Reactivation of NCAM1 Defines a Subpopulation of Human Adult Kidney Epithelial Cells with Clonogenic and Stem/Progenitor Properties

Ella Buzhor,*† Dorit Omer,*† Orit Harari-Steinberg,*† Zohar Dotan,‡ Einav Vax,*† Sara Pri-Chen,*† Sally Metsuyanim,*‡ Oren Pleniceanu,*† Ronald S. Goldstein,*§ and Benjamin Dekel*‡

From the Pediatric Stem Cell Research Institute* and the Division of Pediatric Nephrology,† Safra Children’s Hospital, the Sheba Center for Regenerative Medicine,‡ the Department of Urology,§ and the Maurice and Gabriela Goldschleger Eye Research Institute, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Ramat-Gan; and the Minat and Everard Goodman Faculty of Life Sciences,§ Bar-Ilan University, Ramat-Gan, Israel

The nephron is composed of a monolayer of epithelial cells that make up its various compartments. In development, these cells begin as mesenchyme. NCAM1, abundant in the mesenchyme and early nephron lineage, ceases to express in mature kidney epithelia. We show that, once placed in culture and released from quiescence, adult human kidney epithelial cells (hKEpCs), uniformly positive for CD24/CD133, re-express NCAM1 in a specific cell subset that attains a stem/progenitor state. Immunosorted NCAM1+ cells overexpressed early nephron progenitor markers (PAX2, SALL1, SIX2, WT1) and acquired a mesenchymal fate, indicated by high vimentin and reduced E-cadherin levels. Gene expression and microarray analysis disclosed both a proximal tubular origin of these cells and molecules regulating epithelial–mesenchymal transition. NCAM1+ cells generated clonal progeny when cultured in the presence of fetal kidney conditioned medium, differentiated along mesenchymal lineages but retained the unique propensity to generate epithelial kidney spheres and produce epithelial renal tissue on single-cell grafting in chick CAM and mouse. Depletion of NCAM1+ cells from hKEpCs abrogated stemness traits in vitro. Eliminating these cells during the regenerative response that follows glycerol-induced acute tubular necrosis worsened peak renal injury in vivo. Thus, higher clone-forming and developmental capacities characterize a distinct subset of adult kidney-derived cells. The ability to influence an endogenous regenerative response via NCAM1 targeting may lead to novel therapeutics for renal diseases. (Am J Pathol 2013, 183: 1621–1633; http://dx.doi.org/10.1016/j.ajpath.2013.07.034)

Kidney disease is a major worldwide health burden. Given the limited number of treatments currently available, discovering novel ways to stimulate kidney repair is an important therapeutic goal. Many adult tissues (such as skin, the hematopoietic system, and the intestine) are considered to harbor cells that self-renew and differentiate to form clones of stem, progenitor, and mature cells of the organ, fitting within the criteria of tissue-specific multipotential stem cells.1–4 In contrast to these rapidly cycling organs, parenchymal cells of the kidney are considered to be mostly static under steady-state conditions and can be induced to divide only under very specific conditions, limiting the overall regenerative capacity of the nephron, the kidney’s functional unit.5 All nephron epithelia arise from a self-renewing nephron progenitor population that resides in the metanephric mesenchyme of the developing kidney’s nephrogenic zone, specifically in the condensed mesenchyme that interacts with the ureteric bud, the precursor for the collecting system and undergoes mesenchymal–epithelial transition (MET). With

Supported by Israel Science Foundation grant no. 1139/07; the Israel Ministry of Industry ‘NOFAR’ program; Wolfson Clore Mayer; Tel Aviv University Stem Cell Research Center; and the Sackler School of Medicine, Tel Aviv University (all to B.D.).

E.B. and D.O. contributed equally to this work.

This study was performed in partial fulfillment of the requirements for the Ph.D. degree (E.B.).
the completion of mammalian nephrogenesis (gestational week 34 in humans, 2 postnatal weeks in mice), this undifferentiated nephron-forming progenitor population is entirely exhausted. Therefore, in contrast to fish,7 no progenitor population with nephrogenic potential similar to the metanephric mesenchyme or condensed mesenchyme physiologically exists in the mammalian adult kidney.7,8

Using microarrays, we have previously characterized the renal epithelial progenitor population of the developing human kidney.9 Our results showed expression of a set of renal epithelial progenitor population of the developing kidney.9,12,13 After cessation of nephrogenesis, the early nephron progenitor markers are down-regulated in both murine kidneys7 and human8 kidneys. Similarly, NCAM1, which is strongly expressed in the condensed mesenchyme, nephrogenic zone, and in Wilms’ tumor progenitor blastema, is not expressed in mature kidney epithelia after nephron differentiation.12–15

Here, we show that isolates of human kidney epithelia grown under adherent conditions proliferate and activate NCAM1 in a specific cell subset showing early renal stem/progenitor characteristics and function. The in vitro identification of distinct NCAM1+ clone-forming cells and the possible beneficial role of NCAM1+ cells in regenerating kidney epithelia in vivo suggest NCAM1 as a target for manipulation for an enhanced regenerative response.

Materials and Methods

hKEpC Cultures

Normal human adult kidney samples were retrieved from borders of renal cell carcinoma tumors from patients undergoing partial or total nephrectomy at Sheba Medical Center and Wolfson Hospital. This procedure was performed after approval by the local ethical committee and signed informed consent from the patient. The samples were minced in Hanks’ balanced salt solution, soaked in collagenase for 2 hours, and then cultured in serum-containing medium (SCM), which consisted of Iscove’s modified Dulbecco’s medium supplemented with 10% fetal bovine serum, 1% L-glutamine, 1% penicillin–streptomycin, and the following growth factors: 50 ng/mL bFGF, 50 ng/mL EGF, and 5 ng/mL SCF (R&D Systems, Minneapolis, MN). Serum-free medium (SFM) consisted of 500 mL Dulbecco’s modified Eagle’s medium/F12 (DMEM/F12, 1:1; Life Technologies, Carslbad, CA), 1% penicillin–streptomycin, 2 mL B27 supplement (Life Technologies), 4 μg/mL heparin, 1% nonessential amino acids (Life Technologies), 1% sodium pyruvate (Life Technologies), 1% l-glutamine, 1 mL lipid mix (Sigma-Aldrich, St. Louis, MO), 5 mL 100× N2 supplement (Life Technologies), 5 mL growth factor mix (200 mL of growth factor mix containing 100 mL DMEM/F12, 4 mL 30% glucose, 200 mg transferrin, 50 mg insulin in 20 mL of water, 19.3 mg putrescine in 20 mL distilled water, 200 μL sodium selenite (0.3 mmol/L stock), 20 μL progesterone (2 mmol/L stock), 10 ng/mL FGF, and 20 ng/mL EGF. Sphere formation was tested by seeding the cells in polyHEMA (Sigma-Aldrich) precoated plates in SFM. Fetal kidney conditioned medium (FKCM) was obtained by combining SCM and supernatants from fetal kidney cultures (cultured in SCM) of passages 1 to 3 at a 1:1 ratio.

Cell Preparation and Sorting

Monolayer cells were detached from culture plates with 0.25% trypsin (Life Technologies). Viable cell number was determined using Trypan Blue staining (Life Technologies). In magnetic-activated cell sorting (MACS), CD56 (NCAM1) microbeads (Miltenyi Biotec, Auburn, CA) were used for single-marker cell separation. Positive and negative fractions were separated using Mini or Midi MACS columns (Miltenyi Biotec), according to the manufacturer’s protocol. In FACs sorting, cells were sorted with anti-NCAM–phycoerythrin (PE) (eBioscience, San Diego, CA) using a FACSARia fluorescence-activated cell sorter and FACSDiv software version 4.0 (BD Biosciences, San Jose, CA), as described previously.14

Gene Expression Analysis of the Separated Cell Fractions

Quantitative real-time RT-PCR (RT-qPCR) reactions were performed as described previously.12,16 In brief, total RNA from cells was isolated using an RNeasy micro kit (Qiagen, Hilden, Germany; Valencia, CA), according to the manufacturer’s instructions. cDNA was synthesized using a high-capacity cDNA reverse-transcription kit (Life Technologies) on total RNA. qPCR was performed using an ABI 7900HT sequence detection system (Life Technologies) in the presence of TaqMan gene expression master mix (Life Technologies), and PCR amplification was performed using gene-specific TaqMan gene expression assay premade kits. Each analysis reaction was performed in duplicate or triplicate. GAPDH and HPRT1 were used as endogenous control throughout all experiments. Analysis was performed using the ΔΔCT method, which determines fold change in gene expression relative to a comparator sample. PCR results were analyzed using SDS RQ Manager software version 1.2 (Life Technologies).

Clonogenicity of hKEpCs

Limiting dilution assay was performed on total human adult kidney or separated NCAM1+ versus NCAM1− cell fractions. In brief, sorted cells were plated in 96-well plates
(Greiner Bio-One, Frickenhausen, Germany) in 150 μL of culture medium, at 1 or 5 cells per well. The number of colonized wells was recorded after 2 to 4 weeks. Confluent viable clones of total hKEpCs were isolated and propagated.

Proliferation Assay

NCAM1⁺ and NCAM1⁻ cell fractions were subjected to CellTiter 96 AQ nonradioactive cell proliferation (Promega, Madison, WI), based on the novel tetrazolium compound 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS), according to the manufacturer’s protocol. Wavelength for optical density was 450 nm.

In Vitro Differentiation Assays

Osteogenic differentiation of NCAM1⁺ cells was performed in NH OsteoDiff medium (Miltenyi Biotec), according to the manufacturer’s protocol. NCAM1⁺ cells were seeded at a concentration of 7.5 × 10³ cells per well (1 mL medium per well) in 24-well plates and were incubated for 10 days. Osteoblast detection was performed by staining for alkaline phosphatase activity with an alkaline phosphatase kit (Sigma-Aldrich), according to the manufacturer’s protocol.

Adipogenic differentiation of NCAM1⁺ cells was performed in NH AdipoDiff medium (Miltenyi Biotec), according to the manufacturer’s protocol. NCAM1⁺ cells were seeded at a concentration of 12.5 × 10³ cells per well (1 mL medium per well) in 24-well plates and were incubated for 21 days. Adipocyte detection was performed by staining with Oil Red O solution (Sigma-Aldrich).

DMEM was used as a control for differentiation assessment in both assays.

Microarray Analysis

Human adult renal NCAM1⁺ and NCAM1⁻ cell fractions obtained from one adult donor were evaluated using Affymetrix HU GENE1.0ORD oligonucleotide arrays (Affymetrix technical note: Data sheet: GeneChip HuGene 1.0 ST Array System for Human, Mouse and Rat. Santa Clara, CA). Total RNA from each sample was used to prepare biotinylated target DNA, according to the manufacturer’s recommendations. Target cDNA generated from each sample was processed using an Affymetrix Gene Chip instrument system [Affymetrix technical note: User Manual: GeneChip Whole Transcript (WT) Sense Target Labeling Assay. Santa Clara, CA]. The quality and amount of starting RNA was determined using agarose gel or by use of an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA).

When scanning was done, array images were assessed by eye to confirm scanner alignment and the absence of significant bubbles or scratches on the chip surface. The signals derived from the array were assessed using various quality assessment metrics. Details of quality control are provided in the Affymetrix data sheet cited above. Gene-level RMA sketch algorithm [Affymetrix Expression Console and Partek Genomics Suite version 6.2 (Partek, St. Louis, MO)] was used for generation of crude data. Significantly changed genes were filtered as changed by at least twofold (P = 0.05). Genes were filtered and analyzed using unsupervised and supervised hierarchical cluster analysis [Partek Genomics Suite and Spotfire DecisionSite for Functional Genomics version 9.1.2 (TIBCO Spotfire, Somerville, MA)] to get a first assessment of the data. Further processing included functional analysis and over-representation calculations based on Gene Ontology and using the publicly available Database for Annotation, Visualization and Integrated Discovery and associated tools (DAVID tools version 6.7; http://david.abcc.ncifcrf.gov). Over-representation calculations were performed using the DAVID Ease tool, according to the Affymetrix technical notes cited above. Ingenuity Pathway Analysis software (IPA version 7; Ingenuity Systems, Redwood City, CA) was used for network analysis. The microarray data were deposited with the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo; accession no. GSE49100).

Nephron Segment-Specific Staining of NCAM1⁺ and NCAM1⁻ Cell Fractions in Culture

Tubular segments were identified using the segment-specific markers. Proximal tubules were identified with biotinylated *Lotus tetragonolobus* lectin (LTA) (1:200, Vector Laboratories) and aminopeptidase A (ENPEP) (1:75; Sigma-Aldrich); distal tubules and collecting ducts were identified with biotinylated *Dolichos biflorus* agglutinin (DBA) (1:200; Vector Laboratories); and epithelial cells were identified with cytokeratin (1:250; Dako). Before staining, cells were fixed in ice-cold 95% ethanol–5% acetic acid for 10 minutes, washed in PBS, and blocked with 0.1% bovine serum albumin in PBS for 1 hour. Detection was performed with streptavidin Alexa Fluor 488 (1:1000, Jackson Immunoresearch Laboratories) and anti-rabbit Alexa Fluor 488 (1:1000; Life Technologies). Slides were counterstained with ProLong Gold antifade reagent with DAPI (Life Technologies). Photomicrographs were made on a Nikon Ti-E inverted microscope.

Immunotoxin (huN901-DM1) Assay in Vitro

Lorvotuzumab mertansine (alias huN901-DM1 or IMGN901) is a humanized version of the anti-CD56 antibody N901, conjugated to the highly cytotoxic maytansine derivative DM1 via a hindered disulfide linker -S-S- (ImmunoGen, Waltham, MA).

Estimation of the Proliferation Rate of hKEpCs

hKEpCs were cultured at concentrations of 500, 1000, 2000, and 4000 cells per well in 96-well plates. After 1, 3, 5, and 7 days in culture, cell proliferation was evaluated using the
MTS cell proliferation assay (Promega). Cell plating concentration (cells per well) for the huN901-DM1 assays was based on a sufficient amount of cells at the beginning of the experiment so as not to reach confluence (and therefore massive cell death) by the end of the experiment.

Determination of the LD₅₀ of huN901-DM1 on hKEpCs

To determine the LD₅₀ of huN901-DM1 for hKEpCs, cells were seeded in 96-well plates at 10⁴ cells per well for 24 hours in growth medium, which was then replaced with medium containing the conjugate in a range of concentrations between 1.6 nmol/L and 1.675 nmol/L, with medium alone serving as a control. After a 5-day incubation period, cell survival was assessed by the MTS proliferation assay and LD₅₀ was determined.

huN901-DM1 Assay

hKEpCs were seeded at 2 × 10⁴ cells per well in six-well plates in duplicate and were treated with anti-NCAM antibody (huN901), anti-NCAM antibody conjugated with immunotoxin (huN901-DM1; 0.1 μmol/L), or control. On day 5 of treatment, cells from all groups were subjected to limiting dilution, sphere formation, FACS, and MTS assays.

Grafting hKEpC NCAM¹⁺ Cells on the Chick Embryo CAM

Grafting of hKEpC NCAM¹⁺ cells on the chick embryo CAM was performed as described previously. In brief, fertile chicken eggs were obtained from a commercial supplier and incubated at 37°C. On day 9 or 10 of incubation, a window was opened in the shell, and the CAM was exposed. hKEp NCAM¹⁺ cells separated by MACS were suspended in 50 μL medium and Matrigel (BD Biosciences) (1:1 by volume) and pipetted into a plastic ring placed on the chorioallantoic membrane (CAM). The egg was then sealed with adhesive tape and returned to the incubator. After 1 week, the graft was removed, paraffin-embedded, and serially sectioned at 6 μm for histological and immunocytochemical analyses, as described previously.

Grafting hKEpC NCAM¹⁺ Cells in NOD/SCID Mice

NCAM¹⁺ cells separated by MACS were suspended in 200 μL Matrigel (BD Biosciences) and were injected subcutaneously into NOD/SCID mice (Harlan Laboratories, Israel). At 14 days after injection, the grafts were removed, paraffin-embedded, and serially sectioned at 6 μm for histological and immunocytochemical analyses.

Induction of Acute Kidney Injury and NCAM¹⁺ Cell Injection

Acute kidney injury (AKI) was induced in female NOD/SCID mice by intramuscular injection with 50% hypertonic glycerol (Sigma-Aldrich) solution in water (9 μL/g body weight) after water deprivation for 22 hours. Controlled intramuscular injection of glycerol into the inferior hind limbs was performed under anesthesia (isoflurane inhalation; Abbott Laboratories, North Chicago, IL). Mice received an intravenous injection into the tail vein at 2 hours after glycerol injection, as follows: group 1, saline (n = 8); group 2, NCAM¹⁺ cells (n = 7, 1.5 × 10⁶ cells; n = 3, 0.43 × 10⁶); and group 3, NCAM^{1−} cells (n = 7, 1.5 × 10⁶ cells; n = 3, 0.43 × 10⁶). Human adult kidney cells were obtained from three different patients. Blood samples from mice were collected for blood urea nitrogen (BUN) and creatinine measurements at 3 and 14 days after glycerol injection; the animals were then sacrificed.

Animal experiments were performed in adherence to the National Institutes of Health Guide for the Care and Use of Laboratory Animals (8th edition, 2011), after approval by the Institutional Animal Care and Use Committee.

Immunotoxin (huN901-DM1) Assay in Vivo

BALB/c mice (Harlan Laboratories) received an intravenous injection into the tail vein 2 hours after glycerol injection, as follows: group 1, saline (n = 10); group 2, huN901-DM1 (18 μg/g; n = 10); and group 3, huN901 (18 μg/g; n = 10). Blood samples from mice were collected for creatinine measurements at 3 days after glycerol injection; the animals were then sacrificed.

For NCAM¹⁺ staining, mouse kidneys were harvested at 3 days after glycerol injection, paraffin-embedded, and serially sectioned at 6 μm for immunofluorescence analysis with anti-NCAM1 antibody (Epitomics, Burlingame, CA). For FACS analysis, injured mouse kidneys were soaked in collagenase for 1 hour and the cells were stained with huN901 and human-IgG—fluorescein isothiocyanate (Abcam, Cambridge, MA).

Genetic Cell Labeling

To establish genetically marked hKEpCs, HEK293 cells were initially transformed. HEK293 cells were maintained in DMEM supplemented with 10% fetal calf serum, l-glutamine, penicillin, and streptomycin (Biological Industries, Beit-Ha'emek, Israel), at 37°C in a 5% CO₂—enriched atmosphere. Cells were transfected using calcium phosphate with three lentiviral vectors: 7.5 μg pH-RCMV-mCherry, 5 μg ΔR8.2, and 2.5 μg pMD2.G. After 6 hours, the supernatants were replaced with 5 mL of fresh medium. Supernatants of transfected cells were supplemented with HEPES (pH 7.0; 50 mmol/L final concentration) and filtered through a 0.45-μm pore-size filter; 2 mL was placed on the targeted cells for 2 hours with the addition of 8 μg/mL Polybrene (hexadimethrine bromide; Sigma-Aldrich), and then 3 mL of fresh medium was added. These viral-like particles were used to infect hKEpCs (2 × 10⁵ cells in 60-mm-diameter dishes). Expression of the mCherry reporter gene was analyzed at 2 days after infection.
Human Cell Tracing in Mouse Kidney

mCherry-labeled hKEpCs were injected intravenously into NOD/SCID mice via the tail vein at 2 hours after glycerol-induced AKI. At 24 hours after cell injection, the animals were sacrificed. Both kidneys were surgically removed and were immediately analyzed with a CRi Maestro II in vivo imaging system (Caliper Life Sciences, Hopkinton, MA). Fluorescence images were obtained with an excitation wavelength of 465 nm and emission wavelength range of 500 to 800 nm.

RT-PCR of the Mouse Kidneys

RNA was isolated from the dissected kidneys using TRIzol reagent (Life Technologies) and then was reverse-transcribed as described above. Quantitative PCR was performed using a qPCR system for hGAPDH and mβ-actin, using gene-specific TaqMan gene expression assay premade kits (Life Technologies). The PCR products were analyzed by electrophoresis in 2.5% agarose gel and visualized by ethidium bromide staining.

Statistical Analysis

Statistical differences between two groups of data were compared by Student’s t-test. For all statistical analyses, the level of significance was set as \(P < 0.05 \). Except as otherwise indicated, data are expressed as means ± SEM.

Results

NCAM1 Is Activated in Proliferative hKEpC

After the retrieval of a small specimen of human adult kidney tissue from nephrectomized patients, tissue was dissociated into a single-cell suspension and cultured at low densities (approximately 1 cell/cm²) under adherent conditions in T75 flasks, to enhance clonal growth of hKEpCs.16 Proliferative hKEpCs comprise several types of kidney epithelia. To determine whether proliferative hKEpCs express NCAM1 after reaching confluence, despite a lack of \textit{in situ} expression in renal epithelia, we performed FACS analysis and found 15.9 ± 9.1% NCAM1 staining. Previous analysis has shown that putative renal stem-cell surface antigens CD24 and CD133,19,20 as well as the epithelial differentiation marker EpCAM, are widely expressed in proliferative hKEpC12 and therefore represent the entire growing culture, rather than a cell subset such as NCAM1.

NCAM1⁺ Cells Overexpress Renal Progenitor Markers

Having determined that proliferative hKEpCs can be stimulated to express NCAM1, we characterized sorted NCAM1⁺
cells (Supplemental Figure S1) by qPCR for the expression of the following markers associated with renal stemness\(^{10,21}\): early nephron progenitors (\textit{SIX2}, \textit{SALL1}, \textit{PAX2}, and \textit{WT1}) (Figure 1A), early surface antigens (\textit{FZD7}, \textit{ACVR2B}) (Figure 1B),\(^{11}\) polycomb group (\textit{BMI1}, \textit{EZH2}) (Figure 1C), Wnt pathway (\textit{\beta}-catenin, \textit{FZD7}) (Figure 1B), and the pluripotency and reprogramming factor \textit{POU5F1} (alias \textit{OCT4}) (Figure 1D). Analysis of proliferative hKEpCs generated from adult kidney from five different patients indicated significant overexpression of these genes in NCAM1\(^{+}\) cells, compared with the negative fraction. Concomitantly, we observed high vimentin (\textit{VIM}) and low E-cadherin (\textit{CDH1}) levels in NCAM1\(^{+}\) cells (Figure 1E), indicative of a more mesenchymal fate simulating earlier stages of renal development.

To test whether NCAM1\(^{+}\) cells retain differentiation markers, we analyzed expression of markers that indicate various mature nephron compartments (Figure 1E). qPCR revealed elevated aminopeptidase A (\textit{ENPEP}) and aquaporin 1 (\textit{AQP1}) levels and low sodium/chloride cotransporter (\textit{SLC12A3}; alias \textit{NCCT}) and aquaporin 3 (\textit{AQP3}) expression, indicating that NCAM1\(^{+}\) cells most likely originate from the proximal tubule. Further interrogation of NCAM1\(^{+}\) cells by immunofluorescence indicated enhanced \textit{SIX2} expression, as well as reduced levels of E-cadherin and pan-cytokeratin, compared with NCAM1\(^{-}\) cells. Immunostaining of \textit{ENPEP} and to a lesser extent LTA (proximal tubule markers), but not DBA (a marker of distal and collecting tubules), was more prominent in NCAM1\(^{+}\) cells (Figure 2). Thus, a distinct lineage in proliferative hKEpCs may be activated to acquire progenitor markers.

Global Transcriptional Changes in NCAM1\(^{+}\) Cells Show Reduced Expression of Genes Characteristic of Kidney Differentiation

Having identified specific characteristics of NCAM1\(^{+}\) cells, we aimed to assess at a global level the transcriptional changes taking place after separation, based on NCAM1 expression. For this purpose, we separated NCAM1\(^{+}\) and NCAM1\(^{-}\) populations and compared their global gene expression profile using oligonucleotide microarrays. Unsupervised clustering (Partek Genomic Suite version 6.5) of the entire human microarray data set clearly distinguished between the two groups, indicating a different biological entity and fundamental difference in gene expression patterns (Figure 3). We identified 316 genes differentially expressed...
Table 1 Gene Ontology Annotations for Up- and Down-Regulated Genes in the NCAM1+ versus NCAM1− Subpopulations

<table>
<thead>
<tr>
<th>GO Term</th>
<th>Count</th>
<th>%</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological processes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Up-regulated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflammatory response</td>
<td>13</td>
<td>11.40</td>
<td>1.54 \times 10^{-6}</td>
</tr>
<tr>
<td>Acute inflammatory response</td>
<td>8</td>
<td>7.02</td>
<td>3.86 \times 10^{-6}</td>
</tr>
<tr>
<td>Response to wounding</td>
<td>15</td>
<td>13.16</td>
<td>9.86 \times 10^{-6}</td>
</tr>
<tr>
<td>Immune response</td>
<td>17</td>
<td>14.91</td>
<td>1.10 \times 10^{-5}</td>
</tr>
<tr>
<td>Positive regulation of immune system process</td>
<td>10</td>
<td>8.77</td>
<td>2.84 \times 10^{-5}</td>
</tr>
<tr>
<td>Response to oxygen levels</td>
<td>8</td>
<td>7.02</td>
<td>4.18 \times 10^{-5}</td>
</tr>
<tr>
<td>Vasculature development</td>
<td>10</td>
<td>8.77</td>
<td>4.31 \times 10^{-5}</td>
</tr>
<tr>
<td>Defense response</td>
<td>15</td>
<td>13.16</td>
<td>5.13 \times 10^{-5}</td>
</tr>
<tr>
<td>Angiogenesis</td>
<td>8</td>
<td>7.02</td>
<td>5.70 \times 10^{-5}</td>
</tr>
<tr>
<td>Regulation of cell activation</td>
<td>8</td>
<td>7.02</td>
<td>1.63 \times 10^{-5}</td>
</tr>
<tr>
<td>Complement activation</td>
<td>5</td>
<td>4.39</td>
<td>1.69 \times 10^{-4}</td>
</tr>
<tr>
<td>Positive regulation of response to stimulus</td>
<td>9</td>
<td>7.89</td>
<td>1.73 \times 10^{-4}</td>
</tr>
<tr>
<td>Activation of plasma proteins involved in acute inflammatory response</td>
<td>5</td>
<td>4.39</td>
<td>1.85 \times 10^{-4}</td>
</tr>
<tr>
<td>Blood vessel development</td>
<td>9</td>
<td>7.89</td>
<td>2.23 \times 10^{-4}</td>
</tr>
<tr>
<td>Response to hypoxia</td>
<td>7</td>
<td>6.14</td>
<td>2.66 \times 10^{-4}</td>
</tr>
<tr>
<td>Innate immune response</td>
<td>7</td>
<td>6.14</td>
<td>3.12 \times 10^{-4}</td>
</tr>
<tr>
<td>Activation of immune response</td>
<td>6</td>
<td>5.26</td>
<td>4.01 \times 10^{-4}</td>
</tr>
<tr>
<td>Positive regulation of immune response</td>
<td>7</td>
<td>6.14</td>
<td>4.06 \times 10^{-4}</td>
</tr>
<tr>
<td>Regulation of lymphocyte activation</td>
<td>7</td>
<td>6.14</td>
<td>4.53 \times 10^{-4}</td>
</tr>
<tr>
<td>Blood vessel morphogenesis</td>
<td>8</td>
<td>7.02</td>
<td>5.08 \times 10^{-4}</td>
</tr>
<tr>
<td>Cell adhesion</td>
<td>14</td>
<td>12.28</td>
<td>7.04 \times 10^{-4}</td>
</tr>
<tr>
<td>Biological adhesion</td>
<td>14</td>
<td>12.28</td>
<td>7.13 \times 10^{-4}</td>
</tr>
<tr>
<td>Regulation of leukocyte activation</td>
<td>7</td>
<td>6.14</td>
<td>8.30 \times 10^{-4}</td>
</tr>
<tr>
<td>Positive regulation of cell activation</td>
<td>6</td>
<td>5.26</td>
<td>8.58 \times 10^{-4}</td>
</tr>
<tr>
<td>Complement activation, classical pathway</td>
<td>4</td>
<td>3.51</td>
<td>9.18 \times 10^{-4}</td>
</tr>
<tr>
<td>Regulation of T cell activation</td>
<td>6</td>
<td>5.26</td>
<td>0.00109</td>
</tr>
<tr>
<td>Down-regulated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell adhesion</td>
<td>21</td>
<td>13.82</td>
<td>6.92 \times 10^{-6}</td>
</tr>
<tr>
<td>Biological adhesion</td>
<td>21</td>
<td>13.82</td>
<td>7.07 \times 10^{-6}</td>
</tr>
<tr>
<td>Ectoderm development</td>
<td>10</td>
<td>6.58</td>
<td>1.01 \times 10^{-5}</td>
</tr>
<tr>
<td>Defense response</td>
<td>17</td>
<td>11.18</td>
<td>1.87 \times 10^{-5}</td>
</tr>
<tr>
<td>Epidermis development</td>
<td>9</td>
<td>5.92</td>
<td>3.22 \times 10^{-5}</td>
</tr>
<tr>
<td>Immune response</td>
<td>17</td>
<td>11.18</td>
<td>6.67 \times 10^{-5}</td>
</tr>
<tr>
<td>Taxis</td>
<td>8</td>
<td>5.26</td>
<td>7.39 \times 10^{-4}</td>
</tr>
<tr>
<td>Chemotaxis</td>
<td>8</td>
<td>5.26</td>
<td>7.39 \times 10^{-4}</td>
</tr>
<tr>
<td>Inflammatory response</td>
<td>11</td>
<td>7.26</td>
<td>9.16 \times 10^{-4}</td>
</tr>
<tr>
<td>Lymphocyte chemotaxis</td>
<td>3</td>
<td>1.97</td>
<td>0.00175</td>
</tr>
<tr>
<td>Leukocyte migration</td>
<td>5</td>
<td>3.29</td>
<td>0.00194</td>
</tr>
<tr>
<td>Cell-substrate adhesion</td>
<td>6</td>
<td>3.95</td>
<td>0.0022</td>
</tr>
<tr>
<td>Positive regulation of cell adhesion</td>
<td>5</td>
<td>3.29</td>
<td>0.00234</td>
</tr>
<tr>
<td>Molecular function</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Up-regulated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water transporter activity</td>
<td>4</td>
<td>3.51</td>
<td>8.19 \times 10^{-5}</td>
</tr>
<tr>
<td>Calcium ion binding</td>
<td>17</td>
<td>14.91</td>
<td>4.02 \times 10^{-4}</td>
</tr>
</tbody>
</table>

Table 1 (continued)

<table>
<thead>
<tr>
<th>GO Term</th>
<th>Count</th>
<th>%</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellular components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Up-regulated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extracellular region part</td>
<td>26</td>
<td>22.81</td>
<td>9.65 \times 10^{-9}</td>
</tr>
<tr>
<td>Extracellular region</td>
<td>33</td>
<td>28.95</td>
<td>5.29 \times 10^{-6}</td>
</tr>
<tr>
<td>Extracellular matrix</td>
<td>13</td>
<td>11.40</td>
<td>6.44 \times 10^{-4}</td>
</tr>
<tr>
<td>Extracellular space</td>
<td>17</td>
<td>14.91</td>
<td>2.70 \times 10^{-5}</td>
</tr>
<tr>
<td>Platelet alpha granule lumen</td>
<td>4</td>
<td>3.51</td>
<td>0.00316</td>
</tr>
<tr>
<td>Cytoplasmic membrane-bounded vesicle lumen</td>
<td>4</td>
<td>3.51</td>
<td>0.00386</td>
</tr>
<tr>
<td>Vesicle lumen</td>
<td>4</td>
<td>3.51</td>
<td>0.00438</td>
</tr>
<tr>
<td>Platelet alpha granule</td>
<td>4</td>
<td>3.51</td>
<td>0.0076</td>
</tr>
<tr>
<td>Extracellular matrix part</td>
<td>5</td>
<td>4.39</td>
<td>0.01004</td>
</tr>
<tr>
<td>Down-regulated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extracellular region</td>
<td>46</td>
<td>30.26</td>
<td>1.01 \times 10^{-9}</td>
</tr>
<tr>
<td>Plasma membrane part</td>
<td>44</td>
<td>28.95</td>
<td>1.83 \times 10^{-7}</td>
</tr>
<tr>
<td>Extracellular region part</td>
<td>27</td>
<td>17.76</td>
<td>2.84 \times 10^{-7}</td>
</tr>
<tr>
<td>Extracellular space</td>
<td>21</td>
<td>13.82</td>
<td>2.75 \times 10^{-6}</td>
</tr>
<tr>
<td>Platelet membrane</td>
<td>57</td>
<td>37.50</td>
<td>1.12 \times 10^{-5}</td>
</tr>
<tr>
<td>Tight junction</td>
<td>6</td>
<td>3.95</td>
<td>4.99 \times 10^{-4}</td>
</tr>
<tr>
<td>Occluding junction</td>
<td>6</td>
<td>3.95</td>
<td>4.99 \times 10^{-4}</td>
</tr>
<tr>
<td>Integral to plasma membrane</td>
<td>23</td>
<td>15.13</td>
<td>8.13 \times 10^{-4}</td>
</tr>
<tr>
<td>Intrinsic to plasma membrane</td>
<td>23</td>
<td>15.13</td>
<td>0.00109</td>
</tr>
<tr>
<td>High-density lipoprotein particle</td>
<td>4</td>
<td>2.63</td>
<td>0.00141</td>
</tr>
</tbody>
</table>

by NCAM1+ and NCAM1− cell fractions (>2.0-fold change, P < 0.05, analysis of variance), including 142 genes up-regulated and 174 down-regulated in NCAM1+ cells, compared with NCAM1− cells (Figure 3). The 20 most
up-regulated genes and the 20 most down-regulated genes are listed in Supplemental Table S1.

To infer the function of the 316 differentially expressed genes, we used the Gene Ontology (GO) enrichment analysis tool and DAVID. The results provided compelling evidence for epithelial dedifferentiation and EMT, including down-regulation of E-cadherin, various keratins (KRT7, KRT81, and KRT34), and tight junction genes (CLDN16, CLDN7, OCLN, CGN, MARVELD2, CLDN3), all indicating epithelial development. Consistently, we detected strong down-regulation of RBM35A (now reclassified as ESRP1, epithelial splicing regulatory protein 1). Recently, the activation of the FGFR2/RBM35A signaling pathway has been shown to maintain epithelial integrity and be critical for regulating the EMT phenotype.22-23 In addition, cell adhesion molecules were mostly down-regulated in NCAM1+ cells, whereas WNT5B, which provides permissive cues for cell movement during development, was up-regulated,24-27 suggesting enhanced migratory capacity of dedifferentiated cells.

The NCAM1+ fraction showed up-regulation of a variety of functional proteins (eg, ion channels, water transporter activity) (Table 1). Close examination of this group revealed genes that specify proximal tubular function [bicarbonate (SLC4A4), phosphate (SLC34A2), glucose (SLC2A9, SLC2A3), urea (SLC14A1), and cationic amino acid (SLC7A7) transporters/cotransporters, as well as aminopeptidase A (ENPEP), aquaporin 1 (AQP1), and carbonic anhydrase IX (CA9)], reaffirming a proximal origin of NCAM1+ cells. Finally, we observed up-regulation of gene groups that function in immune modulation and angiogenesis, which may be beneficial in the context of cell therapy (Table 1). Moreover, most transcriptional changes in our data set were noted in genes that regulate the extracellular compartment and may influence tissue remodeling (Table 1) (DAVID) (P < 0.00001).

NCAM1+ Cells Exhibit Robust Clonogenicity, Mesenchymal Differentiation, Sphere-Formation Capacity, and Retain Ability to Produce Renal Epithelial Tissue

We next tested whether NCAM-expressing cells can be distinguished by in vitro stem/progenitor assays. Calibration experiments showed that hKePCs cultured with human FKCM harbor enhanced clonogenic capacity (Supplemental Figure S2). We therefore assessed clonogenic potential by cloning single isolated NCAM1+ and NCAM1− cells under these conditions in 96-well plates. Experiments were

Figure 4 Functional analysis of NCAM1+ and NCAM1− cells in vitro. A: Sorted human NCAM1+ and NCAM1− cells were subjected to clone-formation assay performed in FKCM. Both NCAM1+ and NCAM1− cells were plated at 1 and 5 cells per well. NCAM1+ cells exhibited significantly higher clonogenic potential in all concentrations in all three experiments; cells originated from human adult kidney from three different patients. B: Sorted human NCAM1+ and NCAM1− cells were subjected to MTS proliferation assay. Both NCAM1+ and NCAM1− cell fractions were analyzed at 4, 5, and 7 days after sorting. NCAM1+ cells exhibited decreased proliferation rates. Data are representative of three experiments performed in triplicate. C: Differentiation of NCAM1+ cells into osteoblasts and adipocytes [arrows indicate positive staining]. Top row: Representative micrographs of histochemical staining after 10 days in control medium (DMEM) and OsteoDiff medium. Bottom row: Representative micrographs of histochemical staining after 21 days in control medium (DMEM) and AdipoDiff medium. D: Sphere-formation assay, NCAM1+ and NCAM1− cells isolated from low-passage cultures expanded in vitro exhibit exclusive capacity of the NCAM1+ fraction to form well-defined spheres after 7 days under low-attachment culture conditions. Data are expressed as means ± SEM. Scale bars: 200 μm (C, top row); 100 μm (C, bottom row, and D). Original magnification: ×10 (C, top row); ×20 (C, bottom row, and D). *P < 0.05. 00, optical density.
performed using cells from three different patients. Of the single NCAM1+ cells, 3% to 16% divided and eventually filled the culture well with a confluent monolayer, whereas the majority of single NCAM1− cells did not (Figure 4A). Interestingly, a parallel analysis of proliferation rate using the MTS assay indicated reduced proliferation in NCAM1+ cells, which were again found to generate DBA+ tubule structures (Figure 5B). Thus, dedifferentiation of NCAM1+ cells in vitro may lead in turn to a wider renal potential on grafting in vivo.

In Vitro and in Vivo Treatment with Anti-NCAM Antibody Drug Conjugate

We next analyzed the effects of depletion of NCAM1+ cells using an anti-NCAM antibody drug conjugate (NCAM-ADC; N901 antibody conjugated to cytotoxic DM1). Initially, we calibrated the cell concentration and ADC concentration required to deplete NCAM1+ cells from proliferative hKEpC cultures (Supplemental Figure S4). As seen from a representative FACS analysis, treatment with NCAM-ADC decreased NCAM1 expression (Figure 6A). Additionally, the MTS proliferation assay showed diminished cell proliferation after ADC treatment, as a result of cell death caused by the immunoconjugate (Figure 6B). Clonogenic capacity and sphere-forming ability of NCAM-ADC–treated cultures were decreased, compared with untreated cells and cells treated with antibody alone (Figure 6, C and D), indicating that depletion of NCAM1+ cells in hKEpCs significantly abrogates stemness traits.

Figure 5 In vivo analysis of sorted human NCAM1+ cells. Sorted NCAM1+ cells (0.43 × 10⁶) were grafted onto the chick CAM and assessed after 7 days. A: H&E staining of the grafts reveals tubular formation. LTA staining is positive (green) in unorganized cells (small arrows); no positive staining was detected in organized tubules (large arrows). No DBA staining was detected in tubules (arrows) or other structures. Nuclei were stained with DAPI (blue). Boxed regions are shown at higher magnification in the corresponding middle panels. B: NCAM1+ and NCAM1− cells were injected subcutaneously into NOD/SCID mice and grafts were analyzed at 2 weeks after transplantation. Analysis of renal structures for expression of segment-specific antibodies reveals positive staining for LTA staining only in grafts derived from NCAM1− cells, but positive staining of DBA and cytokeratin in both NCAM1− and NCAM1+ grafts. Scale bars: 100 μm (A, right); 200 μm (A, middle and left; B, left and right).

whereas the NCAM1− fraction was devoid of this capacity (Figure 4D), suggesting that NCAM1+ cells, although deviating toward mesenchyme, maintain in vitro plasticity and epithelial fate.

We further analyzed whether dedifferentiated NCAM1+ could also redifferentiate to generate epithelial structures in vivo and grafted cells in the chick CAM assay and on transplantation into the subcutaneous space of NOD/SCID mice. Importantly, multipotential mesenchymal cells were completely devoid of tubulogenic potential on CAM grafting.16 After 1 week, implantation of 0.43 × 10⁶ NCAM1+ cells into the CAM revealed large, well-defined grafts (Supplemental Figure S3A). H&E staining of graft sections revealed extensive morphogenesis into tubular structures (Figure 5A). These tubular structures did not express segment-specific kidney maturation markers (cytokeratin/MNF116, LTA, DBA). These markers appear only at late stages of human kidney development in differentiated structures (Supplemental Figure S3, C and D). Therefore, after dedifferentiation, the observed robust redifferentiation capacity of NCAM1+ cells on the chick CAM may follow developmental MET, leading initially to generation of primitive tubular structures (devoid of maturation markers) reminiscent of early kidney development. In contrast to NCAM1+ cells, less dedifferentiated NCAM1− cells were found to generate DBA− tubule structures after 1 week (Supplemental Figure S3B). Because the CAM model has a 1-week time limit for analysis, we used grafts developed in the NOD/SCID mouse for a 2-week period. At 2 weeks, NCAM1+ cells reconstituted differentiated human cytokeratin+ tubules (Figure 5B) and could generate both LTA+ and DBA+ type proximal and distal tubules, in contrast with NCAM1− cells, which were again found to generate only DBA− tubules (Figure 5B). Therefore, dedifferentiation of NCAM1+ cells in vitro may lead in turn to a wider renal potential on grafting in vivo.
Although NCAM1 is not expressed in the resting mature nephron, it reappears in scattered proximal tubular cells after AKI.28 We therefore evaluated the consequences of eliminating NCAM+ cells during a regenerative response. We used the glycerol-induced acute tubular injury model in BALB/c mice, in which peak functional renal injury appears 72 hours after glycerol injection and spontaneous recovery occurs thereafter. Similar to our findings for ischemic injury, we found NCAM1 to re-express after toxic tubular injury on the surface of renal epithelia, and up-regulation of NCAM1 levels was readily detected with the NCAM N901 antibody (Figure 6, E and F). NCAM-ADC was administered 2 hours after glycerol injection and renal function was monitored. At 72 hours, renal function was further significantly compromised, compared with controls. Importantly, unconjugated NCAM N901 antibody, which does not deplete NCAM+ cells, counteracted the effects of the NCAM-ADC (Figure 6G).

In Vivo Effects of Human NCAM+ Cells in Glycerol-Induced AKI

Having established that in situ NCAM targeting can modulate renal function during AKI, we tested the effects of exogenous administration of human NCAM+ cells. We calibrated glycerol-induced AKI in NOD/SCID mice and determined a sublethal injection dose of glycerol (9 \(\mu\)L/g) for further experiments. A control group of mice was used to determine basal levels for serum creatinine and BUN in normal NOD/SCID mice (\(n = 12\)), which averaged 0.37 ± 0.02 mg/dL and 21.43 ± 2.37 mg/dL, respectively. Similar to injury in BALB/c mice intramuscular injection of glycerol on day 0 resulted in an increase in creatinine and BUN levels, with peak levels observed at 48 to 72 hours. Thereafter, BUN and creatinine levels declined, and spontaneous recovery was observed after 14 days. Intravenously administered NCAM+ cells (2 hours after glycerol injection) further compromised renal function at 72 hours. Importantly, unconjugated NCAM N901 antibody neutralized the effects of anti-NCAM conjugated toxin, significantly reducing peak renal injury at 72 hours.
injection) were detected in the kidney at significant amounts within the first 24 hours after injection, but were diminished by day 3 (Figure 7A). NCAM1+ cells did not show exclusive tropism for the injured kidney, but were intensively detectable also in the lungs (Supplemental Figure S5). Analysis of BUN and creatinine levels revealed attenuate BUN peaks (Figure 7B) and tend to attenuate creatinine peaks (Figure 7C) at 3 days, compared with saline-treated mice (Figure 7, B and C). However, there was no significant difference between NCAM1+ and NCAM1− cells with respect to kidney function in AKI (Figure 7, B and C).

Discussion

Using immunosorting to target the surface marker NCAM1, we identified and characterized a unique population of human kidney stem/progenitor-like cells, which arise from primary cultures of human kidney epithelial cells. This subpopulation could be specifically activated in growing cultures to over-express embryonic renal stemness markers and could be distinguished in clonal assays, forming large numbers of colonies from single cells in the presence of human FKCm. NCAM1+ cells promptly reverted to a less differentiated mesenchymal-like cell phenotype, down-regulated the expression of mRNAs encoding epithelial markers such as E-cadherin, and up-regulated mesenchymal marker transcripts, but then redifferentiated into epithelial structures in kidney organoids and on grafting as single-cell suspensions into the chick CAM or mouse. Importantly, targeting NCAM1-expressing cells during AKI could modulate disease course.

In embryogenesi, EMT and the reverse process (MET) play central roles.29–31 Early in development, for example, mesoderm generated by EMTs develops into multiple tissue types; later in development, mesodermal cells give rise to epithelial organs, such as the kidney, a time frame in which NCAM1 is expressed. The loss of E-cadherin expression during EMT is associated with up-regulation of NCAM1 in human breast epithelia, indicating that NCAM1 is a reliable surface marker to identify cells undergoing this process.32,33 One can therefore take advantage of NCAM1 not only to sort out developmental renal progenitors before completion of epithelialization during the embryonic MET process13 but also for cells that first emerge during dedifferentiation/EMT in adult human epithelial kidney cells.

When human kidney epithelia are placed in adhesion cultures they are released from normal quiescence to become proliferative hKEpCs. We have repeatedly observed that proliferative hKEpCs, comprising different types of kidney epithelia, are uniformly positive for the CD133/CD24 cell surface markers. CD133/CD24 have been previously suggested as markers of multipotent epithelial stem cells in the kidney.19,20 Nevertheless, in vivo genetic fate mapping has brought into question the presence of such multipotent epithelial stem cells.34 Moreover, a recent detailed pathological analysis of human kidneys and acute tubular necrosis biopsies suggested, at least for the proximal tubule, that CD133/CD24 are markers of dedifferentiated epithelia rather than a genuine stem cell population.35 Thus, in terms of in vitro precursor relationships, CD133/CD24 mark the entire bulk of proliferating hKEpCs (those that assume some degree of dedifferentiation upon growth in culture), whereas NCAM1 represents the subset that has reverted along the EMT axis to behave in many ways similar to tissue stem cells. Thus, as previously reported for breast epithelial cells,36 with the present findings we suggest for the first time a link between partial dedifferentiation/EMT and the gain of kidney stem-cell properties leading to a stem/progenitor state in vitro.

Our results are interesting in light of previous studies analyzing the cellular events involved in regeneration of renal tubules in animal models. Differentiated tubular cells are thought to dedifferentiate and proliferate after AKI. After enhanced cell proliferation, transiently dedifferentiated regenerating cells are believed to repopulate the damaged area and then redifferentiate into mature epithelial cells to reconstruct the functional integrity of the nephron (reviewed by Bonventre and Yang37). This process has been shown to activate developmental programs, including the reappearance of early stem/progenitor cell markers.3,12,38 Accordingly, NCAM1, which is not expressed in the mature nephron, has been shown to be reactivated in the rat after ischemic injury in the S3 segment of the proximal tubule, an area with a high regenerative response, recapitulating its expression in the developing kidney toward rebuilding the tubule.28 NCAM1+ cells sorted from proliferative hKEpCs and disclosing a proximal tubular origin may
share similarities with this proximal cell fraction that re-expresses NCAM1 after AKI and is involved in the in vivo regenerative response. Interestingly, the tubular structures developed on the chick CAM at 1 week after grafting of human NCAM1⁺ cells were devoid of renal maturation markers, and differentiation into LTA⁺ proximal tubules and additional tubule types (not observed with NCAM1⁻ counterparts) was apparent at 2 weeks in the SCID model. This unique pattern indicates that, when re-establishing the tubule in situ, transient reversion of NCAM1⁺ cells to a presumably early and less committed developmental stage in vitro may be followed by stepwise redifferentiation, mimicking renal ontogeny and conferring a wider renal differentiation potential.

Additional parallels can be drawn from experiments with the NCAM antibody drug conjugated, which afforded the opportunity to analyze the consequences of NCAM⁺ cell depletion, demonstrating both diminished stemness and clonogenic response in vitro and worsening of AKI in vivo. Thus, NCAM1⁺ cells activated in vitro to acquire stem/progenitor cell characters are likely to be important to the regenerative response that follows AKI in vivo and thus represent a target for intervention. The fact that NCAM1 does not express in the resting kidney epithelia further increases its validity as a therapeutic target. Other potential regulators revealed by microarrays to be specific to NCAM-expressing cells include ESRP1 and FGFR2, both of which control developmental pathways and epithelial morphogenesis, and as such may serve as interventional targets.

Of note, the beneficial effects of exogenous NCAM1⁺ cells on renal function in the AKI were not exclusive. This lack of exclusive response may be related to the mode of cell administration; with the intravenous route, distribution of cells to the kidney is very limited, and kidney-derived cells arrive and reside in the lungs. This in turn may preclude the differential action of a specific cell subset that is likely dependent on migration to diseased renal tissue and calls for intra-arterial or direct injection modes of cell administration. In addition, it may very well be that any kidney-derived cell exerts some beneficial effect on exogenous delivery. Importantly, the identification of markers of specific cell subsets that participate in the renal regenerative machinery and their in situ targeting by peptides, antibodies, and small molecules may be a superior strategy to exogenous cell therapy for AKI.

Supplemental Data

Supplemental material for this article can be found at http://dx.doi.org/10.1016/j.ajpath.2013.07.034.

References

1. Weissman I: The ISSCR: who are we and where are we going? Cell Stem Cell 2009, 5:151–153

