Increased Autophagy Markers Are Associated with Ductular Reaction during the Development of Cirrhosis

Tzu-Min Hung,*, Ray-Hwang Yuan,*, Wei-Pang Huang,† Yu-Hsuan Chen,‡ Yu-Chun Lin,† Chih-Wen Lin,‖ Hong-Shiee Lai,* and Po-Huang Lee*,**

From the Department of Surgery,* National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei; the Departments of Medical Research† and Surgery,** E-DA Hospital, Kaohsiung; the Department of Integrated Diagnostics and Therapeutics,§ National Taiwan University Hospital, Taipei; the Department of Life Science,x National Taiwan University, Taipei; the Institute of Molecular Medicine,‡ National Taiwan University College of Medicine, Taipei; and the Division of Gastroenterology and Hepatology,‖ Department of Medicine, E-DA Hospital/I-Shou University, Kaohsiung, Taiwan

Accepted for publication May 12, 2015.
Address correspondence to Po-Huang Lee, M.D., Ph.D., Department of Surgery, National Taiwan University Hospital, No. 7 Chung-Shan South Rd, Taipei, Taiwan. E-mail: pohuang1115@ntu.edu.tw.

Autophagy is a regulatory pathway in liver fibrosis. We investigated the roles of autophagy in human cirrhotic livers. Cirrhotic and noncirrhotic liver tissues were obtained from patients with hepatocellular carcinoma, and liver tissues from live donors served as control. Patients with cirrhotic livers had significantly increased levels of various essential autophagy-related genes compared with noncirrhotic livers. In addition, colocalization of autophagy marker microtubule-associated protein 1 light chain 3B (LC3B) with lysosome-associated membrane protein-1, increased levels of lysosome-associated membrane protein-2, and increased maturation of lysosomal cathepsin D were observed in cirrhotic livers. By using dual-immunofluorescence staining, we demonstrated that increased LC3B was located mainly in the cytokeratin 19-labeled ductular reaction (DR) in human cirrhotic livers and in an experimental cirrhosis induced by 2-acetylaminofluorene (AAF) with carbon tetrachloride (CCl4), indicating a conserved response to chronic liver damage. Furthermore, an AAF/CCl4-mediated increase in DR and fibrosis were attenuated after chloroquine treatment, suggesting that the autophagy-lysosome pathway was essential for AAF/CCl4-induced DR-fibrosis. In conclusion, we demonstrated that increased autophagy marker positively correlated with DR during the development of cirrhosis. Therefore, targeting autophagy may hold therapeutic value for liver cirrhosis. (Am J Pathol 2015, 185: 2454–2467; http://dx.doi.org/10.1016/j.ajpath.2015.05.010)

Autophagy is an intracellular degradation process by which protein aggregates, damaged organelles, and invading microbes are delivered to the lysosome to maintain cellular homeostasis. Surrounding the cytosolic constituents, autophagosome is a double-membrane structure that fuses with a lysosome, forming an autolysosome for subsequent degradation in autophagy.1,2 Autophagy was originally discovered from liver experiments.3 Features and functions particular to the liver identify it as an organ in which autophagy potentially plays an important role.3 Furthermore, increasing evidence indicates that alteration of autophagy is the mechanism behind numerous liver diseases.4–6

Cirrhosis, a scarring response that enhances extracellular matrix accumulation after chronic injury, is the last stage of liver fibrosis. It is generally believed that the activation of hepatic stellate cells (HSCs) is a key event in liver fibrogenesis.7 Recently, two different groups independently demonstrated that autophagy can regulate lipid droplets in HSCs and then drive HSC activation.8,9 HSC activation, both in vitro and in rodent liver injury models, is associated with features of autophagy induction, including a marked increase in autophagic vacuoles, LC3-II levels, and autophagic flux.8,9 The blocking of autophagy in cultured cells, with either 3-methyladenine or specific siRNAs to Atg5 or

Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.ajpath.2015.05.010

Supported in part by National Science Council research grants NSC-101-2314-B-650-005 (T.M.H.) and NSC-102-2314-B-650-007-MY3 (P.H.L.). Disclosures: None declared.
Table 1 Characteristics of the Study Subjects

<table>
<thead>
<tr>
<th>Name</th>
<th>Sex</th>
<th>Age, years</th>
<th>Hepatitis</th>
<th>Pathological diagnosis*</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>F</td>
<td>59</td>
<td>No</td>
<td>Donor normal liver</td>
</tr>
<tr>
<td>N2</td>
<td>M</td>
<td>49</td>
<td>No</td>
<td>Donor normal liver</td>
</tr>
<tr>
<td>N3</td>
<td>M</td>
<td>78</td>
<td>HCV</td>
<td>Metavir score, 1</td>
</tr>
<tr>
<td>N4</td>
<td>M</td>
<td>40</td>
<td>HCV</td>
<td>Metavir score, 0</td>
</tr>
<tr>
<td>N5</td>
<td>M</td>
<td>58</td>
<td>HCV</td>
<td>Metavir score, 1</td>
</tr>
<tr>
<td>N6</td>
<td>M</td>
<td>63</td>
<td>HCV</td>
<td>Metavir score, 2</td>
</tr>
<tr>
<td>N7</td>
<td>M</td>
<td>68</td>
<td>HCV</td>
<td>Metavir score, 2</td>
</tr>
<tr>
<td>N8</td>
<td>M</td>
<td>64</td>
<td>HCV</td>
<td>Metavir score, 1</td>
</tr>
<tr>
<td>N9</td>
<td>M</td>
<td>79</td>
<td>HCV</td>
<td>Metavir score, 2</td>
</tr>
<tr>
<td>C1</td>
<td>M</td>
<td>70</td>
<td>HCV</td>
<td>Grade A</td>
</tr>
<tr>
<td>C2</td>
<td>M</td>
<td>65</td>
<td>HCV</td>
<td>Grade A</td>
</tr>
<tr>
<td>C3</td>
<td>M</td>
<td>53</td>
<td>HCV</td>
<td>Grade A</td>
</tr>
<tr>
<td>C4</td>
<td>F</td>
<td>71</td>
<td>HCV</td>
<td>Grade A</td>
</tr>
<tr>
<td>C5</td>
<td>F</td>
<td>74</td>
<td>HCV</td>
<td>Grade A</td>
</tr>
<tr>
<td>C6</td>
<td>F</td>
<td>61</td>
<td>HCV</td>
<td>Grade A</td>
</tr>
<tr>
<td>C7</td>
<td>M</td>
<td>67</td>
<td>HCV</td>
<td>Grade B</td>
</tr>
<tr>
<td>C8</td>
<td>F</td>
<td>59</td>
<td>HCV</td>
<td>Grade B</td>
</tr>
<tr>
<td>C9</td>
<td>F</td>
<td>55</td>
<td>HCV</td>
<td>Grade C</td>
</tr>
<tr>
<td>C10</td>
<td>M</td>
<td>68</td>
<td>HCV</td>
<td>Grade B</td>
</tr>
</tbody>
</table>

*Normal liver had neither serological nor histopathological evidence of liver disease. Metavir score indicates fibrosis from stages 0 to 4; 0 indicates absent, 1 indicates portal fibrosis, 2 indicates portal fibrosis with few septa, 3 indicates septal fibrosis, and 4 indicates cirrhosis.

Cirrhotic liver specimens were obtained from seven patients with hepatitis C-related cirrhosis concurrent with hepatocellular carcinoma (patients C1 to C7). These patients had Child-Pugh grade A, except patient C7. Two other cirrhotic patients were diagnosed with hepatitis C-related cirrhosis for liver transplantation and had Child-Pugh grades B and C (patients C8 and C9).

F, female; M, male; HCV, hepatitis C virus.

Arg7, leads to attenuated HSC activation and fibrogenesis. More important, by using a mouse strain with the HSC-specific deletion of Arg7, Hernández-Gea et al demonstrated attenuated fibrosis after sustained liver injury by either carbon tetrachloride (CCL4) or thioacetamide. Although these two studies described the role of autophagy in promoting liver fibrosis, the autophagic function in human cirrhotic livers remains largely unknown and requires to be elucidated.

Recently, considerable attention is being directed toward the role of epithelial components (particularly cholangiocytes) in liver fibrosis through the so-called ductular reaction (DR). The DR, which occurs at the periphery of portal tracts, is a common typical response to injury observed in human liver diseases. The DR can arise from a proliferation of preexisting bile ductular cells, from hepatic progenitor cells, or from the biliary metaplasia of hepatocytes. The term ductular describes that the containing cells exhibit a ductular phenotype. The term reaction is used to recognize that the epithelial component is accompanied by a complex of extracellular matrix, inflammatory cells, endothelial cells, and mesenchymal cells in the reactive lesions. Increasing evidence indicates a compelling association between the extent of the DR and the severity of fibrosis in patients with chronic hepatitis C (CHC), alcoholic and nonalcoholic fatty liver diseases, and genetic hemochromatosis.

Although the profibrosis effect of autophagy was performed in HSCs, an investigation of autophagy regulation in other liver fibrogenic cells is still lacking. Moreover, clinicopathologic studies to support the link between autophagy and liver fibrosis are insufficient. In this study, both measurements reflecting the number of autophagosomes and measurements of autophagic substrates were applied to patients with and without cirrhosis. We also checked the lysosomal function in these tissue samples. Rats that were treated with 2-acetaminofluorene (AAF)/CCL4 were also used as an animal model to confirm the findings in human samples and for a proof-of-concept intervention study.

Materials and Methods

Human Liver Specimens

The study design was reviewed and approved by the ethics committee of the National Taiwan University Hospital (Taipei, Taiwan; approval number 201212069RIND). Written informed consent was obtained from each subject. Fourteen liver tissues obtained from patients with CHC who underwent curative resection for hepatocellular carcinoma (HCC) were classified into two groups: cirrhotic groups (C-group, C1 to C7; seven cases) and noncirrhotic group (N-group, N3 to N9; seven cases), according to the pathological examination of the nontumorous region of HCC (Table 1). As controls, two normal liver tissues were obtained from healthy living liver donors and included into the noncirrhotic group (N1 and N2), and two CHC-related cirrhotic livers from patients receiving liver transplantation were included into the cirrhotic group (C8 and C9). Detailed pathological diagnoses of all 18 subjects are described in Table 1. All subjects were selected randomly, and none of them had received any therapy before surgery. For all subjects, a liver specimen was taken after surgery, immediately snap frozen with isopentane cooled by liquid nitrogen, and stored at −80°C until further use.

Animal Model of Liver Cirrhosis

Male Sprague-Dawley rats (200 to 250 g body weight) were raised at 20°C to 22°C with a 12-hour light-dark cycle. All animal experimental procedures were approved by the Institute of Animal Care and Use Committees at E-DA Hospital (Kaohsiung, Taiwan). Liver fibrosis was induced by i.p. injection with 50% of CCL4 (diluted 1:1 in olive oil) twice a week for 6 consecutive weeks. To enhance fibrogenic response and increase DR expansion, AAF (0.02% in pellet form) was administered for 5 continuous days before the first CCL4 injection and every other day during the period of cirrhosis progression. We
used a dose of 2 mL/kg for the initial CCL₄ injection and 1 mL/kg for subsequent injection, as described in the study by Chobert et al. An additional group of untreated rats was used as a control and fed a standard chow. For measuring autophagic flux, 100 mg/kg chloroquine (CQ; Sigma, St. Louis, MO) was administered to rats via i.p. injection on the end of 6 weeks AAF/CCL₄ treatment, and the animals were sacrificed 4 hours thereafter. Rats were injected with phosphate-buffered saline (PBS) as vehicle control. Two independent experiments were performed.

Dual-Immunofluorescence Staining

Dual-immunofluorescence staining was used to determine the localization of LC3B with lysosome-associated membrane protein-1 (LAMP-1), α-smooth muscle actin (α-SMA), and...
Cytokeratin (CK) 19. Cryosections from liver tissues (5 μm thick) were fixed in 4% paraformaldehyde in PBS for 10 minutes at 4°C, and subsequently permeabilized in PBS containing 0.5% (v/v) Triton X-100 (Sigma) for 15 minutes at room temperature. After incubation with the Image-iT FX signal enhancer (Life Technologies, Carlsbad, CA) and blocking with 20% normal bovine serum, the sections were incubated with the following primary antibodies: rabbit polyclonal anti-LC3B (dilution, 1:800; Sigma), mouse monoclonal anti-LAMP-1 (dilution, 1:200; BD Bioscience, Franklin Lakes, NJ), anti-α-SMA (dilution, 1:500; Sigma), or anti-CK19 (dilution, 1:100; Novocastra, Newcastle-upon-Tyne, UK) antibody at 4°C overnight. After washing, the sections were incubated with a cocktail of Alexa Fluor 488–conjugated goat anti-rabbit IgG and Alexa Fluor 594–conjugated goat anti-mouse IgG (dilution, 1:500; Life Technologies) at room temperature for 1 hour, mounted with Vectashield-DAPI (Vector Laboratories, Burlingame, CA), and observed with a Zeiss (Jena, Germany) LSM780 confocal microscope. The negative control condition used nonimmune rabbit IgG or mouse isotype IgG instead of the primary antibody.

Western Blot Analysis

Frozen liver tissues were homogenized, and the total protein extracts were prepared as previously described. The membranes were probed with the following antibodies: polyclonal anti-LC3B (dilution, 1:4000; Sigma), monoclonal anti-ATG5 (dilution, 1:1000; Sigma), polyclonal anti-ATG7 (dilution, 1:4000; Sigma), polyclonal anti-LAMP-2 (dilution, 1:2000; GeneTex, Irvine, CA), polyclonal anti-cathepsin D (dilution, 1:2000; GeneTex), polyclonal anti-p62/SQSTM1 (dilution, 1:4000; Sigma), monoclonal anti-ubiquitin (dilution, 1:1000; Sigma), and monoclonal anti-β-actin (dilution, 1:10,000; Novus, Littleton, CO). After overnight incubation with each primary antibody, the
membranes were incubated with horseradish peroxidase—
conjugated secondary antibody. The proteins were then detected
using an enhanced chemiluminescence detection system
(Thermo Fisher Scientific Inc., Waltham, MA).

Isolation of Total RNA and Quantitative Real-Time PCR
Analysis

The total RNA from specimens was extracted using TRIzol
reagent (Life Technologies). Total RNA (1 µg) was reverse
transcribed using random hexamer and Moloney Murine Leu-
kemia Virus Reverse Transcriptase (Thermo Fisher Scientific
Inc.). Subsequently, quantitative RT-PCR was performed using
TaqMan Gene Expression Assays (Life Technologies). The
assay identification numbers of the validated genes are as fol-
lows: Hs00797944 for LC3B, Hs00169468 for ATG5,
Hs00177654 for p62/SQSTM1, and
mRNA transcript levels were normalized to glyceraldehyde-3-
phosphate dehydrogenase. Hs99999905 for glyceraldehyde-3-phosphate dehydrogenase.

Statistical Analysis

All statistical analyses were performed using SPSS version
16.0 statistical software package (SPSS, Chicago, IL).
Quantitative variables were presented as the means ± SD.
Between-group comparisons between different groups were
performed using the U test or t-test. Pearson’s correlation
was used to determine the correlation coefficients between
the expression levels of LC3B and CK19 of liver tissues
in 18 patients. All tests were two sided, with a significant
P < 0.05.

Results

Increased Autophagy Markers in Human Cirrhotic
Livers

Immunofluorescence analysis showed a markedly increased
punctate LC3B staining in the cirrhotic livers when
compared with noncirrhotic livers (Figure 1A). After
quantification, we observed that the intensity of LC3B was
significantly higher in the C-group than in the N-group
(P < 0.01) (Figure 1B).

LC3B-II is a reliable protein marker for autophagosomes,
and its levels correlate with the number of autophagic
vesicles. To confirm that LC3B staining in cirrhotic livers
reflects an increase in the autophagosome-bound LC3B-II
rather than the cytoplasmic LC3B-I, we used Western blot
analysis to investigate the protein expression of LC3B. The
LC3B-II protein was expressed abundantly in the cirrhotic
livers and only moderately in noncirrhotic livers
(Figure 1C). Western blot analysis for other autophagic-
related genes was performed in parallel on all samples in the
two groups. The ATG5-12 complex and ATG7 protein
levels were significantly higher in the subjects from the C-
group than in the subjects from the N-group (Figure 1C).
The expression of α-SMA is used as a fibrogenesis marker.

To establish an overview of the autophagic process,
mRNA levels of the autophagy genes were also assessed. In
alignment with the protein results, the LC3B and ATG7
mRNA levels were significantly higher in the cirrhotic livers
than in the noncirrhotic controls (Figure 1D). To decrease the
variability between individual patients, three sets of surgical
specimens taken from first operation for the primary HCC
and secondary operation for recurrent HCC in the same pa-
tients were used to examine the association between auto-
phagy and cirrhosis. The LC3B-II and ATG5-12 complex
protein levels were greater in the cirrhotic tissues compared

Transmission Electron Microscopy

The specimens were excised and fixed with fixative buffer
containing 2% paraformaldehyde and 2.5% glutaraldehyde
in 0.1 mol/L PBS and were stored at 4°C until embedding.
Tissue samples were then postfixed in 1% phosphate-
buffered osmium tetroxide and embedded in Spurr’s resin.
Ultrathin sections were stained with 0.2% lead citrate and
1% uranyl acetate. Images were acquired using a trans-
mission electron microscope (model TEM-1400; Jeol,
Tokyo, Japan).

Figure 3 LC3B does not co-express in α-smooth muscle actin (α-SMA)—
positive myofibroblasts. Dual-immunofluorescence staining for LC3B (A) and α-
SMA (B) in a chronic hepatitis C patient with cirrhosis. Liver tissues were stained
with α-SMA to identify myofibroblasts (including portal fibroblasts and acti-
vated hepatic stellate cells). C: Merged images show no colocalization of LC3B
and α-SMA. D: Boxed areas in C. A closer look at the ductule structures.
Figure 4 Increased autophagy markers in bile ductular lineage cells. A: LC3B expression in ductular reaction cells. Dual-immunofluorescence images for LC3B (green) and cytokeratin 19 (CK19; red) in three subjects show that CK19-labeled ductular cells express LC3B (merged images). B–D: Ultrastructural assessment of autophagic changes in the bile ductules of livers from a donor and a recipient. Electron micrographs illustrate autophagic vacuoles in the bile ductules from a healthy donor (B) and a cirrhotic recipient (C and D). Higher magnifications of the individual cholangiocyte shown below are enlarged micrographs from the respective boxed area. Arrows point to double-membrane autophagosomes. AVd, degradative autophagic vacuoles.
with the noncirrhotic tissues in patients 1 and 3 (Figure 1E).
Together, these results demonstrated that increased auto-
phagy markers were present in human cirrhotic livers.

Increased Autophagic Process Could Be Functional in
Human Cirrhotic Livers

Because autophagy is a lysosomal degradation mechanism,
lysosomal functions were assessed in parallel in human
samples. In cirrhotic livers, the protein levels of LAMP-2 were
greater than those in noncirrhotic livers (Figure 2A), suggesting
an increase of lysosome number. We next investigated the
maturation of the lysosomal hydrolase, cathepsin D. Synthe-
sized as 46-kDa procathepsin D, cathepsin D is targeted to ly-
sosomes and further cleaved into a mature enzyme comprising
noncovalent 28- and 15-kDa polypeptides. By using an anti-
body that detects both 28-kDa and the precursor forms of
cathepsin D, a decrease in the precursor form and an

Figure 5 Increased autophagy marker correlates the degree of ductular reaction and fibrosis severity. A—C: Dual-immunofluorescence analysis showing the colocalization of LC3B (green) staining with cytokeratin 19 (CK19; red). The expression of both molecules increased from mild to severe fibrosis. Images are from representative patients with fibrosis stage F1 (A), stage F2 (B), and stage F4 (C). Insets: Higher magnifications of the bile duct (asterisks). D: Negative control counterstain (a consecutive section of the same cirrhotic tissues in which the primary antibodies were replaced with mouse and rabbit normal IgG). E: The fluorescence intensities of the LC3B and CK19 of 18 subjects were measured and used for a correlation analysis with one another. The correlation coefficients (R) and their respective significance levels were calculated using Pearson’s correlation analysis. P < 0.001.
accompanying increase in the mature 28-kDa form of cathepsin D were observed in the cirrhotic livers, indicating increased lysosomal activity (Figure 2A).

The clearance of autophagosomes occurs via fusion with lysosomes. We analyzed the subcellular localization of the lysosomal marker LAMP-1 and the autophagosomal marker LC3B using confocal microscopy. The punctate LC3B staining of cirrhotic livers was colocalized with LAMP-1, thereby providing evidence of the fusion of autophagosomal compartments with lysosome (Figure 2B).

To examine the autophagic flux in another manner, we analyzed the levels of the LC3-binding protein p62, which is known to be degraded by autophagy and to act as an adaptor to convey ubiquitinated proteins to autophagosomes for lysosomal degradation. There was no significant difference in the protein levels of p62 between the noncirrhotic and cirrhotic livers (Figure 2A). However, a decrease in the ubiquitinated proteins was observed in the cirrhotic livers (Figure 2A). It has been reported that increases in the amount of p62 are seen in some situations where there is an increase in autophagic flux, and they might be explained by simultaneous transcriptional induction of the gene encoding p62. Quantitative RT-PCR analysis showed the p62 mRNA levels to be significantly higher in the cirrhotic livers than in the noncirrhotic controls (Figure 2C), further supporting this possibility.

Increased Autophagy Marker Correlates the Degree of DR and Fibrosis Severity

We performed confocal colocalization studies to further identify which cells express abundant LC3B in cirrhotic livers. We initially speculated that the previously reported release of lipids through autophagy could be the mechanism underlying the association between the activation of HSCs and liver fibrogenesis. However, we did not observe LC3B to be colocalized with α-SMA, a marker of activated HSCs (Figure 3). In contrast, LC3B staining was strongly positive
in glandular, tubular structures that lack clear lumens (Figure 3); these structures were similar to the characteristics of DR.\(^{12}\)

CK19 is a well-known marker for bile ductular lineage and can label the process of DR.\(^{25}\) Therefore, double staining with LC3B and CK19 was performed to determine whether the cells were positive for both markers. LC3B coexpressed with CK19 in linear, circular, and tubular structures, and the pattern of LC3B and CK19 staining had good consistency (Figure 4A).

In the next step, transmission electron microscopy was used to detect autophagy features specifically in proliferating bile ductules. Ultrastructurally, several autophagic vacuoles were observed in damaged small bile ducts (composed of four to eight cells) in the cirrhotic liver, whereas little vacuole formation was observed in the normal liver (Figure 4, B–D). Intact mitochondria can be observed in the cytoplasm of control cells; however, in cirrhotic cells, degradative autophagic vacuoles, which usually have only one limiting membrane and contain electron-dense amorphous material, were observed in the cytoplasm (Figure 4, B–D). These data demonstrated that bile ductular cells in cirrhosis sections clearly showed autophagic response elevation.

Several studies indicate that the extent of DR closely correlates with the severity of fibrosis.\(^{13–17}\) Hence, we next compared the correlation between autophagy and the status of fibrosis. In noncirrhotic livers, LC3B plus CK19 dual staining was primarily expressed in the mature bile ducts (Figure 5, A and B), whereas in cirrhotic livers, reaction products localized in the DR of portal areas, including bile duct, ductule structures, and cell clusters (Figure 5C). Moreover, a progressive increase in LC3B and CK19 expression was observed as the severity of fibrosis increased from the F1 stage to the F2 and F4 stages (Figure 5); the correlation between the expression levels of LC3B and CK19 was statistically significant (\(P < 0.001\)) (Figure 5E).

Correlation between Increased Autophagy Marker and DR

In addition to CHC-related cirrhosis, other types of cirrhosis, including chronic hepatitis B, alcoholic liver disease, and primary biliary cirrhosis, were also assessed whether a similar pattern of protein expression would be seen across a spectrum of liver disease. LC3B and CK19 colocalization was associated with bile ductular proliferation in all other liver diseases (Figure 6).

Similar CK19-positive DR has also been described in the rodent model\(^{18}\); we, therefore, studied whether increased DR was accompanied by autophagic changes during the progression of experimental cirrhosis in rat. Sprague-Dawley rats were fed with chronic AAF in combination with CCL\(_4\) administration for 6 weeks. At the end of the treatment, the ratio of the liver weight/body weight, serum AST, and ALT significantly increased in AAF/CCL\(_4\) rats compared with untreated rats (Figure 7A). On histological examination, the livers of AAF/CCL\(_4\) rats exhibited marked fibrosis with portal-central bridging (Figure 7B). In addition, CK19-positive ductular cells extended out into lobules, forming bridges that separate islands of parenchyma, in the livers of AAF/CCL\(_4\) rats (Figure 7C), supporting the clinical relevance of this animal model. By using dual-immunoﬂuorescence staining, we observed that the CK19-positive cells were also positive for LC3B staining (Figure 7D), which was similar to that observed in humans.

In addition, we monitored the autophagic flux analyzing LC3B turnover assay using CQ, which can block autophagy degradation in the lysosome, thereby triggering the accumulation of autophagosome. We observed that in the presence of CQ, the LC3B-II levels induced by AAF/CCL\(_4\) were further increased compared with either AAF/CCL\(_4\) or CQ treatment alone (Figure 7E). Moreover, p62 levels were increased by CQ, suggesting that autophagic flux was increased during fibrogenesis in the AAF/CCL\(_4\) model.

Our data showed that p62 levels did not decrease in the AAF/CCL\(_4\) rats despite autophagic degradation; this finding might be explained by aberrant accumulation of p62 in a detergent-insoluble fraction.\(^{19,20}\) Consistently, we observed that a substantial amount of p62 in a Triton X-100—insoluble fraction accounts for the increase of p62 protein in AAF/CCL\(_4\) rats (Supplemental Figure S1). In contrast, AAF/CCL\(_4\)-induced degradation of p62 was observed in a Triton X-100—soluble fraction, and this was rescued when autophagic degradation is inhibited by CQ.

Inhibited Autophagy Alleviated AAF/CCL\(_4\)-Induced Liver Fibrosis

To prove that autophagy is required for progression of DR-fibrosis, we co-administered CQ in AAF/CCL\(_4\) rats.
Treatments with 50 mg/kg per day CQ was initiated when rats were pretreated with AAF/CCL4 for 2 weeks, followed by 4 weeks of cotreatment.

CQ treatment showed a decline of DR, as evidenced by immunohistochemistry and Western blot analysis for CK19 expression (Figure 8). Moreover, autophagy suppression ameliorated liver injury and decreased fibrosis induced by AAF/CCL4, as measured by Sirius red (Figure 8A) and by the levels of profibrogenic gene expression (Figure 8B) in the liver.

However, combined CQ and AAF/CCL4 treatment did not further increase the endogenous LC3B-II levels (Figure 8C), although the lysosomal activity was suppressed, as evidenced by decreased expression levels and activity of cathepsin D (Supplemental Figure S2). Because our CQ was co-administered with injury in the early stage of liver fibrosis, we hypothesized that the ability of CQ to neutralize inflammation, which is a well-known indication used in a clinic,26 might counteract the AAF/CCL4-induced toxicity and, as a result, hinder the induction of autophagy. The mechanism by which CQ suppresses AAF/CCL4-induced fibrosis remains to be further clarified.

Discussion

The autophagy function in hepatic fibrosis has only been recently described,8,9 and whether increased autophagy results from static measurements in patient samples, autophagic flux must be determined for autophagic degradation.31 Therefore, consistent with the previous reports,50 our results showed an absence of decreased level in p62 protein and increased autophagic markers in cirrhotic patients with HCV infection.

To further exclude the possibility that the observed autophagic changes were HCV specific, experiments were repeated by analyzing cirrhotic livers from patients with chronic hepatitis B, alcoholic liver disease, and primary biliary cirrhosis and from a rodent model of AAF/CCL4. Our dual-immunofluorescence analysis of cirrhotic livers localized LC3B to CK19-positive ductular cells, providing the first in vivo evidence, to our knowledge, that autophagy regulation could occur in other fibrogenic cells apart from HSCs. Consistently, Sasaki et al52 also reported recently that autophagy is frequently seen in bile ductular cells in primary biliary cirrhosis. Although our work fails to demonstrate increased LC3B punctate in α-SMA—positive HSCs (Figure 3 and Supplemental Figure S3), it is possible that α-SMA—positive HSCs undergoing autophagy activation were not detected in our experimental condition or that α-SMA—negative HSCs underwent autophagy activation.

There are two mechanisms proposed to demonstrate how DR promotes liver fibrosis.33 First, reactive ductular cells can secrete profibrogenic factors, which then activate matrix-producing cells. Numerous studies have demonstrated an intimate cross talk between ductular cells and α-SMA—positive myofibroblasts.18,34,35 In this regard, our data showed enrichment of α-SMA in HSC activation (Figure 8, B and C).

By using lysosomal inhibitor approaches, the colocalization of LC3 and LAMP-1 and a tandem fluorescent-tagged LC3 to determine autophagic flux, Vescovo et al30 demonstrated that an HCV-induced autophagic process can advance to completion. It is now evident that autophagosomes can engulf a substrate selectively rather stochastically and that ubiquitinated proteins, ribosomes, peroxisomes, and intracellular bacteria may all be selectively targeted for autophagic degradation.31 Therefore, consistent with the previous reports,50 our results showed an absence of decreased level in p62 protein and increased autophagic markers in cirrhotic patients with HCV infection.

By using lysosomal inhibitor approaches, the colocalization of LC3 and LAMP-1 and a tandem fluorescent-tagged LC3 to determine autophagic flux, Vescovo et al30 demonstrated that an HCV-induced autophagic process can advance to completion. It is now evident that autophagosomes can engulf a substrate selectively rather than in a stochastic manner and that ubiquitinated proteins, ribosomes, mitochondria, peroxisomes, and intracellular bacteria may all be selectively targeted for autophagic degradation.31 Therefore, consistent with the previous reports,50 our results showed an absence of decreased level in p62 protein and increased autophagic markers in cirrhotic patients with HCV infection.

The mechanism by which CQ suppresses AAF/CCL4-induced fibrosis remains to be further clarified.
and invasion in hepatic carcinoma cells through a transforming growth factor-β/Smad3 signaling-dependent manner. Whether activation of autophagy may precede EMT of bile ductular cells in DR remains to be investigated.

Herein, we found that LC3B staining was strongly positive in mature bile ducts in noncirrhotic human livers and normal rat liver (Figure 5, A and B, and Figure 7D), indicating that autophagy is required for normal biliary function. Autophagy can remove oxidatively damaged mitochondria; therefore, it may assist in cholangiocyte survival in damaged livers, where oxidative stress–induced up-regulation of p21 inhibits hepatocyte proliferation. Selective growth advantage for cholangiocyte may serve as a permissive mechanism for an exaggerated DR. In support of this speculation, our data indicated that autophagy was significantly associated with the expansion of the DR in liver cirrhosis. Thus, this study provides a new mechanism for explaining the preferential emergence of DR in many liver diseases.

In conclusion, we provided the evidence of increased autophagy markers in clinical and AAF/CCL4-induced experimental cirrhotic livers. We also demonstrated that autophagy is significantly associated with the expansion of DR. Furthermore, to prove cause-effect, we used this AAF/CCL4 rat model to validate that blocking autophagy by CQ inhibits the progression of DR and liver fibrosis. These findings suggest that pharmacological modulation of autophagy may be a potential therapeutic strategy for the management of liver cirrhosis.
Acknowledgment

We thank the imaging core staff at the First Core Labs, National Taiwan University College of Medicine, for their technical assistance.

Supplemental Data

Supplemental material for this article can be found at http://dx.doi.org/10.1016/j.ajpath.2015.05.010.

References

