasma and gastrocnemius muscle

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Plasma</th>
<th>Gastrocnemius</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ng/mL</td>
<td>nmol/L</td>
</tr>
<tr>
<td>(Z)-tamoxifen</td>
<td>1.25 ± 0.30</td>
<td>3.35 ± 0.80</td>
</tr>
<tr>
<td>(E)-tamoxifen</td>
<td>1.75 ± 0.14</td>
<td>4.71 ± 0.38</td>
</tr>
<tr>
<td>(Z)-4-hydroxytamoxifen</td>
<td>1.22 ± 0.37</td>
<td>3.14 ± 0.97</td>
</tr>
<tr>
<td>(E)-4-hydroxytamoxifen</td>
<td>1.39 ± 0.11</td>
<td>3.59 ± 0.28</td>
</tr>
<tr>
<td>(Z)-N-desmethyl-tamoxifen</td>
<td>0.13 ± 0.03</td>
<td>0.37 ± 0.09</td>
</tr>
<tr>
<td>(E)-N-desmethyl-tamoxifen</td>
<td>0.30 ± 0.04</td>
<td>0.84 ± 0.10</td>
</tr>
<tr>
<td>(Z)-endoxifen</td>
<td>0.29 ± 0.05</td>
<td>0.78 ± 0.13</td>
</tr>
<tr>
<td>(E)-endoxifen</td>
<td>0.19 ± 0.02</td>
<td>0.51 ± 0.06</td>
</tr>
</tbody>
</table>

Values represent mean ± SEM of either 8 plasma or 11 muscles from TAM-treated mice. The plasma values for (Z) and (E)-N-desmethyl-tamoxifen are below the limit of quantification of the method and are shown for reference only.
of structural proteins, recent studies reported that up to 20% of the force deficit in old mdx mice is due to altered myofilament architecture and that reciprocally damaging contractions impair myofilament activity. Taken individually, the overexpression level of every one of these structural proteins is likely too low to promote significant protection. We suggest that their simultaneous overexpression contributed to the TAM-induced increase of muscle force and to the recovery of membrane stability.

Altogether, the fiber type shifts, the increased levels of calcineurin, the accumulation of various structural proteins, and the alterations in calcium handling proteins suggest that TAM triggered complex transcriptional programs that protected the muscle, at least partly, via the acquisition of a slower and fatigue-resistant phenotype.

Protective Actions of TAM on Overall Muscle Structure

Most muscles of the mdx5Cv mouse undergo massive necrosis at ~3 to 5 weeks of age, followed by the formation of new myofibers retaining internal nuclei and displaying an important scattering of their diameter. From 8 to 10 weeks of age, the degeneration-regeneration cycles continue at a lower rate, and at ~1 year of age, as the self-repair capabilities of the muscle decline, connective tissue infiltration becomes prominent. In young dystrophic mice, centronucleated fibers are a reliable marker of the proportion of fibers that have disappeared due to prior necrosis. In the present study, the interpretation of centronucleation is complicated by the long duration of treatment, during which the muscles likely underwent several cycles of necrosis-regeneration, and by the fact that the regenerated fibers are more vulnerable than the original ones. However, it is likely that the decreased centronucleation in the soleus and the TA muscles is subsequent to prevention of necrosis and that the increased proportion of regenerated fibers in the EDL muscle and the DIA results from enhanced regeneration. This view is strongly supported by the relative weights of these muscles, the alteration of which parallels the centronucleation index. Whether these muscle-specific effects correlate with different expression profiles of the ERs and/or their nuclear cofactors in different muscles remains to be established. This possibility finds some support from earlier work to suggest higher ER levels in slow-twitch muscles from rabbit as well as from recent findings from Feder et al who found altered ER expression in EDL and quadriceps muscles of mdx mice (D. Feder, personal communication).

Normalization of myofiber size, reduction of the scattering of myofiber diameter, and decreased fibrosis are considered positive outcomes in the evaluation of therapeutic interventions in older dystrophic mice. Overall, several muscles from both the anterior and the posterior lower leg as well as the DIA showed a favorable evolution of one or more of these parameters with TAM. We believe that most of the musculature benefited similarly from TAM exposure, which is supported by the enhanced performance at the wire test.

Protective Actions of TAM on Diaphragm and Heart

TAM has been shown to prevent fibroblast activation, decrease collagen synthesis, and inhibit the release of transforming growth factor (TGF)-β, a major profibrotic mediator, in several conditions such as keloids, rhinophyma, Dupuytren disease, and retroperitoneal fibrosis. Here, we demonstrate that TAM decreased the progression of fibrosis in the dystrophic heart and DIA. Furthermore, TAM showed additional protective effects on the DIA. It ameliorated the myofiber diameter, increased the proportion of regenerated fibers, and greatly enhanced the thickness of the muscle, which resulted mostly from an increase in the total number of myofibers. After TAM treatment, the net amount of tissue consisting of myofibers likely to contribute to the respiratory function was augmented by 72%. Collectively, these results suggest that TAM alleviated the muscular dystrophy in the DIA and strongly promoted the formation of new myofibers. In support of this, we found that the plasma level of TGF-β, a growth factor that controls muscle regeneration and fibrosis, was reduced (unpublished data). The DIA is the muscle of the dystrophic mouse that best mirrors the human condition. Several pharmacologic interventions, such as immunosuppressors, green tea polyphenols, and blockers of TGF-β signaling pathways, reduced fibrosis in the DIA. Other substances (reviewed in Judge et al), such as halofuginone and deflazacort (but not prednisolone), were found efficacious for ameliorating cardiac function or reducing cardiac fibrosis. Together with losartan, TAM appears to be one of the few compounds that reduces the development of fibrotic scars in both the DIA and the heart of dystrophic mice. This may be related to their common ability to reduce TGF-β. Improving respiratory and cardiac functions is a challenging issue for ameliorating the quality of life and increasing the life expectancy of patients with DMD. This makes TAM particularly attractive as a therapeutic agent for treating muscular dystrophy.

Significance of ER Expression and Low Levels of TAM and Metabolites in Muscle

Natural estrogens and TAM are lipophilic compounds that accumulate in biological membranes, where they are thought to exert a variety of actions that involve neither ER nor transcription. In in vitro systems, short-term exposure to high concentrations of TAM were found to increase membrane fluidity to protect phospholipids from peroxidation and to directly modulate the activity of ion channels and pumps. Typically, these effects were seen with 1 to 20 μmol/L TAM in the extracellular fluid, which likely leads to much higher local concentrations in the membranes of the cultured cells. Several pharmacodynamic
studies on normal mice and rats reported that TAM and its metabolites reach concentrations in the low micromolar range in various tissues, including skeletal muscle. Our findings show that the total concentration of TAM and its metabolites in the GAS muscle of dystrophic mice was ~200 nmol/L, which is likely insufficient for triggering physical actions on the membrane. Moreover, data from others suggest that direct membrane actions of TAM would not prevail in vivo. Koot and colleagues reported that TAM-induced protection of rat skeletal muscles from damaging contractions was achieved after long-term treatment, whereas short-term (24 hours) treatment was ineffective. Therefore, we believe that the decreased CK value that we report here is the consequence of ER-dependent mechanisms that lead to myofiber stabilization rather than a direct effect on membrane fluidity or stability. In fact, we have recently demonstrated that doses of TAM as low as 0.1 mg/kg/day (ie, 100 times lower than the dose used in the present study) still produced significant improvements of most motor endpoints, lowered plasma CK levels, and reduced the number of Evans blue dye-permeable fibers and that TAM actions were antagonized by the ER blocker fulvestrant (O.M. Dorchies et al, manuscript in preparation), which provides strong support for receptor-mediated effects of TAM on dystrophic muscle.

Most of the effects of estrogens, TAM, and TAM metabolites result from their high-affinity binding to ERα and ERβ that are expressed in estrogen-responsive tissues of both males and females, including skeletal muscle. Several ERβ isoforms exist. ERβ1 is considered as the physiologically active isoform, whereas ERβ2, a longer isoform with much reduced affinity for estrogens, would act in a dominant negative manner for the other ERs. We report here, for the first time, that dystrophic muscle is enriched in both ERα and ERβ. This could well be the underlying reason for the unexpectedly high responsiveness of this tissue to TAM. Moreover, we found that the imbalance in the relative amounts of ERβ1 and ERβ2 tended to be normalized by TAM due to increased expression of ERβ2. This is particularly interesting in light of recent studies that demonstrate a role for ERβ in preventing both hypertrophy and fibrosis of the heart, although these studies do not allow distinguishing the roles of different ERβ isoforms. Previous work by others have suggested that ER are expressed in various cell types within mammalian skeletal muscle, including endothelium, myoblasts, and myofibers. In our hands, immunofluorescence labeling of mouse muscle tissues with the use of a large number of commercially available antibodies produced inconsistent staining patterns (data not shown). Consequently, more work is needed to unequivocally identify the cell type(s) that convey the increased ER expression in dystrophic skeletal muscles.

After binding their ligands, homodimers or heterodimers of ERα/ERβ regulate the transcription of target genes that bear palindromic estrogen-response elements in their promoter regions. We have screened for the presence of estrogen-response elements in the upstream regions of the genes encoding several of the proteins whose expression was altered by TAM treatment. Although no complete estrogen-response element was found, these regions bear many estrogen-response element half-sites, which, in certain instances, may suffice to control the expression of estrogen target genes. More experiments are needed to establish if TAM stimulated the expression of these proteins through increased transcription.

Tissue-specific estrogen sensitivity and response to TAM are essentially defined by the pattern of expression of ERα, ERβ, co-activators, and co-repressors. On binding to ERα or ERβ, TAM alters the set of co-regulators that are recruited, resulting in either proestrogenic or antiestrogenic effects in a tissue-specific manner. Several of our findings suggest that TAM mimics estrogens on skeletal muscle. TAM increased the force and the resistance to fatigue and slowed the kinetics of contraction. Moreover, TAM-treated males weighed the same as age-matched females, most muscles from both groups had similar relative weights, and their plasma CK levels were similarly low. However, major differences remained between TAM-treated males and untreated females. As judged by the physical impulse scores determined from the wire hanging test and by the phasic and tetanic forces, the females were as weak as the untreated males, the female DIA accumulated much more adipose tissue, and both the female DIA and heart were not protected against fibrosis. Therefore, although our results indicate that TAM exerted protective effects on the overall musculature, this compound does not just “feminize” skeletal muscles of dystrophic mice nor does it fully mimic the natural estrogens. In fact, TAM binding to ER results in either proestrogenic or antiestrogenic actions, depending on the cell type, which is characteristic of many SERMs, whereas natural estrogens elicit proestrogenic responses only. In addition, TAM and natural estrogens may modulate ER-independent pathways in a different manner, resulting in distinct biological responses. Of note, it is likely that the levels of circulating estrogens were reduced in the relatively old females used in this study.

The issue of whether TAM is proestrogenic or antiestrogenic for dystrophic muscle is currently under investigation in our laboratory. This is complicated by the fact that several TAM metabolites exhibit a 30- to 100-fold higher affinity for ERs and display a stronger antiestrogenic activity than the parental drug and that the (E)-isomers display much lower antiestrogenic activity than the (Z)-isomers, at least as evaluated on breast cancer cells. The use of other SERMs, such as raloxifene, whose biological activity does not depend on metabolites, might be useful for clarifying the roles of estrogen signaling in dystrophic muscle function. However, current work in our laboratory shows that raloxifene is much less efficacious than TAM on mdx5Cv mice (O.M. Dorchies et al, manuscript in preparation).
Potential of TAM for DMD and Other Dystrophies

Over the past years, considerable efforts have been made toward therapies that replace or repair the defective dystrophin gene and permit the production of quasi-dystrophin. However, technologic, cost, and safety issues obstruct the development of these approaches. In our view, the evaluation of known orally active small-molecular weight compounds with well-characterized pharmacodynamic and safety profiles presents significant advantages over other therapeutic avenues. In particular, they might provide benefit to patients with DMD within a minimum period of time and are much less costly.

Our study suggests that TAM might be well-suited for this purpose. Besides its good safety profile in adults, several studies report that it was also well tolerated when given for up to 48 months to 13-to 16-year-old prepubertal boys and for 12 months to girls as young as 3 years. Importantly, in these studies, TAM did not alter the acquisition of male sexual traits. However, no data exist about the safety of TAM on growing boys as young as 5 to 7 years of age, at the time when the disease is diagnosed and treatment is likely to be initiated. This limitation should be taken into account if TAM is being evaluated on young patients with DMD.

Patients with DMD under usual steroid medications exhibit reduced growth and altered bone quality, which correlates with more frequent fractures. However, the reduction of the stature might participate in the therapeutic benefits of steroids (see Bianchi et al. and references within). By contrast, TAM prevents bone loss and has been shown to increase the height of short boys by decreasing the rate of bone maturation. At present, it is not known whether the foreseen action of TAM on stature might be a therapeutic issue for boy with DMD.

Our study shows that very low levels of TAM and TAM metabolites are sufficient to cause major therapeutic effects on the dystrophic mouse, which is encouraging in the perspective of a clinical application of our findings to patients with DMD. It is possible that therapeutic TAM concentrations might be reached with lower than standard TAM regimen, the safety of which has been established for more than 20 years. The specific benefits elicited by the E isomers of TAM metabolites, which were produced in substantial amounts in the dystrophic mice but are barely detected in humans, deserve further examination. This could result in lower than expected benefits when extrapolating our results from mice to patients with DMD.

In conclusion, our preclinical evaluation of TAM in a mouse model of DMD showed promising improvements of skeletal and cardiac muscles. However, more investigations are required to establish the actions of TAM on further aspects of the dystrophic disease, such as the prevention of the initial muscle necrosis and the modulation of the inflammatory responses. Our further work will also aim at elucidating the molecular mechanisms that underlie the actions of TAM on dystrophic skeletal muscle, in particular with respect to the signaling pathways, the contributions of the ERs, and the specific activities of TAM metabolites.

Acknowledgments

We thank Colette Sauty-Defferard for animal care and excellent technical support, the other members of the laboratory for helpful discussions, and Prof. Randall Kramer (University of California, San Francisco, CA) for the kind gift of anti-α7 integrin antibody. The BA-D5, SC-71, BF-35, and BF-F3 hybridoma developed by Prof. Stefano Schiaffino were obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the National Institute of Child Health & Human Development and maintained by The University of Iowa, Department of Biology (Iowa City, IA).

Supplemental Data

Supplemental material for this article can be found at http://dx.doi.org/10.1016/j.ajpath.2012.10.018.

References

23. Payne WG, Ko F, Anspaugh S, Wheeler CK, Wright TE, Robson MC: Down-regulating causes of fibrosis with tamoxifen: a possible cellu-
lar/molecular approach to treat rhinophyma. Ann Plast Surg 2006, 56:2727–2741
29. Robinson SP, Langan-Fahey SM, Johnson DA, Jordan VC: Metabo-
lites, pharmacodynamics, and pharmacokinetics of tamoxifen in rats and mice compared to the breast cancer patient. Drug Metab Dispos 1991, 19:36–43
38. Bruguet A, Courtier-Fruh I, Foster M, Meier T, Magyar JP: Histolog-
ical parameters for the quantitative assessment of muscular dystrophy in the mdx-mouse. Neuromuscul Disord 2004, 14:675–682
42. Robinson SP, Langan-Fahey SM, Johnson DA, Jordan VC: Metabo-
lites, pharmacodynamics, and pharmacokinetics of tamoxifen in rats and mice compared to the breast cancer patient. Drug Metab Dispos 1991, 19:36–43
45. Cardoso CM, Almeida LM, Custodio JB: 4-Hydroxytamoxifen is a potent inhibitor of the mitochondrial permeability transition. Mitoch-
drondion 2002, 1:485–495
63. Head SE: Branched fibres in old dystrophic mdx muscle are associated with mechanical weakening of the sarcolemma, abnormal Ca2+ transients and a breakdown of Ca2+ homeostasis during fatigue. Exp Physiol 2010, 95:641–656

