Advertisement
Review| Volume 188, ISSUE 1, P29-38, January 2018

Download started.

Ok

Space Invaders

Brain Tumor Exploitation of the Stem Cell Niche
  • Justine Sinnaeve
    Affiliations
    Departments of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
    Search for articles by this author
  • Bret C. Mobley
    Affiliations
    Departments of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
    Search for articles by this author
  • Rebecca A. Ihrie
    Correspondence
    Address correspondence to Rebecca A. Ihrie, Ph.D., Vanderbilt University, 2220 Pierce Ave, 761 PRB, Nashville, TN 37232-6840.
    Affiliations
    Departments of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee

    Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
    Search for articles by this author
Open ArchivePublished:October 09, 2017DOI:https://doi.org/10.1016/j.ajpath.2017.08.029
      Increasing evidence indicates that the adult neurogenic niche of the ventricular-subventricular zone (V-SVZ), beyond serving as a potential site of origin, affects the outcome of malignant brain cancers. Glioma contact with this niche predicts worse prognosis, suggesting a supportive role for the V-SVZ environment in tumor initiation or progression. In this review, we describe unique components of the V-SVZ that may permit or promote tumor growth within the region. Cell-cell interactions, soluble factors, and extracellular matrix composition are discussed, and the role of the niche in future therapies is explored. The purpose of this review is to highlight niche intrinsic factors that may promote or support malignant cell growth and maintenance, and point out how we might leverage these features to improve patient outcome.
      Extensive work during the past decades has demonstrated the existence of two neurogenic niches in the adult mammalian brain: the ventricular-subventricular zone (V-SVZ) and the subgranular zone (SGZ). The cellular constituents, intercellular interactions, and extracellular components of these niches support stem cell maintenance and differentiation.
      • Silva-Vargas V.
      • Crouch E.E.
      • Doetsch F.
      Adult neural stem cells and their niche: a dynamic duo during homeostasis, regeneration, and aging.
      • Fuentealba L.C.
      • Obernier K.
      • Alvarez-Buylla A.
      Adult neural stem cells bridge their niche.
      • Bonaguidi M.A.
      • Song J.
      • Ming G.L.
      • Song H.
      A unifying hypothesis on mammalian neural stem cell properties in the adult hippocampus.
      The V-SVZ is the larger of the two niches, and recently there has been increased focus on the role of this niche in high-grade (III and IV) gliomas, the most common primary malignant neoplasms of the adult brain. Interest in the V-SVZ heightened with the emergence of the cancer stem cell theory, which posits that a fraction of cancer cells are self-renewing progenitors at the apex of a cancer cell hierarchy, capable of generating all cell types found in a tumor.
      • Reya T.
      • Morrison S.J.
      • Clarke M.F.
      • Weissman I.L.
      Stem cells, cancer, and cancer stem cells.
      This hypothesis is supported by similarities in gene expression between non-neoplastic stem cells and cancer cells, as well as by their shared capacity for proliferation. In the setting of brain cancer, it has been proposed that neural stem cells of the V-SVZ are cells of origin for brain cancers, although more recent tumor models implicate additional progenitor and mature cells in tumor development (Figure 1).
      • Sanai N.
      • Alvarez-Buylla A.
      • Berger M.S.
      Neural stem cells and the origin of gliomas.
      • Zong H.
      • Parada L.F.
      • Baker S.J.
      Cell of origin for malignant gliomas and its implication in therapeutic development.
      The development of neoplasia after genetic ablation of tumor suppressors and exogenous up-regulation of growth factors in the rodent V-SVZ have further supported this hypothesis.
      • Chen J.
      • McKay R.M.
      • Parada L.F.
      Malignant glioma: lessons from genomics, mouse models, and stem cells.
      Cell of origin notwithstanding, the concept of a stem-like niche within tumors is one with significant therapeutic implications.
      • Plaks V.
      • Kong N.
      • Werb Z.
      The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells?.
      • Gilbertson R.J.
      • Rich J.N.
      Making a tumour's bed: glioblastoma stem cells and the vascular niche.
      In addition to the possibility that gliomas originate within the V-SVZ, some tumors may co-opt this niche, taking advantage of an existing system that promotes proliferation and migration of progenitor cells in early development. In support of this hypothesis, radiographic studies show that contact with the V-SVZ is a negative prognostic factor for grade IV gliomas.
      • Mistry A.M.
      • Hale A.T.
      • Chambless L.B.
      • Weaver K.D.
      • Thompson R.C.
      • Ihrie R.A.
      Influence of glioblastoma contact with the lateral ventricle on survival: a meta-analysis.
      Given that neural stem cell niche components may enhance glioma initiation, maintenance, and/or recurrence, the interaction between the V-SVZ and tumor cells warrants investigation, and this review will focus on the interplay between adult stem cell niches and neoplastic cells in this context. We will briefly introduce the V-SVZ niche and summarize the unique features that may provide a selective advantage to cancerous cells.
      Figure thumbnail gr1
      Figure 1The ventricular-subventricular zone (V-SVZ) niche contains ependymal cells (gray) that contact the lateral ventricle and cerebrospinal fluid (CSF). Neural stem cells (NSCs; blue) have an apical contact with the CSF and a basal contact with the vasculature (red). In the human, astrocytic processes (blue) lie beneath the ependyma. Neurons (green) from the brain parenchyma innervate the niche. Surveying or resting microglia (brown) surveil the niche microenvironment and can become activated in the presence of tumor cells. Three proposed roles of the niche in malignant brain tumors are depicted. Left panel: Neural stem cells may acquire mutations that lead to cancer (purple). Middle panel: Neural stem cells can home toward tumors and eliminate tumor cells. Right panel: Tumor cells can migrate toward the V-SVZ and take up residence in the niche. A subset of factors demonstrated to be involved in these regions and discussed in the text (, , , ) are listed on the right. BDNF, brain-derived neurotrophic factor; FGF, fibroblast growth factor; IGF2, insulin-like growth factor 2; NLGN-3, neuroligin-3; PEDF, pigment epithelium-derived factor; PIGF-2, placental growth factor 2; SDF-1, stromal-derived factor 1; VEGF, vascular endothelial growth factor.

      Distinct Cellular Neighborhoods: The V-SVZ and SGZ

      The two regions of adult neurogenesis, the V-SVZ and the SGZ, contain multiple cell types and specialized contacts, including a prominent vascular component. These features cooperate to maintain an environment permissive to ongoing neurogenesis. The V-SVZ (sometimes referred to as the SVZ or the subependymal zone) is the larger of these two niches and is located immediately adjacent to the lateral ventricles in the cerebrum. The rodent V-SVZ primarily generates interneurons destined for the olfactory bulb, and the early postnatal human brain recapitulates this production of olfactory interneurons. The pediatric human V-SVZ also contributes interneurons to the ventromedial prefrontal cortex via a medial migratory stream and a large population of newly born cells to additional forebrain areas through a structure termed the Arc.
      • Sanai N.
      • Nguyen T.
      • Ihrie R.A.
      • Mirzadeh Z.
      • Tsai H.H.
      • Wong M.
      • Gupta N.
      • Berger M.S.
      • Huang E.
      • Garcia-Verdugo J.M.
      • Rowitch D.H.
      • Alvarez-Buylla A.
      Corridors of migrating neurons in the human brain and their decline during infancy.
      • Paredes M.F.
      • James D.
      • Gil-Perotin S.
      • Kim H.
      • Cotter J.A.
      • Ng C.
      • Sandoval K.
      • Rowitch D.H.
      • Xu D.
      • McQuillen P.S.
      • Garcia-Verdugo J.M.
      • Huang E.J.
      • Alvarez-Buylla A.
      Extensive migration of young neurons into the infant human frontal lobe.
      In adult humans, robust migration to the olfactory bulb is absent, and V-SVZ neurogenesis appears to be a rare event, although limited contribution of neurons to the neighboring striatum may occur.
      • Sanai N.
      • Tramontin A.D.
      • Quinones-Hinojosa A.
      • Barbaro N.M.
      • Gupta N.
      • Kunwar S.
      • Lawton M.T.
      • McDermott M.W.
      • Parsa A.T.
      • Manuel-Garcia Verdugo J.
      • Berger M.S.
      • Alvarez-Buylla A.
      Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration.
      • Ernst A.
      • Alkass K.
      • Bernard S.
      • Salehpour M.
      • Perl S.
      • Tisdale J.
      • Possnert G.
      • Druid H.
      • Frisen J.
      Neurogenesis in the striatum of the adult human brain.
      Adult V-SVZ generation of mature neurons can occur in the setting of brain injury, as has been shown in adult rats after ischemic stroke.
      • Kernie S.G.
      • Parent J.M.
      Forebrain neurogenesis after focal ischemic and traumatic brain injury.
      The astrocyte-like neural stem cells (NSCs) of the V-SVZ have a polarity defined by an apical primary cilium immersed in ventricular cerebrospinal fluid (CSF) and a basal vascular contact, resulting in a cytoarchitecture reminiscent of embryonic radial glia progenitors.
      • Mirzadeh Z.
      • Merkle F.T.
      • Soriano-Navarro M.
      • Garcia-Verdugo J.M.
      • Alvarez-Buylla A.
      Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain.
      Ependymal cells within this niche line the lateral walls of the lateral ventricles and also contact the CSF, into which they project motile cilia to aid in CSF flow.
      • Del Bigio M.R.
      The ependyma: a protective barrier between brain and cerebrospinal fluid.
      • Sawamoto K.
      • Wichterle H.
      • Gonzalez-Perez O.
      • Cholfin J.A.
      • Yamada M.
      • Spassky N.
      • Murcia N.S.
      • Garcia-Verdugo J.M.
      • Marin O.
      • Rubenstein J.L.
      • Tessier-Lavigne M.
      • Okano H.
      • Alvarez-Buylla A.
      New neurons follow the flow of cerebrospinal fluid in the adult brain.
      Ependymal cell bodies are arranged in pinwheels around the apical contacts of the NSCs (a planar organization not seen in nonneurogenic regions of the ventricular system).
      • Mirzadeh Z.
      • Merkle F.T.
      • Soriano-Navarro M.
      • Garcia-Verdugo J.M.
      • Alvarez-Buylla A.
      Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain.
      • Kokovay E.
      • Wang Y.
      • Kusek G.
      • Wurster R.
      • Lederman P.
      • Lowry N.
      • Shen Q.
      • Temple S.
      VCAM1 is essential to maintain the structure of the SVZ niche and acts as an environmental sensor to regulate SVZ lineage progression.
      NSCs produce rapidly dividing C cells (alias transit-amplifying cells) that undergo a limited number of divisions to produce neuroblasts, which then migrate out of the niche and eventually generate mature neurons.
      • Doetsch F.
      • Garcia-Verdugo J.M.
      • Alvarez-Buylla A.
      Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain.
      The neural stem cell bodies remain in close contact with neuroblasts, whereas their long, radial glia-esque processes contact the blood vessels that supply nutrients and oxygen to the niche.
      • Fuentealba L.C.
      • Obernier K.
      • Alvarez-Buylla A.
      Adult neural stem cells bridge their niche.
      • Doetsch F.
      • Garcia-Verdugo J.M.
      • Alvarez-Buylla A.
      Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain.
      Microglial cells are also found within the niche, as are contacts from neighboring and distant neurons.
      • Sanai N.
      • Tramontin A.D.
      • Quinones-Hinojosa A.
      • Barbaro N.M.
      • Gupta N.
      • Kunwar S.
      • Lawton M.T.
      • McDermott M.W.
      • Parsa A.T.
      • Manuel-Garcia Verdugo J.
      • Berger M.S.
      • Alvarez-Buylla A.
      Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration.
      • Tong C.K.
      • Chen J.
      • Cebrian-Silla A.
      • Mirzadeh Z.
      • Obernier K.
      • Guinto C.D.
      • Tecott L.H.
      • Garcia-Verdugo J.M.
      • Kriegstein A.
      • Alvarez-Buylla A.
      Axonal control of the adult neural stem cell niche.
      • Hoglinger G.U.
      • Arias-Carrion O.
      • Ipach B.
      • Oertel W.H.
      Origin of the dopaminergic innervation of adult neurogenic areas.
      • Ribeiro Xavier A.L.
      • Kress B.T.
      • Goldman S.A.
      • Lacerda de Menezes J.R.
      • Nedergaard M.
      A distinct population of microglia supports adult neurogenesis in the subventricular zone.
      • Dennis C.V.
      • Suh L.S.
      • Rodriguez M.L.
      • Kril J.J.
      • Sutherland G.T.
      Human adult neurogenesis across the ages: an immunohistochemical study.
      The SGZ is located at the interface of the hilus and dentate gyrus in the hippocampus.
      • Fuentealba L.C.
      • Obernier K.
      • Alvarez-Buylla A.
      Adult neural stem cells bridge their niche.
      It, too, contains radial-glia–like neural stem cells that produce neurons via transit-amplifying cells. In this niche, the apical portion of the NSC contacts a blood vessel, the highly branched opposite process contacts neuronal processes and glial cells, and the cell body contacts mature granule neurons.
      • Seri B.
      • Garcia-Verdugo J.M.
      • Collado-Morente L.
      • McEwen B.S.
      • Alvarez-Buylla A.
      Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus.
      • Palmer T.D.
      • Willhoite A.R.
      • Gage F.H.
      Vascular niche for adult hippocampal neurogenesis.
      In contrast to V-SVZ NSCs, SGZ NSCs do not extend processes into the ventricles to contact CSF, a point of difference between these germinal regions that may be relevant to tumor progression.

      V-SVZ Contact and Patient Outcome

      High-grade gliomas, most notably grade IV glioblastomas (GBMs), are defined by their invasive presentation, and a subset of these tumors appears to spread specifically within the ventricular-subventricular zone (alias subependymal spread).
      • Iacoangeli M.
      • Di Rienzo A.
      • Colasanti R.
      • Zizzi A.
      • Gladi M.
      • Alvaro L.
      • Nocchi N.
      • Di Somma L.G.
      • Scarpelli M.
      • Scerrati M.
      Endoscopy-verified occult subependymal dissemination of glioblastoma and brain metastasis undetected by MRI: prognostic significance.
      • Willard N.
      • Kleinschmidt-DeMasters B.K.
      Massive dissemination of adult glioblastomas.
      • Tamura M.
      • Ohye C.
      • Nakazato Y.
      Pathological anatomy of autopsy brain with malignant glioma.
      V-SVZ spread is evaluated by magnetic resonance imaging in pediatric and adult gliomas and is interpreted as the presence of contrast enhancement and/or abnormally elevated T2-weighted signal within the subependymal region.
      • Lim D.A.
      • Cha S.
      • Mayo M.C.
      • Chen M.H.
      • Keles E.
      • VandenBerg S.
      • Berger M.S.
      Relationship of glioblastoma multiforme to neural stem cell regions predicts invasive and multifocal tumor phenotype.
      • Radbruch A.
      • Lutz K.
      • Wiestler B.
      • Baumer P.
      • Heiland S.
      • Wick W.
      • Bendszus M.
      Relevance of T2 signal changes in the assessment of progression of glioblastoma according to the Response Assessment in Neurooncology criteria.
      • Liu S.
      • Wang Y.
      • Fan X.
      • Ma J.
      • Ma W.
      • Wang R.
      • Jiang T.
      Anatomical involvement of the subventricular zone predicts poor survival outcome in low-grade astrocytomas.
      Although microscopic analysis of this region is uncommon because of the rarity of resections that include the V-SVZ, histologic sections show increased cell density at resection, including cytologically atypical glial cells with enlarged, hyperchromatic, angular nuclei.
      • Piccirillo S.G.
      • Spiteri I.
      • Sottoriva A.
      • Touloumis A.
      • Ber S.
      • Price S.J.
      • Heywood R.
      • Francis N.J.
      • Howarth K.D.
      • Collins V.P.
      • Venkitaraman A.R.
      • Curtis C.
      • Marioni J.C.
      • Tavare S.
      • Watts C.
      Contributions to drug resistance in glioblastoma derived from malignant cells in the sub-ependymal zone.
      Immunohistochemistry of a cell-cycle–associated antigen, Ki-67, can be used to highlight the atypical population, because it is normally infrequently expressed in adult V-SVZ.
      • Sanai N.
      • Nguyen T.
      • Ihrie R.A.
      • Mirzadeh Z.
      • Tsai H.H.
      • Wong M.
      • Gupta N.
      • Berger M.S.
      • Huang E.
      • Garcia-Verdugo J.M.
      • Rowitch D.H.
      • Alvarez-Buylla A.
      Corridors of migrating neurons in the human brain and their decline during infancy.
      • Sanai N.
      • Tramontin A.D.
      • Quinones-Hinojosa A.
      • Barbaro N.M.
      • Gupta N.
      • Kunwar S.
      • Lawton M.T.
      • McDermott M.W.
      • Parsa A.T.
      • Manuel-Garcia Verdugo J.
      • Berger M.S.
      • Alvarez-Buylla A.
      Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration.
      Preferential spread in the V-SVZ region has been described in high-grade astrocytoma autopsy cases.
      • Tamura M.
      • Ohye C.
      • Nakazato Y.
      Pathological anatomy of autopsy brain with malignant glioma.
      Likewise, in pediatric diffuse intrinsic pontine gliomas, contact with the ventricle or V-SVZ correlates with V-SVZ tumor infiltration and nodule formation along the ventricle.
      • Caretti V.
      • Bugiani M.
      • Freret M.
      • Schellen P.
      • Jansen M.
      • van Vuurden D.
      • Kaspers G.
      • Fisher P.G.
      • Hulleman E.
      • Wesseling P.
      • Vogel H.
      • Monje M.
      Subventricular spread of diffuse intrinsic pontine glioma.
      In addition, both isocitrate dehydrogenase wild-type and isocitrate dehydrogenase–mutant GBMs as well as brain metastases have demonstrated such spread through the subependyma.
      • Iacoangeli M.
      • Di Rienzo A.
      • Colasanti R.
      • Zizzi A.
      • Gladi M.
      • Alvaro L.
      • Nocchi N.
      • Di Somma L.G.
      • Scarpelli M.
      • Scerrati M.
      Endoscopy-verified occult subependymal dissemination of glioblastoma and brain metastasis undetected by MRI: prognostic significance.
      • Willard N.
      • Kleinschmidt-DeMasters B.K.
      Massive dissemination of adult glioblastomas.
      Although isocitrate dehydrogenase–mutant gliomas occur more frequently in the frontal lobe than isocitrate dehydrogenase wild-type tumors, there appears to be no difference between the two groups in V-SVZ contact.
      • Lai A.
      • Kharbanda S.
      • Pope W.B.
      • Tran A.
      • Solis O.E.
      • Peale F.
      • Forrest W.F.
      • Pujara K.
      • Carrillo J.A.
      • Pandita A.
      • Ellingson B.M.
      • Bowers C.W.
      • Soriano R.H.
      • Schmidt N.O.
      • Mohan S.
      • Yong W.H.
      • Seshagiri S.
      • Modrusan Z.
      • Jiang Z.
      • Aldape K.D.
      • Mischel P.S.
      • Liau L.M.
      • Escovedo C.J.
      • Chen W.
      • Nghiemphu P.L.
      • James C.D.
      • Prados M.D.
      • Westphal M.
      • Lamszus K.
      • Cloughesy T.
      • Phillips H.S.
      Evidence for sequenced molecular evolution of IDH1 mutant glioblastoma from a distinct cell of origin.
      However, the literature on the topic is sparse and warrants further investigation.
      Recent evaluation of clinical data indicates that glioblastoma patients whose tumors infiltrate or contact the V-SVZ have worse outcomes. A meta-analysis of multiple studies demonstrated that radiographic contact of GBM with the V-SVZ is associated with significantly decreased overall survival,
      • Mistry A.M.
      • Hale A.T.
      • Chambless L.B.
      • Weaver K.D.
      • Thompson R.C.
      • Ihrie R.A.
      Influence of glioblastoma contact with the lateral ventricle on survival: a meta-analysis.
      independent of extent of tumor resection.
      • Mistry A.M.
      • Dewan M.C.
      • White-Dzuro G.A.
      • Brinson P.R.
      • Weaver K.D.
      • Thompson R.C.
      • Ihrie R.A.
      • Chambless L.B.
      Decreased survival in glioblastomas is specific to contact with the ventricular-subventricular zone, not subgranular zone or corpus callosum.
      V-SVZ contacting glioblastomas also display earlier recurrence after treatment compared with V-SVZ noncontacting GBMs,
      • Mistry A.M.
      • Hale A.T.
      • Chambless L.B.
      • Weaver K.D.
      • Thompson R.C.
      • Ihrie R.A.
      Influence of glioblastoma contact with the lateral ventricle on survival: a meta-analysis.
      • Mistry A.M.
      • Dewan M.C.
      • White-Dzuro G.A.
      • Brinson P.R.
      • Weaver K.D.
      • Thompson R.C.
      • Ihrie R.A.
      • Chambless L.B.
      Decreased survival in glioblastomas is specific to contact with the ventricular-subventricular zone, not subgranular zone or corpus callosum.
      and these recurrences are more likely to contact the V-SVZ.
      • Chen L.
      • Chaichana K.L.
      • Kleinberg L.
      • Ye X.
      • Quinones-Hinojosa A.
      • Redmond K.
      Glioblastoma recurrence patterns near neural stem cell regions.
      • Jafri N.F.
      • Clarke J.L.
      • Weinberg V.
      • Barani I.J.
      • Cha S.
      Relationship of glioblastoma multiforme to the subventricular zone is associated with survival.
      Some studies further describe a tendency for V-SVZ contacting glioblastomas to be multifocal at diagnosis
      • Mistry A.M.
      • Dewan M.C.
      • White-Dzuro G.A.
      • Brinson P.R.
      • Weaver K.D.
      • Thompson R.C.
      • Ihrie R.A.
      • Chambless L.B.
      Decreased survival in glioblastomas is specific to contact with the ventricular-subventricular zone, not subgranular zone or corpus callosum.
      • Jafri N.F.
      • Clarke J.L.
      • Weinberg V.
      • Barani I.J.
      • Cha S.
      Relationship of glioblastoma multiforme to the subventricular zone is associated with survival.
      • Adeberg S.
      • Konig L.
      • Bostel T.
      • Harrabi S.
      • Welzel T.
      • Debus J.
      • Combs S.E.
      Glioblastoma recurrence patterns after radiation therapy with regard to the subventricular zone.
      and to recur after treatment at sites distant from the initial tumor site,
      • Adeberg S.
      • Konig L.
      • Bostel T.
      • Harrabi S.
      • Welzel T.
      • Debus J.
      • Combs S.E.
      Glioblastoma recurrence patterns after radiation therapy with regard to the subventricular zone.
      • Nestler U.
      • Lutz K.
      • Pichlmeier U.
      • Stummer W.
      • Franz K.
      • Reulen H.J.
      • Bink A.
      Group ALA Glioma Study
      Anatomic features of glioblastoma and their potential impact on survival.
      • Sonoda Y.
      • Saito R.
      • Kanamori M.
      • Kumabe T.
      • Uenohara H.
      • Tominaga T.
      The association of subventricular zone involvement at recurrence with survival after repeat surgery in patients with recurrent glioblastoma.
      although the latter observation is debated.
      • Mistry A.M.
      • Dewan M.C.
      • White-Dzuro G.A.
      • Brinson P.R.
      • Weaver K.D.
      • Thompson R.C.
      • Ihrie R.A.
      • Chambless L.B.
      Decreased survival in glioblastomas is specific to contact with the ventricular-subventricular zone, not subgranular zone or corpus callosum.
      • Kimura M.
      • Lee Y.
      • Miller R.
      • Castillo M.
      Glioblastoma multiforme: relationship to subventricular zone and recurrence.
      Strikingly, GBM contact with the SGZ has not been found to influence survival,
      • Mistry A.M.
      • Dewan M.C.
      • White-Dzuro G.A.
      • Brinson P.R.
      • Weaver K.D.
      • Thompson R.C.
      • Ihrie R.A.
      • Chambless L.B.
      Decreased survival in glioblastomas is specific to contact with the ventricular-subventricular zone, not subgranular zone or corpus callosum.
      suggesting that features unique to the V-SVZ contribute to outcome. The prognostic value of V-SVZ contact may be attributable, in part, to cancer cell access to the ventricles and CSF, a feature unique to the V-SVZ niche. However, the V-SVZ and SGZ differ in several additional ways, including the presence of a gap layer in the V-SVZ that is absent in the SGZ and the closer proximity of the V-SVZ to major white matter tracts. At the molecular level, differences between secreted factors in the V-SVZ and SGZ remain poorly defined. Niche-enriched factors may be derived from different cellular sources, present at different levels, or delivered through specific cell-cell contacts. Each of these variations might affect signaling between niche and tumor cells. Cumulatively, these clinical data suggest a possible distinct, aggressive biology of V-SVZ contacting tumors, although attempts to date have failed to identify transcriptional signatures unique to V-SVZ contacting tumors. Only a limited number of candidate signatures have been found, which may not be cancer cell derived.
      • Jungk C.
      • Mock A.
      • Exner J.
      • Geisenberger C.
      • Warta R.
      • Capper D.
      • Abdollahi A.
      • Friauf S.
      • Lahrmann B.
      • Grabe N.
      • Beckhove P.
      • von Deimling A.
      • Unterberg A.
      • Herold-Mende C.
      Spatial transcriptome analysis reveals Notch pathway-associated prognostic markers in IDH1 wild-type glioblastoma involving the subventricular zone.
      Alternatively, the impact of V-SVZ contact raises the possibility of niche-derived factors that positively affect one or more aspects of tumor biology, including glioma growth, therapy resistance, dissemination, and immunomodulation.

      Direction from the Top: CSF Factors in Normal and Malignant Biology

      Cerebrospinal fluid is produced by the choroid plexus and fills the ventricles. Ciliated ependymal cells, including those in the V-SVZ, help to maintain CSF flow.
      • Siyahhan B.
      • Knobloch V.
      • de Zelicourt D.
      • Asgari M.
      • Schmid Daners M.
      • Poulikakos D.
      • Kurtcuoglu V.
      Flow induced by ependymal cilia dominates near-wall cerebrospinal fluid dynamics in the lateral ventricles.
      • Ohata S.
      • Alvarez-Buylla A.
      Planar organization of multiciliated ependymal (E1) cells in the brain ventricular epithelium.
      CSF acts as a protective cushion for the central nervous system and a provider of secreted factors as well as a mechanism for waste removal to maintain homeostasis. The V-SVZ is the only neurogenic niche that directly contacts the ventricles, which contain soluble factors that regulate NSC quiescence and proliferation beyond those traditionally contained in stem cell culture medium (Figure 1).
      • Fuentealba L.C.
      • Obernier K.
      • Alvarez-Buylla A.
      Adult neural stem cells bridge their niche.
      • Silva-Vargas V.
      • Maldonado-Soto A.R.
      • Mizrak D.
      • Codega P.
      • Doetsch F.
      Age-dependent niche signals from the choroid plexus regulate adult neural stem cells.
      The CSF milieu has been explored most thoroughly in the embryo, but the NSC regulatory factors insulin-like growth factor 2, amphiregulin, and pigment epithelium-derived factor (PEDF), which can promote NSC proliferation and self-renewal, have all been detected in adult brain.
      • Lehtinen M.K.
      • Zappaterra M.W.
      • Chen X.
      • Yang Y.J.
      • Hill A.D.
      • Lun M.
      • Maynard T.
      • Gonzalez D.
      • Kim S.
      • Ye P.
      • D'Ercole A.J.
      • Wong E.T.
      • LaMantia A.S.
      • Walsh C.A.
      The cerebrospinal fluid provides a proliferative niche for neural progenitor cells.
      • Thouvenot E.
      • Urbach S.
      • Dantec C.
      • Poncet J.
      • Seveno M.
      • Demettre E.
      • Jouin P.
      • Touchon J.
      • Bockaert J.
      • Marin P.
      Enhanced detection of CNS cell secretome in plasma protein-depleted cerebrospinal fluid.
      • Falk A.
      • Frisen J.
      Amphiregulin is a mitogen for adult neural stem cells.
      More important, these factors found in the CSF have also been shown to regulate glioma cell growth and may be a source of growth stimuli to malignant cells.
      • Soroceanu L.
      • Kharbanda S.
      • Chen R.
      • Soriano R.H.
      • Aldape K.
      • Misra A.
      • Zha J.
      • Forrest W.F.
      • Nigro J.M.
      • Modrusan Z.
      • Feuerstein B.G.
      • Phillips H.S.
      Identification of IGF2 signaling through phosphoinositide-3-kinase regulatory subunit 3 as a growth-promoting axis in glioblastoma.
      • Yin J.
      • Park G.
      • Kim T.H.
      • Hong J.H.
      • Kim Y.J.
      • Jin X.
      • Kang S.
      • Jung J.E.
      • Kim J.Y.
      • Yun H.
      • Lee J.E.
      • Kim M.
      • Chung J.
      • Kim H.
      • Nakano I.
      • Gwak H.S.
      • Yoo H.
      • Yoo B.C.
      • Kim J.H.
      • Hur E.M.
      • Lee J.
      • Lee S.H.
      • Park M.J.
      • Park J.B.
      Pigment epithelium-derived factor (PEDF) expression induced by EGFRvIII promotes self-renewal and tumor progression of glioma stem cells.
      • Lorente M.
      • Carracedo A.
      • Torres S.
      • Natali F.
      • Egia A.
      • Hernandez-Tiedra S.
      • Salazar M.
      • Blazquez C.
      • Guzman M.
      • Velasco G.
      Amphiregulin is a factor for resistance of glioma cells to cannabinoid-induced apoptosis.
      In addition to providing NSCs and cancer cells with soluble factors and signals, the CSF is a potential reservoir for cancer cells and cancer cell–derived secreted factors. Along with radiographic imaging, analysis of CSF cytology obtained via lumbar puncture, although infrequently performed, is used for detection and diagnosis of malignancies.
      • Chhieng D.C.
      • Elgert P.
      • Cohen J.M.
      • Jhala N.C.
      • Cangiarella J.F.
      Cytology of primary central nervous system neoplasms in cerebrospinal fluid specimens.
      Tumor DNA can be detected in the CSF of cancer patients, especially in patients whose tumors are located at CSF-brain interfaces.
      • Wang Y.
      • Springer S.
      • Zhang M.
      • McMahon K.W.
      • Kinde I.
      • Dobbyn L.
      • Ptak J.
      • Brem H.
      • Chaichana K.
      • Gallia G.L.
      • Gokaslan Z.L.
      • Groves M.L.
      • Jallo G.I.
      • Lim M.
      • Olivi A.
      • Quinones-Hinojosa A.
      • Rigamonti D.
      • Riggins G.J.
      • Sciubba D.M.
      • Weingart J.D.
      • Wolinsky J.P.
      • Ye X.
      • Oba-Shinjo S.M.
      • Marie S.K.
      • Holdhoff M.
      • Agrawal N.
      • Diaz Jr., L.A.
      • Papadopoulos N.
      • Kinzler K.W.
      • Vogelstein B.
      • Bettegowda C.
      Detection of tumor-derived DNA in cerebrospinal fluid of patients with primary tumors of the brain and spinal cord.
      Glioma cells are also known to release exosomes loaded with RNA species that can be detected in the CSF.
      • Akers J.C.
      • Ramakrishnan V.
      • Kim R.
      • Skog J.
      • Nakano I.
      • Pingle S.
      • Kalinina J.
      • Hua W.
      • Kesari S.
      • Mao Y.
      • Breakefield X.O.
      • Hochberg F.H.
      • Van Meir E.G.
      • Carter B.S.
      • Chen C.C.
      MiR-21 in the extracellular vesicles (EVs) of cerebrospinal fluid (CSF): a platform for glioblastoma biomarker development.
      • Skog J.
      • Wurdinger T.
      • van Rijn S.
      • Meijer D.H.
      • Gainche L.
      • Sena-Esteves M.
      • Curry Jr., W.T.
      • Carter B.S.
      • Krichevsky A.M.
      • Breakefield X.O.
      Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers.
      The CSF can also serve as an avenue for tumor diffusion in gliomas, although this phenomenon is clinically prominent only in a rare subset of GBMs with primitive neuronal components.
      • Perry A.
      • Miller C.R.
      • Gujrati M.
      • Scheithauer B.W.
      • Zambrano S.C.
      • Jost S.C.
      • Raghavan R.
      • Qian J.
      • Cochran E.J.
      • Huse J.T.
      • Holland E.C.
      • Burger P.C.
      • Rosenblum M.K.
      Malignant gliomas with primitive neuroectodermal tumor-like components: a clinicopathologic and genetic study of 53 cases.
      Thus, the CSF may both supply neoplasms with mitogenic cues and harbor tumor cells with the potential to seed additional tumor sites.

      Local Associations: Cellular Constituents of the Niche

      NSC interactions with surrounding cells directly influence cell proliferation and stemness. V-SVZ ependymal cells preserve the self-renewal capacity of NSCs, in part by producing PEDF, which promotes symmetric division of NSCs and suppression of differentiation genes. PEDF can similarly suppress glioma stem cell differentiation and promote gliomasphere formation and sex determining region Y-box 2 expression.
      • Yin J.
      • Park G.
      • Kim T.H.
      • Hong J.H.
      • Kim Y.J.
      • Jin X.
      • Kang S.
      • Jung J.E.
      • Kim J.Y.
      • Yun H.
      • Lee J.E.
      • Kim M.
      • Chung J.
      • Kim H.
      • Nakano I.
      • Gwak H.S.
      • Yoo H.
      • Yoo B.C.
      • Kim J.H.
      • Hur E.M.
      • Lee J.
      • Lee S.H.
      • Park M.J.
      • Park J.B.
      Pigment epithelium-derived factor (PEDF) expression induced by EGFRvIII promotes self-renewal and tumor progression of glioma stem cells.
      Ependymal cells also secrete the bone morphogenic protein inhibitor noggin, which may help maintain glioma cell tumor-initiating capacity,
      • Lim D.A.
      • Tramontin A.D.
      • Trevejo J.M.
      • Herrera D.G.
      • Garcia-Verdugo J.M.
      • Alvarez-Buylla A.
      Noggin antagonizes BMP signaling to create a niche for adult neurogenesis.
      • Piccirillo S.G.
      • Reynolds B.A.
      • Zanetti N.
      • Lamorte G.
      • Binda E.
      • Broggi G.
      • Brem H.
      • Olivi A.
      • Dimeco F.
      • Vescovi A.L.
      Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells.
      and C-X-C motif chemokine (CXCL)12, which can induce glioma cell homing to the neurogenic niche (Figure 1).
      • Kokovay E.
      • Goderie S.
      • Wang Y.
      • Lotz S.
      • Lin G.
      • Sun Y.
      • Roysam B.
      • Shen Q.
      • Temple S.
      Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling.
      • Goffart N.
      • Kroonen J.
      • Di Valentin E.
      • Dedobbeleer M.
      • Denne A.
      • Martinive P.
      • Rogister B.
      Adult mouse subventricular zones stimulate glioblastoma stem cells specific invasion through CXCL12/CXCR4 signaling.
      In addition to local cell-derived signals, neuron-derived signals are another component of the V-SVZ niche. Whole-mount electron microscopy of murine ventricles has revealed serotonergic axons derived from soma in the raphe nuclei projecting along the ventricular walls amid ependymal microvilli. These cells release serotonergic vesicles that act on the serotonin receptors on NSCs and the choroid plexus. Activation of these receptors on the NSCs results in increased proliferation, whereas serotonin stimulation of the choroid plexus can result in release of fibroblast growth factor into the CSF, a known proliferation stimulant for normal and neoplastic cells.
      • Tong C.K.
      • Chen J.
      • Cebrian-Silla A.
      • Mirzadeh Z.
      • Obernier K.
      • Guinto C.D.
      • Tecott L.H.
      • Garcia-Verdugo J.M.
      • Kriegstein A.
      • Alvarez-Buylla A.
      Axonal control of the adult neural stem cell niche.
      • Soumier A.
      • Banasr M.
      • Kerkerian-Le Goff L.
      • Daszuta A.
      Region- and phase-dependent effects of 5-HT(1A) and 5-HT(2C) receptor activation on adult neurogenesis.
      Excitatory cholinergic neurons have been found to increase normal stem cell proliferation in the V-SVZ, and a population of ventral neurons adjacent to the murine V-SVZ directs fate specification through the production of sonic hedgehog.
      • Ihrie R.A.
      • Shah J.K.
      • Harwell C.C.
      • Levine J.H.
      • Guinto C.D.
      • Lezameta M.
      • Kriegstein A.R.
      • Alvarez-Buylla A.
      Persistent sonic hedgehog signaling in adult brain determines neural stem cell positional identity.
      • Paez-Gonzalez P.
      • Asrican B.
      • Rodriguez E.
      • Kuo C.T.
      Identification of distinct ChAT(+) neurons and activity-dependent control of postnatal SVZ neurogenesis.
      Similarly, cortical neurons projecting to patient-derived glioma xenografts induced an increase in cell proliferation through neuroligin-3 stimulation, suggesting that excitatory neuronal stimulation can regulate glioma growth (Figure 1).
      • Venkatesh H.S.
      • Johung T.B.
      • Caretti V.
      • Noll A.
      • Tang Y.
      • Nagaraja S.
      • Gibson E.M.
      • Mount C.W.
      • Polepalli J.
      • Mitra S.S.
      • Woo P.J.
      • Malenka R.C.
      • Vogel H.
      • Bredel M.
      • Mallick P.
      • Monje M.
      Neuronal activity promotes glioma growth through neuroligin-3 secretion.
      NSCs can also communicate with each other. For example, NSCs in the SGZ generate gap junctions with each other via connexins 43 and 30. Without these gap junctions, there is a marked reduction in NSC proliferation and number of progeny, reminiscent of the critical role of connexin 43 in radial glia during early cortical development.
      • Elias L.A.
      • Wang D.D.
      • Kriegstein A.R.
      Gap junction adhesion is necessary for radial migration in the neocortex.
      • Kunze A.
      • Congreso M.R.
      • Hartmann C.
      • Wallraff-Beck A.
      • Huttmann K.
      • Bedner P.
      • Requardt R.
      • Seifert G.
      • Redecker C.
      • Willecke K.
      • Hofmann A.
      • Pfeifer A.
      • Theis M.
      • Steinhauser C.
      Connexin expression by radial glia-like cells is required for neurogenesis in the adult dentate gyrus.
      Glioma cells can also use connexin 43 to establish gap junctions, sometimes with normal astrocytes, that provide unique advantages by facilitating invasion of brain parenchyma. In this context, gap junctions may enhance glioma growth by permitting the exchange of factors, including ATP from astrocyte to glioma cell.
      • Lin J.H.
      • Takano T.
      • Cotrina M.L.
      • Arcuino G.
      • Kang J.
      • Liu S.
      • Gao Q.
      • Jiang L.
      • Li F.
      • Lichtenberg-Frate H.
      • Haubrich S.
      • Willecke K.
      • Goldman S.A.
      • Nedergaard M.
      Connexin 43 enhances the adhesivity and mediates the invasion of malignant glioma cells.
      Outside the cell, distinct laminin structures in the V-SVZ, called fractones, are morphologically characterized by thin stalk-like projections with intermittent bulbs. These structures are in close physical contact with the ependyma, endothelia, and NSCs and are hypothesized to serve as reservoirs of mitogens for NSCs.
      • Mercier F.
      • Kitasako J.T.
      • Hatton G.I.
      Anatomy of the brain neurogenic zones revisited: fractones and the fibroblast/macrophage network.
      Glioma cells invading the niche may also contact these stores. Laminin is further observed on the ventricular face of the V-SVZ at the center of ependymal pinwheels, where ependymal cells and NSCs contact each other.
      • McClenahan F.K.
      • Sharma H.
      • Shan X.
      • Eyermann C.
      • Colognato H.
      Dystroglycan suppresses notch to regulate stem cell niche structure and function in the developing postnatal subventricular zone.
      Laminin signaling occurs via the interaction of dystroglycan on ependymal cells with integrin α6 on NSCs and is required for ependymal pinwheel formation and promotion of NSC interactions with blood vessels.
      • McClenahan F.K.
      • Sharma H.
      • Shan X.
      • Eyermann C.
      • Colognato H.
      Dystroglycan suppresses notch to regulate stem cell niche structure and function in the developing postnatal subventricular zone.
      • Shen Q.
      • Wang Y.
      • Kokovay E.
      • Lin G.
      • Chuang S.M.
      • Goderie S.K.
      • Roysam B.
      • Temple S.
      Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions.
      Integrin α6 expression is lost as NSCs differentiate.
      • Shen Q.
      • Wang Y.
      • Kokovay E.
      • Lin G.
      • Chuang S.M.
      • Goderie S.K.
      • Roysam B.
      • Temple S.
      Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions.
      Glioma cells with stem cell characteristics (enrichment of CD133, oligodendrocyte transcription factor, and Nestin) also express integrin α6. These cells have increased sphere-forming capacity and tumor-propagating abilities relative to integrin-negative or bulk tumor cells. In addition, these cells are closely associated with the perivascular niche.
      • Lathia J.D.
      • Gallagher J.
      • Heddleston J.M.
      • Wang J.
      • Eyler C.E.
      • Macswords J.
      • Wu Q.
      • Vasanji A.
      • McLendon R.E.
      • Hjelmeland A.B.
      • Rich J.N.
      Integrin alpha 6 regulates glioblastoma stem cells.
      These data suggest that the rich laminin environment of the V-SVZ may readily support a glioma stem cell population while inhibiting differentiation.

      Basal Foundations: Vascular Contact

      The endothelial cells and pericytes comprising the vascular elements of the V-SVZ are closely associated with NSCs (Figure 1). The V-SVZ vasculature consists of a planar plexus with large vessels that branch into smaller ones, unlike cortical vessels, which are smaller and branch more frequently.
      • Tavazoie M.
      • Van der Veken L.
      • Silva-Vargas V.
      • Louissaint M.
      • Colonna L.
      • Zaidi B.
      • Garcia-Verdugo J.M.
      • Doetsch F.
      A specialized vascular niche for adult neural stem cells.
      Most of the vessels in the brain, including those in the cortex and striatum, are encapsulated by pericytes and astrocytic end feet, which together compose the blood-brain barrier. In the V-SVZ, however, patches of vessels are devoid of this covering. At these sites, NSCs and transit-amplifying cells contact the vasculature, and cell division is observed.
      • Shen Q.
      • Wang Y.
      • Kokovay E.
      • Lin G.
      • Chuang S.M.
      • Goderie S.K.
      • Roysam B.
      • Temple S.
      Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions.
      • Shen Q.
      • Goderie S.K.
      • Jin L.
      • Karanth N.
      • Sun Y.
      • Abramova N.
      • Vincent P.
      • Pumiglia K.
      • Temple S.
      Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells.
      Vasculature lacking pericytes and astrocytes appears to be more permissive to exchange of factors, as demonstrated by experiments in rodents showing that dye conjugates carried in the bloodstream can access the V-SVZ niche directly.
      • Tavazoie M.
      • Van der Veken L.
      • Silva-Vargas V.
      • Louissaint M.
      • Colonna L.
      • Zaidi B.
      • Garcia-Verdugo J.M.
      • Doetsch F.
      A specialized vascular niche for adult neural stem cells.
      These authors also found that soluble growth factors, hormones, nutrients, and oxygen from the blood can infiltrate the CSF via choroid plexus blood vessels, supporting a model whereby the V-SVZ niche receives support from the ventricular and vascular aspects of the niche.
      • Tavazoie M.
      • Van der Veken L.
      • Silva-Vargas V.
      • Louissaint M.
      • Colonna L.
      • Zaidi B.
      • Garcia-Verdugo J.M.
      • Doetsch F.
      A specialized vascular niche for adult neural stem cells.
      Not only do vascular elements regulate access to serum factors, but these cells can also directly stimulate niche signaling. Endothelial cell secretions include PEDF, brain-derived neurotrophic factor, placental growth factor 2, and vascular endothelial growth factor. Placental growth factor 2 and vascular endothelial growth factor enhance neuroblast proliferation, whereas PEDF promotes NSC self-renewal and vascular endothelial growth factor improves neuronal survival.
      • Andreu-Agullo C.
      • Morante-Redolat J.M.
      • Delgado A.C.
      • Farinas I.
      Vascular niche factor PEDF modulates Notch-dependent stemness in the adult subependymal zone.
      • Ramirez-Castillejo C.
      • Sanchez-Sanchez F.
      • Andreu-Agullo C.
      • Ferron S.R.
      • Aroca-Aguilar J.D.
      • Sanchez P.
      • Mira H.
      • Escribano J.
      • Farinas I.
      Pigment epithelium-derived factor is a niche signal for neural stem cell renewal.
      • Leventhal C.
      • Rafii S.
      • Rafii D.
      • Shahar A.
      • Goldman S.A.
      Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma.
      • Jin K.
      • Zhu Y.
      • Sun Y.
      • Mao X.O.
      • Xie L.
      • Greenberg D.A.
      Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo.
      • Crouch E.E.
      • Liu C.
      • Silva-Vargas V.
      • Doetsch F.
      Regional and stage-specific effects of prospectively purified vascular cells on the adult V-SVZ neural stem cell lineage.
      To this end, NSCs with access to endothelial cell–cultured medium undergo increased symmetric self-renewing divisions relative to those cultured with cortical cells.
      • Shen Q.
      • Goderie S.K.
      • Jin L.
      • Karanth N.
      • Sun Y.
      • Abramova N.
      • Vincent P.
      • Pumiglia K.
      • Temple S.
      Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells.
      Direct physical contact with endothelial cells prevents stem cell differentiation and promotes expression of stemness genes (such as Nestin and the Notch effector Hes5) by signaling through ephrinB2 and Jagged1.
      • Ottone C.
      • Krusche B.
      • Whitby A.
      • Clements M.
      • Quadrato G.
      • Pitulescu M.E.
      • Adams R.H.
      • Parrinello S.
      Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells.
      Blood vessels from different regions of the brain can also differentially influence NSC growth. Surprisingly, although both cortical and subventricular endothelial cells can result in an increase in NSC cell number in vitro, cortical endothelial cells do so to a greater degree.
      • Crouch E.E.
      • Liu C.
      • Silva-Vargas V.
      • Doetsch F.
      Regional and stage-specific effects of prospectively purified vascular cells on the adult V-SVZ neural stem cell lineage.
      In high-grade gliomas, the blood-brain barrier is often compromised because of the high rate of angiogenesis and tortuous neovasculature. Furthermore, like normal stem cells, cancer stem-like cells tend to cluster near blood vessels.
      • Calabrese C.
      • Poppleton H.
      • Kocak M.
      • Hogg T.L.
      • Fuller C.
      • Hamner B.
      • Oh E.Y.
      • Gaber M.W.
      • Finklestein D.
      • Allen M.
      • Frank A.
      • Bayazitov I.T.
      • Zakharenko S.S.
      • Gajjar A.
      • Davidoff A.
      • Gilbertson R.J.
      A perivascular niche for brain tumor stem cells.
      Incomplete coverage of vessels by support cells, including pericytes, has been observed in gliomas and raises the possibility that glioma cells may receive serum-derived factors that normally influence NSCs.
      • Watkins S.
      • Robel S.
      • Kimbrough I.F.
      • Robert S.M.
      • Ellis-Davies G.
      • Sontheimer H.
      Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells.
      These cues include growth signals as well as nutrients and oxygen. When medulloblastoma stem-like cells (expressing Nestin, CD133, or both) are co-cultured with endothelial cells, they maintain expression of Nestin and CD133 and form larger spheres. In vivo, coinjection of endothelial cells and medulloblastoma stem-like cells accelerates tumor growth.
      • Calabrese C.
      • Poppleton H.
      • Kocak M.
      • Hogg T.L.
      • Fuller C.
      • Hamner B.
      • Oh E.Y.
      • Gaber M.W.
      • Finklestein D.
      • Allen M.
      • Frank A.
      • Bayazitov I.T.
      • Zakharenko S.S.
      • Gajjar A.
      • Davidoff A.
      • Gilbertson R.J.
      A perivascular niche for brain tumor stem cells.
      Glioma cells have also been shown to be able to assume a pericyte-like phenotype in vivo, including up-regulation of pericyte markers, a close physical association with the vasculature, and a functional role in maintaining tumor growth.
      • Cheng L.
      • Huang Z.
      • Zhou W.
      • Wu Q.
      • Donnola S.
      • Liu J.K.
      • Fang X.
      • Sloan A.E.
      • Mao Y.
      • Lathia J.D.
      • Min W.
      • McLendon R.E.
      • Rich J.N.
      • Bao S.
      Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth.
      This may be mediated by direct signaling from endothelial cells via the Notch ligand Jagged
      • Ottone C.
      • Krusche B.
      • Whitby A.
      • Clements M.
      • Quadrato G.
      • Pitulescu M.E.
      • Adams R.H.
      • Parrinello S.
      Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells.
      because Notch signaling in GBM cells has been shown to promote a pericyte cell phenotype and result in increased tumor vasculature.
      • Guichet P.O.
      • Guelfi S.
      • Teigell M.
      • Hoppe L.
      • Bakalara N.
      • Bauchet L.
      • Duffau H.
      • Lamszus K.
      • Rothhut B.
      • Hugnot J.P.
      Notch1 stimulation induces a vascularization switch with pericyte-like cell differentiation of glioblastoma stem cells.
      In addition, cancer stem cells secrete vascular endothelial growth factor and can promote endothelial cell migration, branching, and tube formation.
      • Bao S.
      • Wu Q.
      • Sathornsumetee S.
      • Hao Y.
      • Li Z.
      • Hjelmeland A.B.
      • Shi Q.
      • McLendon R.E.
      • Bigner D.D.
      • Rich J.N.
      Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor.
      Invasion of the V-SVZ, with its rich vascular support, may provide rapid tumor cell access to factors that support aggressive growth.

      The Niche as a Refuge

      Features that endow the V-SVZ niche with the ability to support and maintain neural stem cells may also cause it to serve as a refuge for neoplastic cells. In recent years, several factors have been identified that can attract or direct cells to this refuge. Ependymal and endothelial cells in the V-SVZ express the CXCL12 (alias stromal-derived factor 1), which facilitates tumor cell homing to stem cell niches in other cancers.
      • Shiozawa Y.
      • Pedersen E.A.
      • Havens A.M.
      • Jung Y.
      • Mishra A.
      • Joseph J.
      • Kim J.K.
      • Patel L.R.
      • Ying C.
      • Ziegler A.M.
      • Pienta M.J.
      • Song J.
      • Wang J.
      • Loberg R.D.
      • Krebsbach P.H.
      • Pienta K.J.
      • Taichman R.S.
      Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow.
      GBM patient-derived xenografts were found to co-opt CXCL12/C-X-C chemokine receptor 4 signaling to occupy the V-SVZ and reside in the niche (Figure 1).
      • Goffart N.
      • Kroonen J.
      • Di Valentin E.
      • Dedobbeleer M.
      • Denne A.
      • Martinive P.
      • Rogister B.
      Adult mouse subventricular zones stimulate glioblastoma stem cells specific invasion through CXCL12/CXCR4 signaling.
      Orthotopic xenografts of human glioma cells injected into the striatum of immunodeficient mice contained a subset of tumor cells that migrated toward the V-SVZ. Upon integration in the niche, the human cells expressed markers of NSCs and even began to migrate toward the olfactory bulb, suggesting that they were co-opting niche cues and adopting NSC behaviors. Dissection of these tumor cells from the host mouse and subsequent investigation of sphere-forming capacity and tumor initiation indicated that these cells were tumor propagating.
      • Goffart N.
      • Kroonen J.
      • Di Valentin E.
      • Dedobbeleer M.
      • Denne A.
      • Martinive P.
      • Rogister B.
      Adult mouse subventricular zones stimulate glioblastoma stem cells specific invasion through CXCL12/CXCR4 signaling.
      • Kroonen J.
      • Nassen J.
      • Boulanger Y.G.
      • Provenzano F.
      • Capraro V.
      • Bours V.
      • Martin D.
      • Deprez M.
      • Robe P.
      • Rogister B.
      Human glioblastoma-initiating cells invade specifically the subventricular zones and olfactory bulbs of mice after striatal injection.
      Furthermore, glioma cells expressing C-X-C chemokine receptor 4 found in the V-SVZ were shown to be more radioresistant in vitro and in vivo because of signaling through V-SVZ–derived CXCL12.
      • Goffart N.
      • Lombard A.
      • Lallemand F.
      • Kroonen J.
      • Nassen J.
      • Di Valentin E.
      • Berendsen S.
      • Dedobbeleer M.
      • Willems E.
      • Robe P.
      • Bours V.
      • Martin D.
      • Martinive P.
      • Maquet P.
      • Rogister B.
      CXCL12 mediates glioblastoma resistance to radiotherapy in the subventricular zone.
      More recently, conditioned medium from murine V-SVZ was shown to increase diffuse intrinsic pontine glioma cell invasiveness by producing a protein complex, including pleiotrophin, a neurite outgrowth promoting factor.
      • Qin E.Y.
      • Cooper D.D.
      • Abbott K.L.
      • Lennon J.
      • Nagaraja S.
      • Mackay A.
      • Jones C.
      • Vogel H.
      • Jackson P.K.
      • Monje M.
      Neural precursor-derived pleiotrophin mediates subventricular zone invasion by glioma.
      In vivo interruption of either of these signaling mechanisms, stromal-derived factor 1 or pleiotrophin, reduced the number of identifiable cancer cells that reached the V-SVZ. These findings suggest that glioma recurrence and progression may be driven by tumor cell homing to the V-SVZ with subsequent adoption of niche-based, therapy-protective interactions.
      A study of glioblastoma patients undergoing tumor resection guided by 5-aminolevulinic acid provided evidence for glioma cell migration to a neurogenic niche in humans. 5-Aminolevulinic acid is a metabolic precursor of fluorescent porphyrins that can accumulate in cancer cells.
      • Stummer W.
      • Stocker S.
      • Wagner S.
      • Stepp H.
      • Fritsch C.
      • Goetz C.
      • Goetz A.E.
      • Kiefmann R.
      • Reulen H.J.
      Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence.
      After peripheral injection of 5-aminolevulinic acid, fluorescent cells were detected in the V-SVZ in 65% of patients.
      • Piccirillo S.G.
      • Spiteri I.
      • Sottoriva A.
      • Touloumis A.
      • Ber S.
      • Price S.J.
      • Heywood R.
      • Francis N.J.
      • Howarth K.D.
      • Collins V.P.
      • Venkitaraman A.R.
      • Curtis C.
      • Marioni J.C.
      • Tavare S.
      • Watts C.
      Contributions to drug resistance in glioblastoma derived from malignant cells in the sub-ependymal zone.
      Histologic analysis of resected tissue confirmed glioma involvement, and driver mutations matching the primary tumor samples were detected. Importantly, the V-SVZ resident cancer cells were capable of generating spheres in vitro and tumors in vivo, confirming that the cells found in the niche can be tumor propagating.
      • Piccirillo S.G.
      • Spiteri I.
      • Sottoriva A.
      • Touloumis A.
      • Ber S.
      • Price S.J.
      • Heywood R.
      • Francis N.J.
      • Howarth K.D.
      • Collins V.P.
      • Venkitaraman A.R.
      • Curtis C.
      • Marioni J.C.
      • Tavare S.
      • Watts C.
      Contributions to drug resistance in glioblastoma derived from malignant cells in the sub-ependymal zone.
      Intriguingly, tumor cells found in the niche tended to be of the mesenchymal transcriptional subtype, regardless of the subtype assigned to the bulk tumor.
      • Piccirillo S.G.
      • Spiteri I.
      • Sottoriva A.
      • Touloumis A.
      • Ber S.
      • Price S.J.
      • Heywood R.
      • Francis N.J.
      • Howarth K.D.
      • Collins V.P.
      • Venkitaraman A.R.
      • Curtis C.
      • Marioni J.C.
      • Tavare S.
      • Watts C.
      Contributions to drug resistance in glioblastoma derived from malignant cells in the sub-ependymal zone.
      • Verhaak R.G.
      • Hoadley K.A.
      • Purdom E.
      • Wang V.
      • Qi Y.
      • Wilkerson M.D.
      • Miller C.R.
      • Ding L.
      • Golub T.
      • Mesirov J.P.
      • Alexe G.
      • Lawrence M.
      • O'Kelly M.
      • Tamayo P.
      • Weir B.A.
      • Gabriel S.
      • Winckler W.
      • Gupta S.
      • Jakkula L.
      • Feiler H.S.
      • Hodgson J.G.
      • James C.D.
      • Sarkaria J.N.
      • Brennan C.
      • Kahn A.
      • Spellman P.T.
      • Wilson R.K.
      • Speed T.P.
      • Gray J.W.
      • Meyerson M.
      • Getz G.
      • Perou C.M.
      • Hayes D.N.
      Cancer Genome Atlas Research Network
      Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1.
      This finding suggests that either the V-SVZ niche imposes a similar gene expression profile on the glioma cells or a certain cell phenotype is particularly capable of V-SVZ infiltration.
      Given that neurogenic niches may harbor cancer cells with tumor-propagating capabilities and increased radioresistance,
      • Goffart N.
      • Lombard A.
      • Lallemand F.
      • Kroonen J.
      • Nassen J.
      • Di Valentin E.
      • Berendsen S.
      • Dedobbeleer M.
      • Willems E.
      • Robe P.
      • Bours V.
      • Martin D.
      • Martinive P.
      • Maquet P.
      • Rogister B.
      CXCL12 mediates glioblastoma resistance to radiotherapy in the subventricular zone.
      some groups have retrospectively examined the impact of targeting the V-SVZ and SGZ with radiation therapy. Although a moderate survival benefit from niche irradiation has been reported, even in the absence of radiographically detectable contact, not all retrospective studies of such treatment found a survival benefit.
      • Nourallah B.
      • Digpal R.
      • Jena R.
      • Watts C.
      Irradiating the subventricular zone in glioblastoma patients: is there a case for a clinical trial?.
      In fact, a recent study involving 61 patients reported inferior survival when the ipsilateral neural stem cell compartment (V-SVZ and SGZ) received a high dose of radiation (55.2 Gy).
      • Achari R.
      • Arunsingh M.
      • Badgami R.K.
      • Saha A.
      • Chatterjee S.
      • Shrimali R.K.
      • Mallick I.
      • Arun B.
      High-dose neural stem cell radiation may not improve survival in glioblastoma.
      The effect of radiation on noncancerous cells of the stem cell niche warrants consideration when interpreting survival effects. In rodents, it has been shown that either whole brain or V-SVZ targeted radiation can result in sustained loss of cell proliferation and neural precursor production. In patients, necrosis of the V-SVZ can occur after radiation treatment, and this complication correlates with worse performance status.
      • Panagiotakos G.
      • Alshamy G.
      • Chan B.
      • Abrams R.
      • Greenberg E.
      • Saxena A.
      • Bradbury M.
      • Edgar M.
      • Gutin P.
      • Tabar V.
      Long-term impact of radiation on the stem cell and oligodendrocyte precursors in the brain.
      • Achanta P.
      • Capilla-Gonzalez V.
      • Purger D.
      • Reyes J.
      • Sailor K.
      • Song H.
      • Garcia-Verdugo J.M.
      • Gonzalez-Perez O.
      • Ford E.
      • Quinones-Hinojosa A.
      Subventricular zone localized irradiation affects the generation of proliferating neural precursor cells and the migration of neuroblasts.
      • Iuchi T.
      • Hatano K.
      • Kodama T.
      • Sakaida T.
      • Yokoi S.
      • Kawasaki K.
      • Hasegawa Y.
      • Hara R.
      Phase 2 trial of hypofractionated high-dose intensity modulated radiation therapy with concurrent and adjuvant temozolomide for newly diagnosed glioblastoma.
      At this time, there are two ongoing clinical trials to investigate the clinical efficacy of explicitly targeting or sparing the V-SVZ during irradiation (NCT02177578 and NCT01478854, respectively). The results of the only prospective clinical trial investigating neural stem cell niche irradiation in GBM
      • Malik M.
      • Akram K.S.
      • Joseph D.
      • Valiyaveettil D.
      • Ahmed S.F.
      Prospective study of irradiation of potential stem cell niches in glioblastoma.
      are promising, reporting significantly improved overall survival when the V-SVZ was irradiated and a trend toward improved survival when the SGZ was irradiated.

      Targeted Strikes: NSCs in Therapy

      Although the stem cell niche may support the formation, maintenance, or recurrence of neoplasms, noncancerous NSCs have the potential to serve a therapeutic role. Normal neural stem cells exhibit targeted migration to sites of tumor engraftment and some antitumor effects (Figure 1). Rats receiving xenografts of glioma cells together with NSCs show improved survival in comparison to animals that receive glioma cells only.
      • Jeon J.Y.
      • An J.H.
      • Kim S.U.
      • Park H.G.
      • Lee M.A.
      Migration of human neural stem cells toward an intracranial glioma.
      A survival benefit is maintained in a model of established tumors, when NSCs are administered 3 days after tumor engraftment. Furthermore, NSCs injected into brains millimeters outside the engrafted tumor will migrate toward the cancer cells, encapsulate the tumor, and penetrate the mass, even showing migration toward multifocal tumor sites separate from the bulk.
      • Kim S.K.
      • Kim S.U.
      • Park I.H.
      • Bang J.H.
      • Aboody K.S.
      • Wang K.C.
      • Cho B.K.
      • Kim M.
      • Menon L.G.
      • Black P.M.
      • Carroll R.S.
      Human neural stem cells target experimental intracranial medulloblastoma and deliver a therapeutic gene leading to tumor regression.
      • Staflin K.
      • Lindvall M.
      • Zuchner T.
      • Lundberg C.
      Instructive cross-talk between neural progenitor cells and gliomas.
      The NSCs do not infiltrate the surrounding brain parenchyma or contralateral hemisphere, suggesting they are specifically targeting the tumor. Migrating NSCs exert an antitumor effect, observed as a reduction in tumor volume 1 to 2 weeks after injection.
      • Jeon J.Y.
      • An J.H.
      • Kim S.U.
      • Park H.G.
      • Lee M.A.
      Migration of human neural stem cells toward an intracranial glioma.
      • Staflin K.
      • Lindvall M.
      • Zuchner T.
      • Lundberg C.
      Instructive cross-talk between neural progenitor cells and gliomas.
      This effect is observed in multiple brain cancer types, including glioma and medulloblastoma.
      • Kim S.K.
      • Kim S.U.
      • Park I.H.
      • Bang J.H.
      • Aboody K.S.
      • Wang K.C.
      • Cho B.K.
      • Kim M.
      • Menon L.G.
      • Black P.M.
      • Carroll R.S.
      Human neural stem cells target experimental intracranial medulloblastoma and deliver a therapeutic gene leading to tumor regression.
      The ability of NSCs to seek out tumor cells has inspired a host of studies in which therapies are transported by NSCs for delivery to cancerous cells. Multiple strategies have been used for both the generation of tumor-homing NSCs and therapy delivery. Human neural stem cells and NSCs transdifferentiated from skin fibroblasts have both been shown to successfully target glioma cells in vitro and in vivo.
      • Liu S.
      • Yin F.
      • Zhao M.
      • Zhou C.
      • Ren J.
      • Huang Q.
      • Zhao Z.
      • Mitra R.
      • Fan W.
      • Fan M.
      The homing and inhibiting effects of hNSCs-BMP4 on human glioma stem cells.
      • Bago J.R.
      • Okolie O.
      • Dumitru R.
      • Ewend M.G.
      • Parker J.S.
      • Werff R.V.
      • Underhill T.M.
      • Schmid R.S.
      • Miller C.R.
      • Hingtgen S.D.
      Tumor-homing cytotoxic human induced neural stem cells for cancer therapy.
      These engineered NSCs induce glioma cell apoptosis via expression of soluble tumor necrosis factor–α-related apoptosis–inducing ligand
      • Bago J.R.
      • Okolie O.
      • Dumitru R.
      • Ewend M.G.
      • Parker J.S.
      • Werff R.V.
      • Underhill T.M.
      • Schmid R.S.
      • Miller C.R.
      • Hingtgen S.D.
      Tumor-homing cytotoxic human induced neural stem cells for cancer therapy.
      • Shah K.
      • Bureau E.
      • Kim D.E.
      • Yang K.
      • Tang Y.
      • Weissleder R.
      • Breakefield X.O.
      Glioma therapy and real-time imaging of neural precursor cell migration and tumor regression.
      and cytosine deaminase (paired with 5-formylcytosine).
      • Aboody K.S.
      • Najbauer J.
      • Metz M.Z.
      • D'Apuzzo M.
      • Gutova M.
      • Annala A.J.
      • Synold T.W.
      • Couture L.A.
      • Blanchard S.
      • Moats R.A.
      • Garcia E.
      • Aramburo S.
      • Valenzuela V.V.
      • Frank R.T.
      • Barish M.E.
      • Brown C.E.
      • Kim S.U.
      • Badie B.
      • Portnow J.
      Neural stem cell-mediated enzyme/prodrug therapy for glioma: preclinical studies.
      Therapeutic NSCs can promote glioma cell differentiation in addition to apoptosis.
      • Liu S.
      • Yin F.
      • Zhao M.
      • Zhou C.
      • Ren J.
      • Huang Q.
      • Zhao Z.
      • Mitra R.
      • Fan W.
      • Fan M.
      The homing and inhibiting effects of hNSCs-BMP4 on human glioma stem cells.
      When applied to orthotopic xenograft models in rodents, NSC-delivered therapies have been shown to prolong survival. Importantly, the NSCs retain their ability to target tumor cells after steroid therapy or radiotherapy, both of which are routinely administered during patient care. In addition to effectively reducing tumor burden, these therapies may prove to have fewer off-target effects than currently used pharmaceuticals. Compared with soluble tumor necrosis factor–α-related apoptosis–inducing ligand administered intravenously or injected into the tumor, tumor necrosis factor–α-related apoptosis–inducing ligand secreted by NSCs was not detected in organs other than the brain, persisted through 24 hours, and resulted in tumor volume reduction.
      • Hingtgen S.D.
      • Kasmieh R.
      • van de Water J.
      • Weissleder R.
      • Shah K.
      A novel molecule integrating therapeutic and diagnostic activities reveals multiple aspects of stem cell-based therapy.
      This result suggests that NSC-mediated therapies may show pharmacokinetic features preferable to routinely administered chemotherapies. The preliminary investigation of therapeutic NSCs for brain cancers is the basis of an ongoing clinical trial.
      • Aboody K.S.
      • Najbauer J.
      • Metz M.Z.
      • D'Apuzzo M.
      • Gutova M.
      • Annala A.J.
      • Synold T.W.
      • Couture L.A.
      • Blanchard S.
      • Moats R.A.
      • Garcia E.
      • Aramburo S.
      • Valenzuela V.V.
      • Frank R.T.
      • Barish M.E.
      • Brown C.E.
      • Kim S.U.
      • Badie B.
      • Portnow J.
      Neural stem cell-mediated enzyme/prodrug therapy for glioma: preclinical studies.

      Conclusions and Persisting Questions

      The study of neurogenic niches in the adult brain is a rich and active field of research. Beyond the function of these sites as generators of new neurons, emerging data reveal significant effects of neurogenic niches on the behavior of malignant gliomas. Treatment options for these aggressive neoplasms are limited, and patient survival remains dismal; therefore, the potential role of these niches in tumor initiation, maintenance, or recurrence merits further research. Improvements in tumor therapy may include targeting niche factors and disrupting niche–tumor cell interactions, with radiotherapeutic targeting of the V-SVZ representing a first step along this course. As our knowledge of the normal niche continues to expand, newly revealed features may also drive better understanding of tumor cause and therapy response. Areas of interest include the impact of cell-to-cell heterogeneity and lineage priming within normal NSCs on the disease state and the contribution of microglia, the major innate immune population within the brain, to normal and tumor-bearing V-SVZ. Studies from the mouse brain indicate that neural stem cells are spatially diverse, meaning that stem cells from different regions of the V-SVZ produce different progeny.
      • Fuentealba L.C.
      • Obernier K.
      • Alvarez-Buylla A.
      Adult neural stem cells bridge their niche.
      • Ihrie R.A.
      • Shah J.K.
      • Harwell C.C.
      • Levine J.H.
      • Guinto C.D.
      • Lezameta M.
      • Kriegstein A.R.
      • Alvarez-Buylla A.
      Persistent sonic hedgehog signaling in adult brain determines neural stem cell positional identity.
      • Fuentealba L.C.
      • Rompani S.B.
      • Parraguez J.I.
      • Obernier K.
      • Romero R.
      • Cepko C.L.
      • Alvarez-Buylla A.
      Embryonic origin of postnatal neural stem cells.
      • Llorens-Bobadilla E.
      • Zhao S.
      • Baser A.
      • Saiz-Castro G.
      • Zwadlo K.
      • Martin-Villalba A.
      Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury.
      • Merkle F.T.
      • Mirzadeh Z.
      • Alvarez-Buylla A.
      Mosaic organization of neural stem cells in the adult brain.
      • Kelsch W.
      • Mosley C.P.
      • Lin C.W.
      • Lois C.
      Distinct mammalian precursors are committed to generate neurons with defined dendritic projection patterns.
      • Young K.M.
      • Fogarty M.
      • Kessaris N.
      • Richardson W.D.
      Subventricular zone stem cells are heterogeneous with respect to their embryonic origins and neurogenic fates in the adult olfactory bulb.
      Examination of spatial differences in tumor-forming or tumor-homing capabilities of heterogeneous NSCs may further inform the design of targeted therapies. Detailed investigations of the role of innate and adaptive immune cells in this niche will also be critical to understanding how these tumors may evade immune detection or targeted immunotherapy approaches (eg, anti–programmed cell death protein 1/cytotoxic T-lymphocyte antigen-4 agents). Microglia help to define and maintain the neurogenic niche, and recent studies indicate that the V-SVZ resident population is functionally distinct and temporally dynamic, exhibiting an immature phenotype that changes with organismal age.
      • Ribeiro Xavier A.L.
      • Kress B.T.
      • Goldman S.A.
      • Lacerda de Menezes J.R.
      • Nedergaard M.
      A distinct population of microglia supports adult neurogenesis in the subventricular zone.
      • Solano Fonseca R.
      • Mahesula S.
      • Apple D.M.
      • Raghunathan R.
      • Dugan A.
      • Cardona A.
      • O'Connor J.
      • Kokovay E.
      Neurogenic niche microglia undergo positional remodeling and progressive activation contributing to age-associated reductions in neurogenesis.
      Finally, glioma research currently benefits from the ample available patient tissue from primary tumor resections, as well as a plethora of imaging data collected during routine care. One persistent challenge is the integration of molecular information (bulk and single-cell genomic and proteomic approaches) with spatial information obtained from clinical imaging. Recent advances in both the preparation of single-cell suspensions and the collection of high-dimensional data will enhance our ability to map specific populations of cancer and niche cells, providing a better understanding of the impact of V-SVZ niche diversity on tumor behavior.
      • Leelatian N.
      • Doxie D.B.
      • Greenplate A.R.
      • Mobley B.C.
      • Lehman J.M.
      • Sinnaeve J.
      • Kauffmann R.M.
      • Werkhaven J.A.
      • Mistry A.M.
      • Weaver K.D.
      • Thompson R.C.
      • Massion P.P.
      • Hooks M.A.
      • Kelley M.C.
      • Chambless L.B.
      • Ihrie R.A.
      • Irish J.M.
      Single cell analysis of human tissues and solid tumors with mass cytometry.
      • Wei W.
      • Shin Y.S.
      • Xue M.
      • Matsutani T.
      • Masui K.
      • Yang H.
      • Ikegami S.
      • Gu Y.
      • Herrmann K.
      • Johnson D.
      • Ding X.
      • Hwang K.
      • Kim J.
      • Zhou J.
      • Su Y.
      • Li X.
      • Bonetti B.
      • Chopra R.
      • James C.D.
      • Cavenee W.K.
      • Cloughesy T.F.
      • Mischel P.S.
      • Heath J.R.
      • Gini B.
      Single-cell phosphoproteomics resolves adaptive signaling dynamics and informs targeted combination therapy in glioblastoma.

      Acknowledgments

      We thank Akshitkumar Mistry, Nalin Leelatian, Allison Greenplate, Gabrielle Rushing, and members of the Ihrie and Irish laboratories (Vanderbilt University) for helpful discussion and critical feedback. We apologize to our colleagues whose work could not be discussed in depth within space limitations.

      References

        • Silva-Vargas V.
        • Crouch E.E.
        • Doetsch F.
        Adult neural stem cells and their niche: a dynamic duo during homeostasis, regeneration, and aging.
        Curr Opin Neurobiol. 2013; 23: 935-942
        • Fuentealba L.C.
        • Obernier K.
        • Alvarez-Buylla A.
        Adult neural stem cells bridge their niche.
        Cell Stem Cell. 2012; 10: 698-708
        • Bonaguidi M.A.
        • Song J.
        • Ming G.L.
        • Song H.
        A unifying hypothesis on mammalian neural stem cell properties in the adult hippocampus.
        Curr Opin Neurobiol. 2012; 22: 754-761
        • Reya T.
        • Morrison S.J.
        • Clarke M.F.
        • Weissman I.L.
        Stem cells, cancer, and cancer stem cells.
        Nature. 2001; 414: 105-111
        • Sanai N.
        • Alvarez-Buylla A.
        • Berger M.S.
        Neural stem cells and the origin of gliomas.
        N Engl J Med. 2005; 353: 811-822
        • Zong H.
        • Parada L.F.
        • Baker S.J.
        Cell of origin for malignant gliomas and its implication in therapeutic development.
        Cold Spring Harb Perspect Biol. 2015; 7 (a020610)
        • Chen J.
        • McKay R.M.
        • Parada L.F.
        Malignant glioma: lessons from genomics, mouse models, and stem cells.
        Cell. 2012; 149: 36-47
        • Plaks V.
        • Kong N.
        • Werb Z.
        The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells?.
        Cell Stem Cell. 2015; 16: 225-238
        • Gilbertson R.J.
        • Rich J.N.
        Making a tumour's bed: glioblastoma stem cells and the vascular niche.
        Nat Rev Cancer. 2007; 7: 733-736
        • Mistry A.M.
        • Hale A.T.
        • Chambless L.B.
        • Weaver K.D.
        • Thompson R.C.
        • Ihrie R.A.
        Influence of glioblastoma contact with the lateral ventricle on survival: a meta-analysis.
        J Neurooncol. 2017; 131: 125-133
        • Sanai N.
        • Nguyen T.
        • Ihrie R.A.
        • Mirzadeh Z.
        • Tsai H.H.
        • Wong M.
        • Gupta N.
        • Berger M.S.
        • Huang E.
        • Garcia-Verdugo J.M.
        • Rowitch D.H.
        • Alvarez-Buylla A.
        Corridors of migrating neurons in the human brain and their decline during infancy.
        Nature. 2011; 478: 382-386
        • Paredes M.F.
        • James D.
        • Gil-Perotin S.
        • Kim H.
        • Cotter J.A.
        • Ng C.
        • Sandoval K.
        • Rowitch D.H.
        • Xu D.
        • McQuillen P.S.
        • Garcia-Verdugo J.M.
        • Huang E.J.
        • Alvarez-Buylla A.
        Extensive migration of young neurons into the infant human frontal lobe.
        Science. 2016; 354 (aaf7073)
        • Sanai N.
        • Tramontin A.D.
        • Quinones-Hinojosa A.
        • Barbaro N.M.
        • Gupta N.
        • Kunwar S.
        • Lawton M.T.
        • McDermott M.W.
        • Parsa A.T.
        • Manuel-Garcia Verdugo J.
        • Berger M.S.
        • Alvarez-Buylla A.
        Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration.
        Nature. 2004; 427: 740-744
        • Ernst A.
        • Alkass K.
        • Bernard S.
        • Salehpour M.
        • Perl S.
        • Tisdale J.
        • Possnert G.
        • Druid H.
        • Frisen J.
        Neurogenesis in the striatum of the adult human brain.
        Cell. 2014; 156: 1072-1083
        • Kernie S.G.
        • Parent J.M.
        Forebrain neurogenesis after focal ischemic and traumatic brain injury.
        Neurobiol Dis. 2010; 37: 267-274
        • Mirzadeh Z.
        • Merkle F.T.
        • Soriano-Navarro M.
        • Garcia-Verdugo J.M.
        • Alvarez-Buylla A.
        Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain.
        Cell Stem Cell. 2008; 3: 265-278
        • Del Bigio M.R.
        The ependyma: a protective barrier between brain and cerebrospinal fluid.
        Glia. 1995; 14: 1-13
        • Sawamoto K.
        • Wichterle H.
        • Gonzalez-Perez O.
        • Cholfin J.A.
        • Yamada M.
        • Spassky N.
        • Murcia N.S.
        • Garcia-Verdugo J.M.
        • Marin O.
        • Rubenstein J.L.
        • Tessier-Lavigne M.
        • Okano H.
        • Alvarez-Buylla A.
        New neurons follow the flow of cerebrospinal fluid in the adult brain.
        Science. 2006; 311: 629-632
        • Kokovay E.
        • Wang Y.
        • Kusek G.
        • Wurster R.
        • Lederman P.
        • Lowry N.
        • Shen Q.
        • Temple S.
        VCAM1 is essential to maintain the structure of the SVZ niche and acts as an environmental sensor to regulate SVZ lineage progression.
        Cell Stem Cell. 2012; 11: 220-230
        • Doetsch F.
        • Garcia-Verdugo J.M.
        • Alvarez-Buylla A.
        Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain.
        J Neurosci. 1997; 17: 5046-5061
        • Tong C.K.
        • Chen J.
        • Cebrian-Silla A.
        • Mirzadeh Z.
        • Obernier K.
        • Guinto C.D.
        • Tecott L.H.
        • Garcia-Verdugo J.M.
        • Kriegstein A.
        • Alvarez-Buylla A.
        Axonal control of the adult neural stem cell niche.
        Cell Stem Cell. 2014; 14: 500-511
        • Hoglinger G.U.
        • Arias-Carrion O.
        • Ipach B.
        • Oertel W.H.
        Origin of the dopaminergic innervation of adult neurogenic areas.
        J Comp Neurol. 2014; 522: 2336-2348
        • Ribeiro Xavier A.L.
        • Kress B.T.
        • Goldman S.A.
        • Lacerda de Menezes J.R.
        • Nedergaard M.
        A distinct population of microglia supports adult neurogenesis in the subventricular zone.
        J Neurosci. 2015; 35: 11848-11861
        • Dennis C.V.
        • Suh L.S.
        • Rodriguez M.L.
        • Kril J.J.
        • Sutherland G.T.
        Human adult neurogenesis across the ages: an immunohistochemical study.
        Neuropathol Appl Neurobiol. 2016; 42: 621-638
        • Seri B.
        • Garcia-Verdugo J.M.
        • Collado-Morente L.
        • McEwen B.S.
        • Alvarez-Buylla A.
        Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus.
        J Comp Neurol. 2004; 478: 359-378
        • Palmer T.D.
        • Willhoite A.R.
        • Gage F.H.
        Vascular niche for adult hippocampal neurogenesis.
        J Comp Neurol. 2000; 425: 479-494
        • Iacoangeli M.
        • Di Rienzo A.
        • Colasanti R.
        • Zizzi A.
        • Gladi M.
        • Alvaro L.
        • Nocchi N.
        • Di Somma L.G.
        • Scarpelli M.
        • Scerrati M.
        Endoscopy-verified occult subependymal dissemination of glioblastoma and brain metastasis undetected by MRI: prognostic significance.
        Onco Targets Ther. 2012; 5: 449-456
        • Willard N.
        • Kleinschmidt-DeMasters B.K.
        Massive dissemination of adult glioblastomas.
        Clin Neuropathol. 2015; 34: 330-342
        • Tamura M.
        • Ohye C.
        • Nakazato Y.
        Pathological anatomy of autopsy brain with malignant glioma.
        Neurol Med Chir (Tokyo). 1993; 33: 77-80
        • Lim D.A.
        • Cha S.
        • Mayo M.C.
        • Chen M.H.
        • Keles E.
        • VandenBerg S.
        • Berger M.S.
        Relationship of glioblastoma multiforme to neural stem cell regions predicts invasive and multifocal tumor phenotype.
        Neuro Oncol. 2007; 9: 424-429
        • Radbruch A.
        • Lutz K.
        • Wiestler B.
        • Baumer P.
        • Heiland S.
        • Wick W.
        • Bendszus M.
        Relevance of T2 signal changes in the assessment of progression of glioblastoma according to the Response Assessment in Neurooncology criteria.
        Neuro Oncol. 2012; 14: 222-229
        • Liu S.
        • Wang Y.
        • Fan X.
        • Ma J.
        • Ma W.
        • Wang R.
        • Jiang T.
        Anatomical involvement of the subventricular zone predicts poor survival outcome in low-grade astrocytomas.
        PLoS One. 2016; 11: e0154539
        • Piccirillo S.G.
        • Spiteri I.
        • Sottoriva A.
        • Touloumis A.
        • Ber S.
        • Price S.J.
        • Heywood R.
        • Francis N.J.
        • Howarth K.D.
        • Collins V.P.
        • Venkitaraman A.R.
        • Curtis C.
        • Marioni J.C.
        • Tavare S.
        • Watts C.
        Contributions to drug resistance in glioblastoma derived from malignant cells in the sub-ependymal zone.
        Cancer Res. 2015; 75: 194-202
        • Caretti V.
        • Bugiani M.
        • Freret M.
        • Schellen P.
        • Jansen M.
        • van Vuurden D.
        • Kaspers G.
        • Fisher P.G.
        • Hulleman E.
        • Wesseling P.
        • Vogel H.
        • Monje M.
        Subventricular spread of diffuse intrinsic pontine glioma.
        Acta Neuropathol. 2014; 128: 605-607
        • Lai A.
        • Kharbanda S.
        • Pope W.B.
        • Tran A.
        • Solis O.E.
        • Peale F.
        • Forrest W.F.
        • Pujara K.
        • Carrillo J.A.
        • Pandita A.
        • Ellingson B.M.
        • Bowers C.W.
        • Soriano R.H.
        • Schmidt N.O.
        • Mohan S.
        • Yong W.H.
        • Seshagiri S.
        • Modrusan Z.
        • Jiang Z.
        • Aldape K.D.
        • Mischel P.S.
        • Liau L.M.
        • Escovedo C.J.
        • Chen W.
        • Nghiemphu P.L.
        • James C.D.
        • Prados M.D.
        • Westphal M.
        • Lamszus K.
        • Cloughesy T.
        • Phillips H.S.
        Evidence for sequenced molecular evolution of IDH1 mutant glioblastoma from a distinct cell of origin.
        J Clin Oncol. 2011; 29: 4482-4490
        • Mistry A.M.
        • Dewan M.C.
        • White-Dzuro G.A.
        • Brinson P.R.
        • Weaver K.D.
        • Thompson R.C.
        • Ihrie R.A.
        • Chambless L.B.
        Decreased survival in glioblastomas is specific to contact with the ventricular-subventricular zone, not subgranular zone or corpus callosum.
        J Neurooncol. 2017; 132: 341-349
        • Chen L.
        • Chaichana K.L.
        • Kleinberg L.
        • Ye X.
        • Quinones-Hinojosa A.
        • Redmond K.
        Glioblastoma recurrence patterns near neural stem cell regions.
        Radiother Oncol. 2015; 116: 294-300
        • Jafri N.F.
        • Clarke J.L.
        • Weinberg V.
        • Barani I.J.
        • Cha S.
        Relationship of glioblastoma multiforme to the subventricular zone is associated with survival.
        Neuro Oncol. 2013; 15: 91-96
        • Adeberg S.
        • Konig L.
        • Bostel T.
        • Harrabi S.
        • Welzel T.
        • Debus J.
        • Combs S.E.
        Glioblastoma recurrence patterns after radiation therapy with regard to the subventricular zone.
        Int J Radiat Oncol Biol Phys. 2014; 90: 886-893
        • Nestler U.
        • Lutz K.
        • Pichlmeier U.
        • Stummer W.
        • Franz K.
        • Reulen H.J.
        • Bink A.
        • Group ALA Glioma Study
        Anatomic features of glioblastoma and their potential impact on survival.
        Acta Neurochir (Wien). 2015; 157: 179-186
        • Sonoda Y.
        • Saito R.
        • Kanamori M.
        • Kumabe T.
        • Uenohara H.
        • Tominaga T.
        The association of subventricular zone involvement at recurrence with survival after repeat surgery in patients with recurrent glioblastoma.
        Neurol Med Chir (Tokyo). 2014; 54: 302-309
        • Kimura M.
        • Lee Y.
        • Miller R.
        • Castillo M.
        Glioblastoma multiforme: relationship to subventricular zone and recurrence.
        Neuroradiol J. 2013; 26: 542-547
        • Jungk C.
        • Mock A.
        • Exner J.
        • Geisenberger C.
        • Warta R.
        • Capper D.
        • Abdollahi A.
        • Friauf S.
        • Lahrmann B.
        • Grabe N.
        • Beckhove P.
        • von Deimling A.
        • Unterberg A.
        • Herold-Mende C.
        Spatial transcriptome analysis reveals Notch pathway-associated prognostic markers in IDH1 wild-type glioblastoma involving the subventricular zone.
        BMC Med. 2016; 14: 170
        • Siyahhan B.
        • Knobloch V.
        • de Zelicourt D.
        • Asgari M.
        • Schmid Daners M.
        • Poulikakos D.
        • Kurtcuoglu V.
        Flow induced by ependymal cilia dominates near-wall cerebrospinal fluid dynamics in the lateral ventricles.
        J R Soc Interface. 2014; 11: 20131189
        • Ohata S.
        • Alvarez-Buylla A.
        Planar organization of multiciliated ependymal (E1) cells in the brain ventricular epithelium.
        Trends Neurosci. 2016; 39: 543-551
        • Silva-Vargas V.
        • Maldonado-Soto A.R.
        • Mizrak D.
        • Codega P.
        • Doetsch F.
        Age-dependent niche signals from the choroid plexus regulate adult neural stem cells.
        Cell Stem Cell. 2016; 19: 643-652
        • Lehtinen M.K.
        • Zappaterra M.W.
        • Chen X.
        • Yang Y.J.
        • Hill A.D.
        • Lun M.
        • Maynard T.
        • Gonzalez D.
        • Kim S.
        • Ye P.
        • D'Ercole A.J.
        • Wong E.T.
        • LaMantia A.S.
        • Walsh C.A.
        The cerebrospinal fluid provides a proliferative niche for neural progenitor cells.
        Neuron. 2011; 69: 893-905
        • Thouvenot E.
        • Urbach S.
        • Dantec C.
        • Poncet J.
        • Seveno M.
        • Demettre E.
        • Jouin P.
        • Touchon J.
        • Bockaert J.
        • Marin P.
        Enhanced detection of CNS cell secretome in plasma protein-depleted cerebrospinal fluid.
        J Proteome Res. 2008; 7: 4409-4421
        • Falk A.
        • Frisen J.
        Amphiregulin is a mitogen for adult neural stem cells.
        J Neurosci Res. 2002; 69: 757-762
        • Soroceanu L.
        • Kharbanda S.
        • Chen R.
        • Soriano R.H.
        • Aldape K.
        • Misra A.
        • Zha J.
        • Forrest W.F.
        • Nigro J.M.
        • Modrusan Z.
        • Feuerstein B.G.
        • Phillips H.S.
        Identification of IGF2 signaling through phosphoinositide-3-kinase regulatory subunit 3 as a growth-promoting axis in glioblastoma.
        Proc Natl Acad Sci U S A. 2007; 104: 3466-3471
        • Yin J.
        • Park G.
        • Kim T.H.
        • Hong J.H.
        • Kim Y.J.
        • Jin X.
        • Kang S.
        • Jung J.E.
        • Kim J.Y.
        • Yun H.
        • Lee J.E.
        • Kim M.
        • Chung J.
        • Kim H.
        • Nakano I.
        • Gwak H.S.
        • Yoo H.
        • Yoo B.C.
        • Kim J.H.
        • Hur E.M.
        • Lee J.
        • Lee S.H.
        • Park M.J.
        • Park J.B.
        Pigment epithelium-derived factor (PEDF) expression induced by EGFRvIII promotes self-renewal and tumor progression of glioma stem cells.
        PLoS Biol. 2015; 13: e1002152
        • Lorente M.
        • Carracedo A.
        • Torres S.
        • Natali F.
        • Egia A.
        • Hernandez-Tiedra S.
        • Salazar M.
        • Blazquez C.
        • Guzman M.
        • Velasco G.
        Amphiregulin is a factor for resistance of glioma cells to cannabinoid-induced apoptosis.
        Glia. 2009; 57: 1374-1385
        • Chhieng D.C.
        • Elgert P.
        • Cohen J.M.
        • Jhala N.C.
        • Cangiarella J.F.
        Cytology of primary central nervous system neoplasms in cerebrospinal fluid specimens.
        Diagn Cytopathol. 2002; 26: 209-212
        • Wang Y.
        • Springer S.
        • Zhang M.
        • McMahon K.W.
        • Kinde I.
        • Dobbyn L.
        • Ptak J.
        • Brem H.
        • Chaichana K.
        • Gallia G.L.
        • Gokaslan Z.L.
        • Groves M.L.
        • Jallo G.I.
        • Lim M.
        • Olivi A.
        • Quinones-Hinojosa A.
        • Rigamonti D.
        • Riggins G.J.
        • Sciubba D.M.
        • Weingart J.D.
        • Wolinsky J.P.
        • Ye X.
        • Oba-Shinjo S.M.
        • Marie S.K.
        • Holdhoff M.
        • Agrawal N.
        • Diaz Jr., L.A.
        • Papadopoulos N.
        • Kinzler K.W.
        • Vogelstein B.
        • Bettegowda C.
        Detection of tumor-derived DNA in cerebrospinal fluid of patients with primary tumors of the brain and spinal cord.
        Proc Natl Acad Sci U S A. 2015; 112: 9704-9709
        • Akers J.C.
        • Ramakrishnan V.
        • Kim R.
        • Skog J.
        • Nakano I.
        • Pingle S.
        • Kalinina J.
        • Hua W.
        • Kesari S.
        • Mao Y.
        • Breakefield X.O.
        • Hochberg F.H.
        • Van Meir E.G.
        • Carter B.S.
        • Chen C.C.
        MiR-21 in the extracellular vesicles (EVs) of cerebrospinal fluid (CSF): a platform for glioblastoma biomarker development.
        PLoS One. 2013; 8: e78115
        • Skog J.
        • Wurdinger T.
        • van Rijn S.
        • Meijer D.H.
        • Gainche L.
        • Sena-Esteves M.
        • Curry Jr., W.T.
        • Carter B.S.
        • Krichevsky A.M.
        • Breakefield X.O.
        Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers.
        Nat Cell Biol. 2008; 10: 1470-1476
        • Perry A.
        • Miller C.R.
        • Gujrati M.
        • Scheithauer B.W.
        • Zambrano S.C.
        • Jost S.C.
        • Raghavan R.
        • Qian J.
        • Cochran E.J.
        • Huse J.T.
        • Holland E.C.
        • Burger P.C.
        • Rosenblum M.K.
        Malignant gliomas with primitive neuroectodermal tumor-like components: a clinicopathologic and genetic study of 53 cases.
        Brain Pathol. 2009; 19: 81-90
        • Lim D.A.
        • Tramontin A.D.
        • Trevejo J.M.
        • Herrera D.G.
        • Garcia-Verdugo J.M.
        • Alvarez-Buylla A.
        Noggin antagonizes BMP signaling to create a niche for adult neurogenesis.
        Neuron. 2000; 28: 713-726
        • Piccirillo S.G.
        • Reynolds B.A.
        • Zanetti N.
        • Lamorte G.
        • Binda E.
        • Broggi G.
        • Brem H.
        • Olivi A.
        • Dimeco F.
        • Vescovi A.L.
        Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells.
        Nature. 2006; 444: 761-765
        • Kokovay E.
        • Goderie S.
        • Wang Y.
        • Lotz S.
        • Lin G.
        • Sun Y.
        • Roysam B.
        • Shen Q.
        • Temple S.
        Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling.
        Cell Stem Cell. 2010; 7: 163-173
        • Goffart N.
        • Kroonen J.
        • Di Valentin E.
        • Dedobbeleer M.
        • Denne A.
        • Martinive P.
        • Rogister B.
        Adult mouse subventricular zones stimulate glioblastoma stem cells specific invasion through CXCL12/CXCR4 signaling.
        Neuro Oncol. 2015; 17: 81-94
        • Soumier A.
        • Banasr M.
        • Kerkerian-Le Goff L.
        • Daszuta A.
        Region- and phase-dependent effects of 5-HT(1A) and 5-HT(2C) receptor activation on adult neurogenesis.
        Eur Neuropsychopharmacol. 2010; 20: 336-345
        • Ihrie R.A.
        • Shah J.K.
        • Harwell C.C.
        • Levine J.H.
        • Guinto C.D.
        • Lezameta M.
        • Kriegstein A.R.
        • Alvarez-Buylla A.
        Persistent sonic hedgehog signaling in adult brain determines neural stem cell positional identity.
        Neuron. 2011; 71: 250-262
        • Paez-Gonzalez P.
        • Asrican B.
        • Rodriguez E.
        • Kuo C.T.
        Identification of distinct ChAT(+) neurons and activity-dependent control of postnatal SVZ neurogenesis.
        Nat Neurosci. 2014; 17: 934-942
        • Venkatesh H.S.
        • Johung T.B.
        • Caretti V.
        • Noll A.
        • Tang Y.
        • Nagaraja S.
        • Gibson E.M.
        • Mount C.W.
        • Polepalli J.
        • Mitra S.S.
        • Woo P.J.
        • Malenka R.C.
        • Vogel H.
        • Bredel M.
        • Mallick P.
        • Monje M.
        Neuronal activity promotes glioma growth through neuroligin-3 secretion.
        Cell. 2015; 161: 803-816
        • Elias L.A.
        • Wang D.D.
        • Kriegstein A.R.
        Gap junction adhesion is necessary for radial migration in the neocortex.
        Nature. 2007; 448: 901-907
        • Kunze A.
        • Congreso M.R.
        • Hartmann C.
        • Wallraff-Beck A.
        • Huttmann K.
        • Bedner P.
        • Requardt R.
        • Seifert G.
        • Redecker C.
        • Willecke K.
        • Hofmann A.
        • Pfeifer A.
        • Theis M.
        • Steinhauser C.
        Connexin expression by radial glia-like cells is required for neurogenesis in the adult dentate gyrus.
        Proc Natl Acad Sci U S A. 2009; 106: 11336-11341
        • Lin J.H.
        • Takano T.
        • Cotrina M.L.
        • Arcuino G.
        • Kang J.
        • Liu S.
        • Gao Q.
        • Jiang L.
        • Li F.
        • Lichtenberg-Frate H.
        • Haubrich S.
        • Willecke K.
        • Goldman S.A.
        • Nedergaard M.
        Connexin 43 enhances the adhesivity and mediates the invasion of malignant glioma cells.
        J Neurosci. 2002; 22: 4302-4311
        • Mercier F.
        • Kitasako J.T.
        • Hatton G.I.
        Anatomy of the brain neurogenic zones revisited: fractones and the fibroblast/macrophage network.
        J Comp Neurol. 2002; 451: 170-188
        • McClenahan F.K.
        • Sharma H.
        • Shan X.
        • Eyermann C.
        • Colognato H.
        Dystroglycan suppresses notch to regulate stem cell niche structure and function in the developing postnatal subventricular zone.
        Dev Cell. 2016; 38: 548-566
        • Shen Q.
        • Wang Y.
        • Kokovay E.
        • Lin G.
        • Chuang S.M.
        • Goderie S.K.
        • Roysam B.
        • Temple S.
        Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions.
        Cell Stem Cell. 2008; 3: 289-300
        • Lathia J.D.
        • Gallagher J.
        • Heddleston J.M.
        • Wang J.
        • Eyler C.E.
        • Macswords J.
        • Wu Q.
        • Vasanji A.
        • McLendon R.E.
        • Hjelmeland A.B.
        • Rich J.N.
        Integrin alpha 6 regulates glioblastoma stem cells.
        Cell Stem Cell. 2010; 6: 421-432
        • Tavazoie M.
        • Van der Veken L.
        • Silva-Vargas V.
        • Louissaint M.
        • Colonna L.
        • Zaidi B.
        • Garcia-Verdugo J.M.
        • Doetsch F.
        A specialized vascular niche for adult neural stem cells.
        Cell Stem Cell. 2008; 3: 279-288
        • Shen Q.
        • Goderie S.K.
        • Jin L.
        • Karanth N.
        • Sun Y.
        • Abramova N.
        • Vincent P.
        • Pumiglia K.
        • Temple S.
        Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells.
        Science. 2004; 304: 1338-1340
        • Andreu-Agullo C.
        • Morante-Redolat J.M.
        • Delgado A.C.
        • Farinas I.
        Vascular niche factor PEDF modulates Notch-dependent stemness in the adult subependymal zone.
        Nat Neurosci. 2009; 12: 1514-1523
        • Ramirez-Castillejo C.
        • Sanchez-Sanchez F.
        • Andreu-Agullo C.
        • Ferron S.R.
        • Aroca-Aguilar J.D.
        • Sanchez P.
        • Mira H.
        • Escribano J.
        • Farinas I.
        Pigment epithelium-derived factor is a niche signal for neural stem cell renewal.
        Nat Neurosci. 2006; 9: 331-339
        • Leventhal C.
        • Rafii S.
        • Rafii D.
        • Shahar A.
        • Goldman S.A.
        Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma.
        Mol Cell Neurosci. 1999; 13: 450-464
        • Jin K.
        • Zhu Y.
        • Sun Y.
        • Mao X.O.
        • Xie L.
        • Greenberg D.A.
        Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo.
        Proc Natl Acad Sci U S A. 2002; 99: 11946-11950
        • Crouch E.E.
        • Liu C.
        • Silva-Vargas V.
        • Doetsch F.
        Regional and stage-specific effects of prospectively purified vascular cells on the adult V-SVZ neural stem cell lineage.
        J Neurosci. 2015; 35: 4528-4539
        • Ottone C.
        • Krusche B.
        • Whitby A.
        • Clements M.
        • Quadrato G.
        • Pitulescu M.E.
        • Adams R.H.
        • Parrinello S.
        Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells.
        Nat Cell Biol. 2014; 16: 1045-1056
        • Calabrese C.
        • Poppleton H.
        • Kocak M.
        • Hogg T.L.
        • Fuller C.
        • Hamner B.
        • Oh E.Y.
        • Gaber M.W.
        • Finklestein D.
        • Allen M.
        • Frank A.
        • Bayazitov I.T.
        • Zakharenko S.S.
        • Gajjar A.
        • Davidoff A.
        • Gilbertson R.J.
        A perivascular niche for brain tumor stem cells.
        Cancer Cell. 2007; 11: 69-82
        • Watkins S.
        • Robel S.
        • Kimbrough I.F.
        • Robert S.M.
        • Ellis-Davies G.
        • Sontheimer H.
        Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells.
        Nat Commun. 2014; 5: 4196
        • Cheng L.
        • Huang Z.
        • Zhou W.
        • Wu Q.
        • Donnola S.
        • Liu J.K.
        • Fang X.
        • Sloan A.E.
        • Mao Y.
        • Lathia J.D.
        • Min W.
        • McLendon R.E.
        • Rich J.N.
        • Bao S.
        Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth.
        Cell. 2013; 153: 139-152
        • Guichet P.O.
        • Guelfi S.
        • Teigell M.
        • Hoppe L.
        • Bakalara N.
        • Bauchet L.
        • Duffau H.
        • Lamszus K.
        • Rothhut B.
        • Hugnot J.P.
        Notch1 stimulation induces a vascularization switch with pericyte-like cell differentiation of glioblastoma stem cells.
        Stem Cells. 2015; 33: 21-34
        • Bao S.
        • Wu Q.
        • Sathornsumetee S.
        • Hao Y.
        • Li Z.
        • Hjelmeland A.B.
        • Shi Q.
        • McLendon R.E.
        • Bigner D.D.
        • Rich J.N.
        Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor.
        Cancer Res. 2006; 66: 7843-7848
        • Shiozawa Y.
        • Pedersen E.A.
        • Havens A.M.
        • Jung Y.
        • Mishra A.
        • Joseph J.
        • Kim J.K.
        • Patel L.R.
        • Ying C.
        • Ziegler A.M.
        • Pienta M.J.
        • Song J.
        • Wang J.
        • Loberg R.D.
        • Krebsbach P.H.
        • Pienta K.J.
        • Taichman R.S.
        Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow.
        J Clin Invest. 2011; 121: 1298-1312
        • Kroonen J.
        • Nassen J.
        • Boulanger Y.G.
        • Provenzano F.
        • Capraro V.
        • Bours V.
        • Martin D.
        • Deprez M.
        • Robe P.
        • Rogister B.
        Human glioblastoma-initiating cells invade specifically the subventricular zones and olfactory bulbs of mice after striatal injection.
        Int J Cancer. 2011; 129: 574-585
        • Goffart N.
        • Lombard A.
        • Lallemand F.
        • Kroonen J.
        • Nassen J.
        • Di Valentin E.
        • Berendsen S.
        • Dedobbeleer M.
        • Willems E.
        • Robe P.
        • Bours V.
        • Martin D.
        • Martinive P.
        • Maquet P.
        • Rogister B.
        CXCL12 mediates glioblastoma resistance to radiotherapy in the subventricular zone.
        Neuro Oncol. 2017; 19: 66-77
        • Qin E.Y.
        • Cooper D.D.
        • Abbott K.L.
        • Lennon J.
        • Nagaraja S.
        • Mackay A.
        • Jones C.
        • Vogel H.
        • Jackson P.K.
        • Monje M.
        Neural precursor-derived pleiotrophin mediates subventricular zone invasion by glioma.
        Cell. 2017; 170: 845-859.e19
        • Stummer W.
        • Stocker S.
        • Wagner S.
        • Stepp H.
        • Fritsch C.
        • Goetz C.
        • Goetz A.E.
        • Kiefmann R.
        • Reulen H.J.
        Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence.
        Neurosurgery. 1998; 42 (discussion 525–526): 518-525
        • Verhaak R.G.
        • Hoadley K.A.
        • Purdom E.
        • Wang V.
        • Qi Y.
        • Wilkerson M.D.
        • Miller C.R.
        • Ding L.
        • Golub T.
        • Mesirov J.P.
        • Alexe G.
        • Lawrence M.
        • O'Kelly M.
        • Tamayo P.
        • Weir B.A.
        • Gabriel S.
        • Winckler W.
        • Gupta S.
        • Jakkula L.
        • Feiler H.S.
        • Hodgson J.G.
        • James C.D.
        • Sarkaria J.N.
        • Brennan C.
        • Kahn A.
        • Spellman P.T.
        • Wilson R.K.
        • Speed T.P.
        • Gray J.W.
        • Meyerson M.
        • Getz G.
        • Perou C.M.
        • Hayes D.N.
        • Cancer Genome Atlas Research Network
        Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1.
        Cancer Cell. 2010; 17: 98-110
        • Nourallah B.
        • Digpal R.
        • Jena R.
        • Watts C.
        Irradiating the subventricular zone in glioblastoma patients: is there a case for a clinical trial?.
        Clin Oncol (R Coll Radiol). 2017; 29: 26-33
        • Achari R.
        • Arunsingh M.
        • Badgami R.K.
        • Saha A.
        • Chatterjee S.
        • Shrimali R.K.
        • Mallick I.
        • Arun B.
        High-dose neural stem cell radiation may not improve survival in glioblastoma.
        Clin Oncol (R Coll Radiol). 2017; 29: 335-343
        • Panagiotakos G.
        • Alshamy G.
        • Chan B.
        • Abrams R.
        • Greenberg E.
        • Saxena A.
        • Bradbury M.
        • Edgar M.
        • Gutin P.
        • Tabar V.
        Long-term impact of radiation on the stem cell and oligodendrocyte precursors in the brain.
        PLoS One. 2007; 2: e588
        • Achanta P.
        • Capilla-Gonzalez V.
        • Purger D.
        • Reyes J.
        • Sailor K.
        • Song H.
        • Garcia-Verdugo J.M.
        • Gonzalez-Perez O.
        • Ford E.
        • Quinones-Hinojosa A.
        Subventricular zone localized irradiation affects the generation of proliferating neural precursor cells and the migration of neuroblasts.
        Stem Cells. 2012; 30: 2548-2560
        • Iuchi T.
        • Hatano K.
        • Kodama T.
        • Sakaida T.
        • Yokoi S.
        • Kawasaki K.
        • Hasegawa Y.
        • Hara R.
        Phase 2 trial of hypofractionated high-dose intensity modulated radiation therapy with concurrent and adjuvant temozolomide for newly diagnosed glioblastoma.
        Int J Radiat Oncol Biol Phys. 2014; 88: 793-800
        • Malik M.
        • Akram K.S.
        • Joseph D.
        • Valiyaveettil D.
        • Ahmed S.F.
        Prospective study of irradiation of potential stem cell niches in glioblastoma.
        Int J Radiat Oncol Biol Phys. 2015; 93: S111
        • Jeon J.Y.
        • An J.H.
        • Kim S.U.
        • Park H.G.
        • Lee M.A.
        Migration of human neural stem cells toward an intracranial glioma.
        Exp Mol Med. 2008; 40: 84-91
        • Kim S.K.
        • Kim S.U.
        • Park I.H.
        • Bang J.H.
        • Aboody K.S.
        • Wang K.C.
        • Cho B.K.
        • Kim M.
        • Menon L.G.
        • Black P.M.
        • Carroll R.S.
        Human neural stem cells target experimental intracranial medulloblastoma and deliver a therapeutic gene leading to tumor regression.
        Clin Cancer Res. 2006; 12: 5550-5556
        • Staflin K.
        • Lindvall M.
        • Zuchner T.
        • Lundberg C.
        Instructive cross-talk between neural progenitor cells and gliomas.
        J Neurosci Res. 2007; 85: 2147-2159
        • Liu S.
        • Yin F.
        • Zhao M.
        • Zhou C.
        • Ren J.
        • Huang Q.
        • Zhao Z.
        • Mitra R.
        • Fan W.
        • Fan M.
        The homing and inhibiting effects of hNSCs-BMP4 on human glioma stem cells.
        Oncotarget. 2016; 7: 17920-17931
        • Bago J.R.
        • Okolie O.
        • Dumitru R.
        • Ewend M.G.
        • Parker J.S.
        • Werff R.V.
        • Underhill T.M.
        • Schmid R.S.
        • Miller C.R.
        • Hingtgen S.D.
        Tumor-homing cytotoxic human induced neural stem cells for cancer therapy.
        Sci Transl Med. 2017; 9 (eaah6510)
        • Shah K.
        • Bureau E.
        • Kim D.E.
        • Yang K.
        • Tang Y.
        • Weissleder R.
        • Breakefield X.O.
        Glioma therapy and real-time imaging of neural precursor cell migration and tumor regression.
        Ann Neurol. 2005; 57: 34-41
        • Aboody K.S.
        • Najbauer J.
        • Metz M.Z.
        • D'Apuzzo M.
        • Gutova M.
        • Annala A.J.
        • Synold T.W.
        • Couture L.A.
        • Blanchard S.
        • Moats R.A.
        • Garcia E.
        • Aramburo S.
        • Valenzuela V.V.
        • Frank R.T.
        • Barish M.E.
        • Brown C.E.
        • Kim S.U.
        • Badie B.
        • Portnow J.
        Neural stem cell-mediated enzyme/prodrug therapy for glioma: preclinical studies.
        Sci Transl Med. 2013; 5: 184ra59
        • Hingtgen S.D.
        • Kasmieh R.
        • van de Water J.
        • Weissleder R.
        • Shah K.
        A novel molecule integrating therapeutic and diagnostic activities reveals multiple aspects of stem cell-based therapy.
        Stem Cells. 2010; 28: 832-841
        • Fuentealba L.C.
        • Rompani S.B.
        • Parraguez J.I.
        • Obernier K.
        • Romero R.
        • Cepko C.L.
        • Alvarez-Buylla A.
        Embryonic origin of postnatal neural stem cells.
        Cell. 2015; 161: 1644-1655
        • Llorens-Bobadilla E.
        • Zhao S.
        • Baser A.
        • Saiz-Castro G.
        • Zwadlo K.
        • Martin-Villalba A.
        Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury.
        Cell Stem Cell. 2015; 17: 329-340
        • Merkle F.T.
        • Mirzadeh Z.
        • Alvarez-Buylla A.
        Mosaic organization of neural stem cells in the adult brain.
        Science. 2007; 317: 381-384
        • Kelsch W.
        • Mosley C.P.
        • Lin C.W.
        • Lois C.
        Distinct mammalian precursors are committed to generate neurons with defined dendritic projection patterns.
        PLoS Biol. 2007; 5: e300
        • Young K.M.
        • Fogarty M.
        • Kessaris N.
        • Richardson W.D.
        Subventricular zone stem cells are heterogeneous with respect to their embryonic origins and neurogenic fates in the adult olfactory bulb.
        J Neurosci. 2007; 27: 8286-8296
        • Solano Fonseca R.
        • Mahesula S.
        • Apple D.M.
        • Raghunathan R.
        • Dugan A.
        • Cardona A.
        • O'Connor J.
        • Kokovay E.
        Neurogenic niche microglia undergo positional remodeling and progressive activation contributing to age-associated reductions in neurogenesis.
        Stem Cells Dev. 2016; 25: 542-555
        • Leelatian N.
        • Doxie D.B.
        • Greenplate A.R.
        • Mobley B.C.
        • Lehman J.M.
        • Sinnaeve J.
        • Kauffmann R.M.
        • Werkhaven J.A.
        • Mistry A.M.
        • Weaver K.D.
        • Thompson R.C.
        • Massion P.P.
        • Hooks M.A.
        • Kelley M.C.
        • Chambless L.B.
        • Ihrie R.A.
        • Irish J.M.
        Single cell analysis of human tissues and solid tumors with mass cytometry.
        Cytometry B Clin Cytom. 2017; 92: 68-78
        • Wei W.
        • Shin Y.S.
        • Xue M.
        • Matsutani T.
        • Masui K.
        • Yang H.
        • Ikegami S.
        • Gu Y.
        • Herrmann K.
        • Johnson D.
        • Ding X.
        • Hwang K.
        • Kim J.
        • Zhou J.
        • Su Y.
        • Li X.
        • Bonetti B.
        • Chopra R.
        • James C.D.
        • Cavenee W.K.
        • Cloughesy T.F.
        • Mischel P.S.
        • Heath J.R.
        • Gini B.
        Single-cell phosphoproteomics resolves adaptive signaling dynamics and informs targeted combination therapy in glioblastoma.
        Cancer Cell. 2016; 29: 563-573