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Influenza Casts a Lung Shadow
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Influenza A viruses (IAVs) are a major cause of infectious
morbidity and mortality worldwide. IAV is highly prone to
genomic change over time. Yearly epidemics of IAV result
from accumulated point mutations in viral envelope proteins
such that adaptive immune responses to prior strains are
no longer protective. IAV pandemics result from acquisition
of whole new genome segments from animal viruses
(generally porcine or avian strains). Although most infected
people recover uneventfully, mortality from IAV remains a
challenge in certain vulnerable groups, including those at
extremes of age, with lung disease, pregnancy, heart dis-
ease, or diabetes. However, IAV can also cause mortality in
young, otherwise healthy adults. This has been more evident
during pandemics of IAV, but also occurs during seasonal
epidemics. IAV can kill by either causing diffuse lung injury
or altering host defense against secondary bacterial infec-
tion. Often bacterial super-infections occur in patients
partially recovered from the primary IAV infection.

Murine models have provided important insights into the
causes of diffuse lung injury or secondary bacterial pneu-
monia. Despite having a limited genome (eight main gene
segments encoding approximately ten to eleven proteins)
as compared with DNA viruses, IAV causes a remarkably
complex innate immune response.1 One of the surprising
features of IAV infection is that pathological and immu-
nological changes in the lung persist long after clearance of
the virus.2 The article by Pociask et al3 in this issue of The
American Journal of Pathology provides important new
insights into the mechanism of these prolonged effects.3

Although there are clearly important differences between
IAV infection of mice and humans, the bacterial super-
infection model in mice has many parallels to human
infections. In both cases the greatest period of vulnerability
appears to be at some delay after the initial viral infection
(approximately 7 days post viral infection) and to lead to
marked worsening of the bacterial pneumonia. Alcorn et al
(along with other groups) have made major contributions
to our understanding of the causes of post IAV bacterial
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super-infection.4e7 The breakdown in anti-bacterial defense
is likely multifactorial, but virus-induced Type I interferon
generation leading to suppression of Type 17 immunity is
one critical mechanism.

The article by Pociask et al3 shows that important
changes in the lung persist up to two months after viral
infection. Day 21 post viral infection was studied most
extensively. At this time point, there is ongoing inflamma-
tion based on elevated inflammatory cell counts and
increased CD4, CD8, and interferon-g positive lymphocytes
in bronchoalveolar lavage fluid. This ongoing inflammation
is present despite recovery of weight by the mice and
essentially undetectable viral loads in the lung. Significant
histopathological changes in the lung are also present
including epithelial metaplasia and airspace occlusion, and
these changes persist up to 60 days post infection. Of in-
terest, despite the varied changes present at day 21, the mice
no longer show increased susceptibility to Staphylococcus
aureus superinfection based on bacterial loads. Some of the
immune changes seen during bacterial superinfection at
earlier time points (eg, day 7 post viral infection) persist,
including depression in IL-17 generation and neutrophil
influx (as compared with mice infected with S. aureus
without prior viral infection). However, the mice infected
with S. aureus 21 days after viral infection have strongly
increased IL-22 production and no longer have depressed
Reg3b expression.

IL-22 has been shown to reduce inflammation and to
protect against bacterial superinfection post IAV infec-
tion.8,9 IL-22 promotes antimicrobial peptide production
in the lung, which Dr. Alcorn’s laboratory have shown to
. All rights reserved.
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be depressed at day 7 post IAV infection.10 Based on
transcriptomic analysis in the current study, several anti-
microbial peptides show increased expression at day 21 and
35, and this may contribute to the ability of these mice to
control S. aureus super-infection despite reduced neutrophil
influx. Another beneficial effect of IL-22 in the context of
IAV infection is promotion of lung repair.11

Reg3b is an anti-microbial lectin which has been studied
extensively for its role in protection against bacterial
infection in the gut.12 Reg3b can bind bacteria, but, unlike
the related protein Reg3g, it has not been clearly demon-
strated to work through direct bactericidal activity. Rather, it
has been shown to inhibit bacterial translocation and to
act as an alarmin, recruiting other inflammatory cells,
including neutrophils. In an intestinal model of inflamma-
tion (dextran-induced colitis), Reg3b induced recruitment of
IL-22esecreting neutrophils resulting in decreased inflam-
mation and improved epithelial reconstitution.12

Another key finding of the paper by Pociask et al3 include
demonstration of marked lung transcriptomic changes at
days 21 and 35 post IAV including genes associated with
endoplasmic reticulum stress which was confirmed at the
level of protein expression as well (ie, increased CCAAT-
enhancer binding protein homologous protein and activating
transcription factor staining in the lung). Other up-regulated
genes at days 21 and 35 include cytokines and other in-
flammatory mediators, antimicrobial peptides, but also genes
associated with tissue remodeling and repair. These findings
correlate with the bronchoalveolar lavage and histological
findings.3 The overall picture derived from the tran-
scriptomic findings is one of prolonged inflammation
and epithelial injury long after viral clearance.

Finally, important findings were obtained by use of
miRNA microarray. Specifically, miR-155 expression was
increased, and expression of 26 known target genes for miR-
155 were differentially modulated (some increased and others
decreased) post IAV infection. miR-155 has previously been
shown to be increased post IAV infection in mice and to
worsen outcome of post-IAV bacterial super-infection.13

miR-155 promotes lung inflammation in response to LPS
in part by inhibiting SOCs expression,14 to promote lung
fibrosis15 and lung cancer progression.16 In the present
study,3 miR-155 was found to worsen the extent of weight
loss, and the degree sustained lung injury (histology) and ER
stress at day 21. This was demonstrated using miR-155
knockout mice. Absence of miR-155 did not affect viral
loads, inflammatory cell infiltrates or most cytokines at day 7
or day 21. Hence, miR-155 seemed to be mainly inhibiting
lung reparative processes at the later stage post infection.

Overall, the paper by Posiask et al3 shows that IAV
infection leads to prolonged changes in the lung well after
apparent viral clearance and specifically highlights the po-
tential role of lung repair mechanisms in successful recovery
from IAV infection. It is tempting to speculate on potential
treatment of severe IAV infection with combinations of an-
tivirals and measures to promote lung repair including IL-22
698
or Reg3b or inhibitors of miR-155. A potential caveat to such
an approach include the reports that miR-155 is protective
versus Mycobacterium tuberculosis infection in mice.17 In
addition, proteins known to accelerate lung epithelial prolif-
eration might increase viral replication.
Another possible implication of the results is the consid-

eration that the sustained changes seen after IAV infection
could relate to its known ability to cause sometimes sustained
worsening of lung function in patients with cystic fibrosis18

or chronic obstructive pulmonary disease.19,20 It must be
noted that the findings by Pociask et al3 are in a well-defined
mouse model using a highly mouse adapted IAV strain,
hence, ultimately their relevance in models more closely
resembling human infection (or in human infection) will need
to be determined. An additional line of inquiry will be to
determine the effect of other viral strains or specific viral
components on the sustained lung injuries caused by IAV.
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