Porphyromonas gingivalis is able to invade and modulate host—immune response to promote its survival. This bacterium modulates the cell cycle and programmed cell death, contributing to periodontal lesion worsening. Several molecular pathways have been identified as key triggers of apoptosis, including apoptosome apoptotic peptidase activating factor 1 (APAF-1). Apaf-1 and X-linked inhibitor of apoptosis protein (XIap) mRNA were differentially expressed between gingival samples harvested from human healthy and chronic periodontitis tissues (Apaf-1, 19.2-fold; caspase-9, 14.5-fold; caspase-3, 6.8-fold; XIap: 2.5-fold in chronic periodontitis) ($P < 0.05$), highlighting their potential role in periodontitis. An increased proteic expression of APAF-1 was also observed in a murine experimental periodontitis model induced by P. gingivalis–soaked ligatures. In vitro, it was observed that P. gingivalis targets APAF-1, XIAP, caspase-3, and caspase-9, to inhibit epithelial cell death at both mRNA and protein levels. Opposite effect was observed in fibroblasts in which P. gingivalis increased cell death and apoptosis. To assess if the observed effects were associated to APAF-1, epithelial cells and fibroblasts were transfected with siRNA targeting Apaf-1. Herein, we confirmed that APAF-1 is targeted by P. gingivalis in both cell types. This study identified APAF-1 and XIAP as intracellular targets of P. gingivalis, contributing to the deterioration of periodontal lesion through an increased persistence of the bacteria within tissues and the subversion of host—immune response. (Am J Pathol 2018, 188: 404–416; https://doi.org/10.1016/j.ajpath.2017.10.014)

Periodontitis is a group of common chronic inflammatory diseases characterized by the destruction of tooth-supporting tissues and affecting $>30\%$ to 50% of the adult population worldwide. The pathogenesis of periodontitis is related to the disruption of homeostasis between host—immune response and dysbiotic microbial flora at the lesion site. Peri-
dontopathogenic bacteria, such as Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola interact with the host cells, including epithelial cells (ECs) and fibroblasts (FBs), aiming to colonize and bypass this barrier for invading the profound periodontal tissues. P. gingivalis, a Gram-negative assacharolytic bacteria, is considered as one of the keystone pathogens involved in the transition from periodontal health to disease. This bacterium exhibits a wide array of virulence factors, including lipopolysaccharide (Pg-LPS), extracellular proteases, and several factors that contribute to its capability of cellular invasion such as fimbriae. Intracellular persistence is one strategy developed by the bacteria to escape the host—immune response, contributing to the pathologic process of periodontal diseases. This bacterium is also able to modulate cell cycle and programmed cell death in an attempt to avoid the host—cell response and to promote its spread to distant sites. For instance, it has been observed that epithelial invasion by P. gingivalis subdues apoptosis and stimulates cell proliferation through modulation of several molecular triggers such as p53 and Janus kinase/Stat. However, the

Supported by INSERM and Faculté de Chirurgie Dentaire, Université de Strasbourg.

Disclosures: None declared.
mechanisms involved remain under investigation, and several contradictory results have been observed about the influence of *P. gingivalis* on apoptosis and cell viability with some studies endorsing induction of apoptosis by infection. However, others have described its ability to inhibit such a process as a mechanism leading to induction of apoptosis. Apoptosis has been described as a potential mechanism involved in the extensive tissue destruction associated to infectious and inflammatory diseases such as gastric ulcer related to *Helicobacter pylori*, atherosclerosis, and chronic periodontitis (CP). Dysregulation of apoptosis-related genes, such as Bax, Bcl2, Nlrp3, or Smad2, has been observed in the gingival tissues of patients with periodontitis. Apoptosis is involved in homeostasis and is characterized by cellular morphologic changes, including cell shrinkage, DNA fragmentation, and engulfment by macrophages or neighboring cells. It is under the influence of regulators, including caspases that could be stated as key executioners of the cell death machinery. Apoptosis is induced by both extrinsic and intrinsic pathways. The intrinsic apoptosis pathway requires the release of proapoptotic factors from mitochondria, especially cytochrome c to the cytosol, which activates apoptosis-related components. The apoptosome complex is a cytosolic wheel-shaped signaling platform, constituted by the oligomerization of apoptotic peptide activating factor 1 (APAF-1) induced by cytochrome c release that leads to the activation of several caspases, including caspase-9 and -3, and ultimately to apoptosis. APAF-1 apoptosome activity is controlled by several proteins such as X-linked inhibitor of apoptosis protein (XIAP). XIAP is a member of inhibitors of apoptosis proteins (IAPs) that is able to interact both directly with the activated caspases and under the control of activator of caspases such as second mitochondria-derived activator of caspase/direct inhibitor of apoptosis-binding protein with low pl. XIAP acts as a guard against accidental induction of the cell death program and may also be targeted by pathogens. Interestingly, it was already demonstrated that apotosompe expression is modulated by *P. gingivalis* in an endothelial cell model with potential influence on atherosclerosis worsening. However, the effect of such infection at the periodontal level has not been investigated so far.

Therefore, the aim of this study was to evaluate the expression of APAF-1 in CP tissues *in vivo*. Simultaneously, the expression and enzymatic activities of key molecules related to apoptosis were examined in response to *P. gingivalis* infection in ECs and FBs *in vitro*, in an attempt to identify new molecular mechanisms associated to periodontitis onset.

Materials and Methods

Ethics Statement

A total of 20 patients accepted to participate in this study that received approval from the Ethic Committee (French Ministry of Research, Bioethic department authorization DC-2014-2220). All patients gave written and informed consent before enrollment. Complete medical and dental histories were taken from all of the subjects.

Study Population and Clinical Examination

None of the patients had systemic diseases or cigarette smoking habit and had not taken any prior medications such as antibiotics in the past 3 months. Clinical periodontal examination included measurement of pocket probing depth and bleeding on probing at six sites around each tooth with a manual periodontal probe. The healthy group consisted of nine patients (five men and four women; mean age, 37.8 ± 17.3 years), and the CP group consisted of 11 patients (four men and seven women; mean age, 62.4 ± 7.3 years). Periodontal diagnosis of CP was based on the 1999 International World Workshop for a Classification of Periodontal Disease and Conditions.

Collection of Gingival Tissue Samples

Gingival samples were obtained during periodontal surgeries (open access flap) or dental extractions. Samples were inserted immediately in a sterile tube and stored at −80°C until RNA extraction.

Bacterial Culture

Porphyromonas gingivalis ATCC 33277 (ATCC, Manassas, VA) was cultured under strict anaerobic conditions at 37°C in brain–heart infusion medium (Sigma-Aldrich, St. Louis, MO), supplemented with 5 mg/mL hemin and 1 mg/mL menadione. On the day of infection, bacteria were collected and counted as previously described. To inactivate *P. gingivalis* (heat-killed *P. gingivalis*; HPG), bacteria were heated at 85°C for 10 minutes before the beginning of the experiment. Commercial ultrapure *Pg*-LPS was purchased from InvivoGen (San Diego, CA).

Experimental Periodontitis

After anesthesia, *P. gingivalis*–infected ligature was placed at the cervical palatal site of first and second maxillary molars of mice (C57/BL6; Charles River, Larbresle, France). Ligatures were replaced twice a week during 30 days as described previously. All procedures were approved by the local ethical committee and performed according to the regulations for animal experimentation. Mice were examined to evaluate pain and stress, and their weight was monitored daily.

Immunohistochemistry

Immunohistochemistry for APAF-1 has been performed on sections from *P. gingivalis*–infected mice and controls. Slides were treated as described in Saadi-Thiers et al.
Briefly, after preliminary treatment, slides were incubated with primary antibody against APAF-1 (rabbit; PA5-19894; ThermoFischer, Illkirch, France) (dilution 1:200) at 4°C for 24 hours and then with peroxidase dog anti-rabbit IgG (dilution 1:200) for 30 minutes (ImmuNoCruzTM rabbit ABC Staining System; Santa Cruz Biotechnology, Heidelberg, Germany). As a negative control, sections were treated with phosphate-buffered saline or with IgG as the primary antibody to rule out nonspecific binding. Finally, the sections were treated with diaminobenzidine as a substrate chromagen and counterstained with hematoxylin. The slides were then mounted and observed under a light microscope. ImageJ software version 1.5 (NIH, Bethesda, MD; http://imagej.nih.gov/ij) was used to evaluate the relative protein expression of APAF-1 on both healthy and diseased tissues.

Cell Culture

Human oral ECs (GECs) used in this study derived from the TERT-2/OKF-6 cell line (BWH Cell Culture and Microscopy Core, Boston, MA). Cells were cultured at 37°C in a humidified atmosphere with 5% CO2 in Defined Keratinocyte-serum-free basal medium supplemented with a cocktail of growth supplements (InvitroGen). Human oral FBs were isolated from gingival biopsy and cultivated in RPMI 1640 medium supplemented with 10% fetal bovine serum (Life Technologies, Saint-Aubin, France), 2 mmol/L glutamine, 250 U/mL fungizone, and 10 U/mL antibiotics (10 U/mL penicillin and 100 µg/mL streptomycin). Human oral FBs were isolated from gingival biopsy and cultivated in RPMI 1640 medium supplemented with 10% fetal bovine serum (Life Technologies, Saint-Aubin, France), 2 mmol/L glutamine, 250 U/mL fungizone, and 10 U/mL antibiotics (10 U/mL penicillin and 100 µg/mL streptomycin).

Infection of GECs with P. gingivalis and Stimulation by Its LPS

Twenty-four hours before the experiment, 2 × 10⁵ cells were plated in each well of a 24-well plate. At the day of the experiment, cells were washed twice with phosphate-buffered saline and infected for 24 to 48 hours with P. gingivalis at a multiplicity of infection (MOI) of 100 and 10 bacteria/cell or stimulated by 1 µg/mL Pg-LPS and 1 µg/mL Escherichia coli-LPS for 24 to 48 hours.

Metabolic Activity of Cells

Metabolic activity/cell viability was measured with colorimetric AlamarBlue test (resazurin reduction test) (ThermoFischer). After 24 hours of infection, stimulation, or transfection, 300 µL of incubation media was transferred to 96-well plates and measured at 570 and 600 nm to determine the percentage of AlamarBlue reduction.

Flow Cytometric Analysis

GECs and FBs were treated according to experimental design (infection, stimulation) as described. To measure apoptotic and necrotic cells, Annexin V—propidium iodide staining and flow cytometric analyses were performed. Briefly, after removal of the supernatant, cells were centrifuged and re-suspended. Cells were stained with Annexin-V-FLUOS Staining Kit (Roche Applied Science, Meylan, France) according to the manufacturer’s instructions. For each condition, a total of 10,000 isolated cells were considered, using a wavelength of 488 nm for fluorescein and a wavelength of 617 nm for propidium iodide. BD LSR II was used for fluorimetric analysis. The percentage of Annexin V-positive cells was calculated from the quadrants (Qs) as follows: percentage of Q1: positive cells for IPPE (necrosis), Q2: positive cells for Annexin VFITC and IPPE (late apoptosis), Q3: annexin-positive cells VFITC (apoptosis), Q4: unlabeled (viable cells).

RNA Isolation and Reverse Transcription

Total RNA from gingival samples and cells was extracted using Tri reagent (Sigma-Aldrich) according to the manufacturer’s instructions. The total RNA concentration was quantified with NanoDrop 1000 (ThermoFischer). Reverse transcription was performed with the iScript Reverse Transcription Supermix (Bio-Rad, Miltry-Mory, France) according to the manufacturer’s instructions.

Real-Time Quantitative PCR Analysis

To quantify mRNA expression, real-time quantitative PCR was performed on the cDNA samples. PCR amplification and analysis were performed with CFX Connect Real-Time PCR Detection System (Bio-Rad). Amplification reactions have been performed using iTAq Universal SYBR Green Supermix (Bio-Rad). β-actin was used as endogenous RNA control (housekeeping gene) in all samples. Primer sequences related to Bcl2, Bax1, Caspase-3, Caspase-9 were purchased from Qiagen (Les Ulis, France) and sequence for Apaf-1 (3’-GTCTGCTGTAGTGTCAGAAAAGGC-5’, 5’-GATGGGCGGTGTTG-GATTTC-3’), keratin-10 (3’-CATGAGTGGCCCTGGTTGATC-5’, 5’-CAGTATCCGGCCTCTGACTG-3’), and Xiap (3’-TGGGACATGGATATACTCAGITAAACCA-5’, 5’-GTTAGCCCTCTC- CACAGTGA-3’) were synthesized (ThermoFischer). The specificity of reaction was controlled with the melting curve analysis. The expression level was calculated after normalization to the housekeeping gene. All PCR assays were performed in triplicate, and results were represented by the mean values.

Caspase Activity Fluorogenic Assays

Caspase-3 and -9 enzymatic activities were determined with specific fluorogenic enzymatic assays. Cells were sonicated, and lysates were incubated with 200 µL of substrate solution (20 mmol/L HEPES, pH 7.4, 2 mmol/L EDTA, 0.1% 3-[3-cholamidopropyl]dimethylammonio]-1-propanesulfonate, 5 mmol/L dithiothreitol, and 0.75 µM of caspase substrate) for 1 hour at 37°C as previously described. The activity of
each caspase was calculated from the cleavage of the respective specific fluorogenic substrate (AC-DEVD-AMC for caspase-3 and AC-LEHD-AMC for caspase-9) (Bachem, Bobendorf, Switzerland). Substrate cleavage was measured with a fluorescence spectrophotometer with excitation wavelength of 360 nm and emission at 460 nm. Results were expressed as fluorescence units per milligram of total protein.

Western Blot Analysis

Proteins were separated by SDS/PAGE and transferred to a nitrocellulose membrane (Hybond ECL, Fischer Scientific, Illkirch, France). Primary antibodies were directed against APAF-1 (PA5-19894; ThermoFischer), XIAP (SC-11426; Santa Cruz Biotechnology), and β-actin (SC-130301; Santa Cruz Biotechnology). Proteins were visualized with secondary antibody conjugated to alkaline phosphatase (anti-mouse REF: A120-101AP; anti-rabbit REF: A90-116AP; Bethyl Laboratories, Montgomery, TX). All antibodies were used at the dilutions recommended by the manufacturer.

Terminal Deoxynucleotidyl Transferase Fluorescein-dUTP Nick End Labeling

Direct terminal deoxynucleotidyl transferase fluorescein-dUTP nick end labeling assay was performed using a commercially available kit (TACS 2 TdTDAB in situ apoptosis detection kit; Trevigen Inc., Gaithersburg, MD), according to the manufacturer’s instructions.

siRNA Transfection and XIAP Inhibition

One day before the transfection, 5 × 10^6 cells were seeded in a 6-well plate. Transfection with 5 nmol/L of siRNA targeted against APAF-1 (SI00022792) or with negative control (Qiagen) was performed with a HiPerfect Transfection reagent, according to the manufacturer’s protocol.

To inhibit XIAP, cells were pretreated with 50 mmol/L of Embelin (S7025; Selleckchem, Munich, Germany) diluted in 0.3% dimethyl sulfoxide 48 hours before infection. Cells were then infected according to the experimental design.

Statistical Analysis

Statistical analysis was performed with pairwise analysis of variance test and post hoc Tukey test. Statistical significance level was considered as P < 0.05. Data were analyzed with Prism 6.0 (GraphPad Software, La Jolla, CA). All experiments have been performed in triplicate and in at least three sets of experiments.

Results

Expression Levels of Apoptosome-Related Components Are Modulated in Chronic Periodontitis

The expression of mRNAs related to Apaf-1, Xiap, caspase-3, and -9 was evaluated in gingival biopsies from healthy and CP patients to assess their potential relationship with periodontal lesion. Analysis showed that the expression of Apaf-1, caspase-3, and -9 mRNAs was significantly increased in the CP group (Apaf-1, 19.2-fold; caspase-9, 14.4-fold; caspase-3, 6.8-fold) (P < 0.05) (Figure 1, A, C, and D). However, the expression of the apoptosome inhibitor Xiap was decreased in the CP group (2.5-fold) (Figure 1B). The decrease of Xiap expression correlated with the increased expression of Apaf-1 as estimated with Spearman correlation test (R = −0.5; P < 0.05).

These results were also observed in vivo, in a murine model of experimental periodontitis associated to P. gingivalis infection (Figure 1, E—L). In the control group, Apaf-1 was detected mainly in soft tissues, especially within the epithelium (Figure 1, E—H). At the diseased site, Apaf-1 was still observed within the sulcular epithelium and also in the underlying connective tissue (Figure 1, I—L). No significant staining was observed in alveolar bone, suggesting a role for apoptosome mainly in the soft tissue compartment during CP pathogenesis.

Infection with P. gingivalis Modulates Metabolic Activity in a Dose- and Cell-Dependent Manner

To evaluate the impact of P. gingivalis infection on gingival cells, assessment of the metabolic activity of cells was evaluated in GECs and FBs (Figure 2). A dose-related effect has been observed in GECs regarding the metabolic activity of cells. At a high MOI (100), P. gingivalis increased significantly the metabolic activity of the GECs, whereas such an effect could not be observed with a low MOI (10) and HPG after 24 and 48 hours (Figure 2A). A cell-specific response has been observed. In FBs, infection with P. gingivalis reduced significantly the metabolic activity for each tested MOI (Figure 2B). In both cell types, Pg-LPS displayed toxic effects at 48 hours (Figure 2, A and B).

Increased EC Viability Is Correlated with Decreased Apoptotic Rate

To evaluate the qualitative impact of P. gingivalis infection on cell death, apoptotic or necrotic state of infected cells was evaluated by flow cytometry. After 24 hours of infection, at high MOI (100), the increase of metabolic activity induced by P. gingivalis infection was correlated with a decrease in the apoptotic rate in GECs. No differences were observed between infection at MOI of 10 and uninfected cells (Figure 2, C and E). A cell-specific response has been...
observed, whereas, unlike GECs, the same conditions of infection and Pg-LPS stimulation significantly increased apoptosis in FBs (Figure 2, D and F).

Modulation of Apoptosome-Related mRNA Expression by P. gingivalis Infection

To evaluate if intrinsic apoptosis-related pathways, especially associated to APAF-1 apoptosome, were modulated by P. gingivalis infection, mRNA expression was analyzed in infected GECs and FBs at 24 hours (Figure 3).

In GECs, P. gingivalis infection (MOI = 100) decreased significantly Apaf-1 and caspase-3 mRNA expression ($P < 0.05$), and a descending trend was observed regarding caspase-9 mRNA expression as well (Figure 3, A and E). Of interest, the antiapoptotic B-cell lymphoma 2 (Bcl-2) and Xiap mRNAs were concomitantly increased and proapoptotic Bcl-2−associated X protein (Bax-1) was decreased (Figure 3A). An increase in keratin-10 expression has also been recorded, confirming the increased proliferation of GECs. When GECs were infected with a lower MOI (MOI = 10), opposite effects compared with those obtained with MOI of 100 have been observed, especially regarding Apaf-1 and caspase-3 expression (Figure 3, A and C). Pg-LPS may be implicated in the observed effect because it induced a significant increase in the expression of Apaf-1 and caspase-3 mRNAs (Figure 3, C and E).

In FBs, P. gingivalis infection, at each tested MOI (10 and 100), increased significantly Apaf1, caspase-3, and -9 gene expression (Figure 3, B–F). The same proapoptotic effects have been observed regarding Bcl-2/Bax-1 mRNA expression because infection leads to a decrease in Bcl-2 and an increase in Bax-1 mRNA expression. Interestingly, a toxic effect of Pg-LPS has also been highlighted (Figure 3D).

Infection with P. gingivalis Modulates APAF-1 and XIAP Protein Levels and Enzymatic Activity of Caspases

To corroborate the results obtained at the gene level, protein concentrations of APAF-1, XIAP, and caspase-3 and -9 enzymatic activities have been measured. In GECs,
P. gingivalis (MOI = 100) decreased significantly APAF-1 and increased XIAP concentrations, whereas P. gingivalis infection at MOI of 10 and HPG did not induce any modification (Figure 4, A, C and E). Similar to the trend observed for mRNA level, opposite results were obtained for APAF-1 in FBs because infection at both tested MOIs increased APAF-1 concentration (Figure 4, B, D and F). Pg-LPS may be involved because XIAP concentration was decreased after Pg-LPS stimulation in GECs.

Caspases are major components of apoptosome-related pathways because they are key activators of apoptosis. In our model, infection modulated caspase-9 and -3 enzymatic activities in a dose-dependent manner. In GECs, for MOI of 100, the enzymatic activity of both caspases was decreased, whereas at MOI of 10, an increase was measured. Intriguingly, Pg-LPS did not modify caspase-3 enzymatic activity; however, it seemed to be implicated in the activation of caspase-9. In FBs, P. gingivalis infection increased caspase-3 significantly. Of interest, an
increase in caspase-9 activity was also observed after Pg-LPS stimulation (Figure 5).

P. gingivalis Modulates Cell Survival and Cell Death in Infected GECs and FBs through APAF-1 and XIAP Modulation

To evaluate if APAF-1 was a key effector of cell death associated to P. gingivalis infection, RNA silencing was performed with siRNA targeting APAF-1 in GECs and FBs. Metabolic activity, ratio of apoptosis and necrosis, and enzymatic activity of caspases were measured after Apaf-1 RNA silencing in GECs and FBs.

In transfected GECs, infection at high MOI did not increase metabolic activity. Furthermore, the inhibition of APAF-1 was associated to an increase in the metabolic activity of cells at low MOI, highlighting the role of apoptosome in the response of cells to P. gingivalis (Figure 6A). In FBs, an opposite effect was observed, confirming the differential mechanisms involved in relation to cell type (Figure 6B). A qualitative change has also been observed regarding the type of cell death induced. When transfected cells were infected with P. gingivalis, an increase in apoptosis was observed in comparison with the negative control and HPg in GECs (Figure 6C). Of interest, such result was correlated with an increase in caspase-3 activity (Figure 6E). As observed for metabolic activity, contradictory effects were observed in FBs compared with that in GECs (Figure 6, B, D and F).

To determine the implication of XIAP, cells were treated with Embelin, an XIAP inhibitor, before infection. In
GECs, the increase of metabolic activity induced by *P. gingivalis* (MOI = 100) infection was inhibited (Figure 7A) and was correlated with increased apoptosis and caspases activity (Figure 7, C and E). In FBs, pretreatment with Embelin did not modulate cellular metabolic activity (Figure 7B) in infected cells. However, a qualitative change related to the type of cell death induced was observed (Figure 7D).
Discussion

This study aimed at determining the ability of *P. gingivalis* to modulate APAF-1 apoptosome activity and programmed cell death in the periodontal soft tissue cells. First, in gingival samples from periodontitis patients, an increase of Apaf-1 expression and a decrease of its inhibitor, Xiap, was demonstrated, showing that APAF-1 apoptosome may be involved in the periodontal lesion. However, this difference in terms of gene expression may also be related to changes of the cellular composition of the analyzed samples with CP samples exhibiting more inflammatory cells than healthy ones. In an in vivo model of experimental periodontitis, an increased expression of APAF-1 was observed at the diseased site, especially at the connective tissue level, consolidating our hypothesis.

In vitro, *P. gingivalis* acted differentially on this specific pathway according to the MOI and cell type. Herein, we observed an augmentation in EC viability, correlated with a decrease in apoptosis triggers (APAF-1, caspases) and an increase of apoptosis inhibitors (XIAP), when cells were infected at a high MOI. In addition, when XIAP was inhibited, the increased proliferation of GECs was counteracted. Such effect was not observed in FBs.

Because of their specific location at the interface between subgingival biofilms and gingival sulcus, ECs constitute the first line of host defense. Integrity of the epithelial barrier is a key factor for periodontal health because ECs play a key role in the overall tissue homeostasis and initiation of innate immune response. Not only do these cells release soluble mediators such as cytokines that sustain the inflammatory process but also antimicrobial peptides such as β-defensins. *P. gingivalis* is considered as one of the keystone pathogens and is able to modulate cell cycle and programmed cell death to favor its survival. Cellular invasion by *P. gingivalis* is followed by intracellular persistence, bacterial multiplication, and leads to bacterial spread to adjacent tissues, including connective tissue and bone. Moreover, several studies showed that this bacterium uses a panel of strategies to hijack host mechanisms such as autophagy. In this study, it was confirmed that *P. gingivalis* infection inhibits apoptosis and increases the proliferation rate of ECs. This result is in accordance with the previous studies that implicated the dysregulation of cell cycle by bacteria during the pathogenic process. Recently, the importance of cell cycle in the invasion process of *P. gingivalis* has been demonstrated, because the bacteria preferentially target cells in the S phase.
increase, in terms of proliferation rate, has prominent clinical consequences because it was suggested that fast turnover of ECs may reduce immune response at the sulcular level. Moreover, this may also have influence on cellular senescence that has been associated to impaired innate immune response, increased oxidative stress and that reduce bacterial clearance. Contradictory results could also be found, and some studies described an increased EC death induced by \textit{P. gingivalis} infection. Such discrepancies were already observed by Stathopoulou et al \cite{12} and might be explained by the different protocols used (MOI, bacterial strain, length of exposure, cell type). In FBs, the effects observed were similar to those in endothelial cells, whereas opposite outcomes in comparison with GECs were noticed, highlighting the differential effect of the infection according to cell type. \cite{11}

In FBs, the effects observed were similar to those in endothelial cells, whereas opposite outcomes in comparison with GECs were noticed, highlighting the differential effect of the infection according to cell type. This result is in accordance with previous studies that showed the cytotoxic effect of \textit{P. gingivalis} on FBs \cite{41}, but differs from those observed in periodontal ligament fibroblasts. \cite{32} This reduction of proliferation rate diminishes the capability of the host to regenerate or to repair the injured tissues and contributes to worsening of periodontal lesions. \cite{43}

Apoptosis is a well-described cellular process and plays a key role in homeostasis, and its dysregulation has been associated to periodontitis. \cite{16} Modulation of apoptosis or programmed cell death by periodontal pathogens is an important feature of the disease, especially at the epithelial level where antiapoptotic effects and therefore prosurvival cellular phenotype will be a key mechanism of bacterial colonization \cite{10} and to sustained inflammation. For instance, reduced apoptosis within periodontal tissues correlates with chronic persistence of inflammatory cells. \cite{44} It has been described that \textit{P. gingivalis}—induced effects on apoptosis regulation depend on cell type and associated with the modulation of several pathways such as phosphatidylinositol 3-kinase/Akt or Janus kinase/Stat pathways. \cite{10,34} In this study, we focused on the APAF-1-related pathway that has been described as an important component of the mitochondria-mediated intrinsic pathway. \cite{45} It was observed that \textit{P. gingivalis} modulates significantly the expression of APAF-1 in a cell- and dose-dependent manner. In ECs, at high dose, \textit{P. gingivalis} blocked cell death through a decrease in APAF-1 expression, reduction in the enzymatic activity of caspases, and an increase in XIAP expression. APAF-1 has already been described as a target of several pathogens, including bacteria such as \textit{Chlamydia pneumoniae} \cite{46} or viruses such as \textit{Influenza A} virus. \cite{47} The decrease of APAF-1, at both mRNA and protein levels, may explain the increased metabolic activity observed. Therefore, it can be hypothesized that such dysregulation may be a specific bacterial strategy to avoid clearance from the organism with potential consequences regarding induction of inflammatory

Figure 7 \textit{Porphyromonas gingivalis} modulates cell survival and apoptotic rate in human oral epithelial cells (GECs) and human oral fibroblasts (FBs) through apoptosome-related proteins. A and B: Metabolic activity of GECs and FBs treated with Embelin during 48 hours and infected with \textit{P. gingivalis} with multiplicity of infection (MOI) of 100, MOI of 10, and heat-killed \textit{P. gingivalis} (HPg) at 24 hours. C and D: Apoptosis evaluation by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay in transfected GECs and FBs and infected with \textit{P. gingivalis} with MOI of 100, MOI of 10, and HPg at 24 hours. E and F: Enzymatic activity of caspase-3 (c3) and caspase-9 (c9) in transfected GECs and FBs and infected with \textit{P. gingivalis} with MOI of 100, MOI of 10, and HPg at 24 hours. Data are expressed as means ± SD. *\(P < 0.05\) versus control; \^{1}\(P < 0.05\) for differences between pretreated and nontreated cells; \^{2}\(P < 0.05\) versus pretreated control. AB, alveolar bone; C, control.
cell death through necrosis or necroptosis as suggested in a mouse model. The regulatory role of XIAP has also been investigated by using an inhibitor. In our model of ECs, inhibition of XIAP inhibited the Porphyromonas gingivalis-induced increase of cell viability. This effect was associated with an elevated caspase-3 and -9 enzymatic activity, as already demonstrated in other cellular models. IAPs, such as cIAP1, cIAP2, and XIAP, are key elements of homeostasis because their loss or inhibition sensitizes the cell to death associated to inducers such as tumor necrosis factor (TNF). A better understanding of mechanisms involved between IAP and regulation of cell death will be instrumental in developing therapeutic strategies. In FBs, inhibition of XIAP did not affect Porphyromonas gingivalis-associated cell death as hypothesized. However, it is important to consider the multitude of pathways that control apoptosis process and crosstalk between them especially in the context of Porphyromonas gingivalis infection. For instance, Porphyromonas gingivalis is able to modulate NLR family pyrin domain containing 3 (NLRP3) inflammasome expression. NLRP3 inflammasome is implicated in the release of mature IL-1β and IL-18 and to pyroptosis but also in the control of apoptosis as demonstrated in osteoblasts infected by Aggregatibacter actinomycetemcomitans. Interestingly, inflammasome and apoptosis are similar in their structure and are subject to crosstalk mediated by cytochrome c. Future studies need to focus on the effect induced by apoptosome modulation by Porphyromonas gingivalis on inflammasome activity and especially on its impact on sustained periodontal inflammation.

A differential cellular effect was also observed between high and low doses of infection. To date no MOI has been regarded as the most relevant to the in vivo situation, even if MOI of 100 corresponds to the optimal dose for Porphyromonas gingivalis invasion; however, the use of a low and high MOI may give some data relevant to low-grade versus acute infection. We could hypothesize that in case of high bacterial load, as observed in deep pockets that occur during severe forms of periodontitis, host defense is submerged by the bacterial aggression, leading to an unregulated cellular proliferation. In case of low bacterial charge, host defense is able to control bacterial spreading and to eliminate infected cells more efficiently. Hence, it may be considered that apoptosome may be positive in the case of mild infection but detrimental in the case of severe infection. Such effect has already been observed with regard to another molecular platform, the inflammasome, in an infectious context. Here, we showed that APAF-1 was increased in periodontitis, based on clinical biopsies and ligature-induced experimental periodontitis analyses. However, even if we can suppose that high bacterial load was associated to the analyzed tissues, no bacterial sampling was available, restraining the possibility to directly assess the correlation between Porphyromonas gingivalis presence and APAF-1 expression. Furthermore, even if relevant to study periodontal pathogenesis, the local trauma that occurs while using ligature-induced periodontitis should be considered because observed modulatory effects could not be solely associated to Porphyromonas gingivalis in this model. However, to date, no data are

Figure 8 Cell death and activation of apoptotic peptidase activating factor 1 (APAF-1)—related pathway in response to Porphyromonas gingivalis infection in epithelial cells and fibroblasts. Cell-specific modulation of apoptosis by Porphyromonas gingivalis in epithelial cells and fibroblasts. In epithelial cells, Porphyromonas gingivalis decreases APAF-1 and increases X-linked inhibitor of apoptosis protein (XIAP) expression, leading to an augmented cell survival. However, in fibroblasts, bacteria stimulate APAF-1 pathway and reduce XIAP expression, inducing apoptosis. Bax-1, Bcl-2—associated X protein; Bcl-2, B-cell lymphoma 2.
available regarding the specific effect induced by chronic mechanical trauma on programmed cell death at the periodontal lesion site.

To better understand the bacterial mechanisms involved, the effects induced by \textit{P. gingivalis} LPS were investigated. \textit{Pg}-LPS is a well-described virulence factor that activates host inflammatory response. It has already been shown that \textit{Pg}-LPS induces secretion of several proinflammatory cytokines such as TNF-\textalpha or IL-1\textbeta or extracellular matrix proteases such as cathepsins. 58 In this study, \textit{Pg}-LPS exhibits cytotoxic effects in both cell types as observed in endothelial cells.25 As for the bacteria, cytotoxicity of LPS has been demonstrated to depend on the strain and structure, such as the presence of O-antigen,59 and also the cell type.60 Appealingly, LPS was found to be elucidated.

Finally, this study demonstrated the putative role of APAF-1/XIAP in periodontal pathogenesis within soft tissues. Infection with \textit{P. gingivalis} modulates APAF-1 apoptosome and XIAP activities in a cell type-dependent manner (Figure 8). These mechanisms may be one of those explaining the subversion of innate immune response by \textit{P. gingivalis} that occurs during periodontitis. However, further experiments such as knock-in of \textit{Apaf-1} should be conducted to evaluate its potential impact on the prevention or management of \textit{P. gingivalis}–associated diseases. Targeting programmed cell death in a time-controlled manner may be a promising tool, as suggested for autophagy; however, specific drugs should be developed with limited risk of side effect.

Acknowledgment

We thank Dr. Thomas Décoville for his help with flow cytometric experiments.

References

Bugueno et al

