CORRECTIONS

In the article entitled “Risk Factors for Pancreatic Ductal Adenocarcinoma Specifically Stimulate Pancreatic Duct Glands in Mice” (Volume 182, pages 965—974 of the March 2013 issue of The American Journal of Pathology), the Abstract contained errors. Lines 11—12 should have read, “Both risk factors for pancreatic cancer also induced the production of Muc5ac and the nuclear localization of S100P.”

In the article entitled “Peptide Inhibitor of NF-κB Translocation Ameliorates Experimental Atherosclerosis” (Volume 182, pages 1910—1921 of the May 2013 issue), a funding source was inadvertently omitted. The work was also supported by Ministry of Health grant PI10/00072.

In the article entitled “Membrane Type-1 Matrix Metalloproteinase Potentiates Basic Fibroblast Growth Factor-Induced Corneal Neovascularization” (Volume 174, pages 1564—1571 of the April 2009 issue), Figure 6A, page 1568, was inadvertently duplicated from panel D. The authors assert that correction of the mistake does not alter the conclusions of the article. The corrected Figure 6 (with legend) appears to the right.

In the article entitled “miRNA Expression Profile after Status Epilepticus and Hippocampal Neuroprotection by Targeting miR-132” (Volume 179, pages 2519—2532 of the November 2011 issue), Figure 6E, page 2528 top left (scrambled) EEG trace image, and Figure 7D, page 2529 top left (scrambled) FJB-stained image contained Figure 6A, page 1568, contained the wrong representative images. These images were from scrambled animals used in Figure 4b and 5b in Nature Medicine 2012 18:1087—1094. The corrected Figure 6 and 7 (with legends) appear on the following pages. Correction of the mistake has no effect on the graphs in Figure 6 and 7 and does not affect the conclusions or interpretation of the data.
Figure 6 Effects of miR-132 antagonirs on normal brain and seizure EEG during status epilepticus. A and B: Quantitative real-time PCR measurements of miR-132 (A) and miR-92a (B) levels in hippocampal CA3 extracts 24 hours after intracerebroventricular injection of miR-132-targeting antagonirs (Ant-132) or a nontargeting antagonir control (scrambled). **P < 0.01 and ***P < 0.0001 versus scrambled and artificial cerebrospinal fluid (CSF); †P < 0.05 versus same-dose scrambled (n = 3 per group). C: NeuN counts in tissue sections at different levels of the hippocampus in animals injected 24 hours earlier with either scrambled (Scr) or the miR-132 antagonir (Ant-132) (n = 3 per group). D: EEG parameters during status epilepticus in scrambled and antagonir-132 mice (n = 4 to 8 per group). E and F: Frequency, amplitude, and total power parameters during seizure EEG for a representative scrambled-antagonir–treated mouse and an antagonir-132–treated mouse during status epilepticus.
Figure 7 Depletion of miR-132 protects hippocampal CA3 against seizure-induced neuronal death. A and B: FJB and TUNEL counts 24 hours after status epilepticus for rostral (A) and medial hippocampus (B) showing the neuroprotective effect of antagomirs against miR-132 (Ant-132) compared with scrambled antagomir. C: NeuN counts in rostral and medial sections of hippocampus for each group. *P < 0.05, **P < 0.01, and ***P < 0.0001 versus scrambled antagomir (n = 4 to 8 per group). D: Representative photomicrographs of FJB, TUNEL, and NeuN staining in the ipsilateral CA3 subfield 24 hours after status epilepticus in mice injected with either scrambled or miR-132 antagomirs. Original magnification, ×20. Scale bar, 185 μm.