- Mazzone M.
- Dettori D.
- de Oliveira R.L.
- Loges S.
- Schmidt T.
- Jonckx B.
- Tian Y.M.
- Lanahan A.A.
- Pollard P.
- de Almodovar C.R.
- De Smet F.
- Vinckier S.
- Aragonés J.
- Debackere K.
- Luttun A.
- Wyns S.
- Jordan B.
- Pisacane A.
- Gallez B.
- Lampugnani M.G.
- Dejana E.
- Simons M.
- Ratcliffe P.
- Maxwell P.
- Carmeliet P.
- Nolan D.J.
- Ginsberg M.
- Israely E.
- Palikuqi B.
- Poulos M.G.
- James D.
- Ding B.S.
- Schachterle W.
- Liu Y.
- Rosenwaks Z.
- Butler J.M.
- Xiang J.
- Rafii A.
- Shido K.
- Rabbany S.Y.
- Elemento O.
- Rafii S.
Materials and Methods
Mice
Antibodies
Cell Culture
Aorta Ring Assay
Matrigel Plug Assay
Tumor Implantation
Confocal Laser Scanning Microscopy
Flow Cytometric Analysis and Cell Sorting
Quantitative Real-Time PCR
- Zhang L.
- Yang N.
- Park J.W.
- Katsaros D.
- Fracchioli S.
- Cao G.
- O'Brien-Jenkins A.
- Randall T.C.
- Rubin S.C.
- Coukos G.
Gene name | Sequence |
---|---|
PSF1 10 | F: 5′-CCGGTTGCTTCGGATTAGAG-3′ |
R: 5′-CTCCCAGCGACCTCATGTAA-3′ | |
p15 16 | F: 5′-AGATCCCAACGCCCTGAAC-3′ |
R: 5′-CCCATCATCATGACCTGGATT-3′ | |
p16 16 | F: 5′-CGTACCCCGATTCAGGTGAT-3′ |
R: 5′-TTGAGCAGAAGAGCTGCTACGT-3′ | |
p18 | F: 5′-TTTCAAAGACCGATGCGTATCC-3′ |
R: 5′-CTATGTCAGTATCAGCCAGCAAA-3′ | |
p19 16 | F: 5′-GCCGCACCGGAATCCT-3′ |
R: 5′-TTGAGCAGAAGAGCTGCTACGT-3′ | |
p21 | F: 5′-TAGGGGAATTGGAGTCAGGC-3′ |
R: 5′-AGAGTGCAAGACAGCGACAA-3′ | |
p27 | F: 5′-AGATACGAGTGGCAGGAGGT-3′ |
R: 5′-TCTTAATTCGGAGCTGTTTACGTC-3′ | |
p53 17 | F: 5′-AAAGGATGCCCATGCTACAG-3′ |
R: 5′-TATGGCGGGAAGTAGACTGG-3′ | |
p57 | F: 5′-ACCAATCAGCCAGCAGAACA-3′ |
R: 5′-AGTTGAAGTCCCAGCGGTTC-3′ | |
Apelin 22 | F: 5′-GTTGCAGCATGAATCTGAGG-3′ |
R: 5′-CTGCTTTAGAAAGGCATGGG-3′ | |
PlGF 14 | F: 5′-TTCAGTCCGTCCTGTGTCCTT-3′ |
R: 5′-ACCACAGCAGCCACTACAGCGACTCA-3′ | |
VE-cadherin 19 | F: 5′-CACTGCTTTGGGAGCCTTC-3′ |
R: 5′-AAGTTAGGGCCTGCCATTG-3′ | |
PHD2 13 | F: 5′-AGCGAGCGAGAGCTAAAGTAAA-3′ |
R: 5′-GACGTCTTTGCTGACTGAATTG-3′ | |
sFlt1 13 | F: 5′-GAAGACATCCTTCGGAAGCACGAA-3′ |
R: 5′-TTGGAGATCCGAGAGAAAATGG-3′ | |
VEGFR1 15 | F: 5′-CGAACTCCACCTCCATGTTT-3′ |
R: 5′-TATCTTCATGGAGGCCTTGG-3′ | |
VEGFR2 15 | F: 5′-AGAGTTGGTGGAGCATTTGG-3′ |
R 5′-TAGGCAGGGAGAGTCCAGAA-3′ | |
VEGFR3 19 | F: 5′-CGAGGGTGACTACGTGTGTG-3′ |
R: 5′-ACTTCTTGTGGCAGTGCTTG-3′ | |
Nrp1 19 | F: 5′-TGTGGGTACACTGAGGGTCA-3′ |
R: 5′-CCACCATCCAGACCAGTTG-3′ | |
Nrp2 19 | F: 5′-TCATTGAGATTCGGGATGG-3′ |
R: 5′-CGATGTTCCCACAGTGCTT-3′ | |
Tie2 21
Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer. Cancer Res. 2003; 63: 3403-3412 | F: 5′-CGGCTTAGTTCTCTGTGGAGTC-3′ |
R: 5′-GGCATCAGACACAAGAGGTAGG-3′ | |
Notch1 13 | F: 5′-TGTTGTGCTCCTGAAGAACG-3′ |
R: 5′-GTGGGAGACAGAGTGGGTGT-3′ | |
Jagged1 19 | F: 5′-TGGAGAGCTACAGAATGGGAAC-3′ |
R: 5′-CTTTGAAGTACGTATCACACTCGTC-3′ | |
Dll4 19 | F: 5′-CTGTGTCCCCCAGGCTACTA-3′ |
R: 5′-CATTGAAGCAGGGTGAGTCC-3′ | |
FGFR1 19 | F: 5′-ACCGAGGACTTTTCTCAGGTC-3′ |
R: 5′-CAGCCCGAGTTCCATCAC-3′ | |
Edg1 15 | F: 5′-CTCTGCTCCTGCTTTCCATC-3′ |
R: 5′-TGATCACCGTCTTCAGCAAG-3′ | |
LIFR | F: 5′-TGAGAACCATGTGGTCGTGT-3′ |
R: 5′-ATGTACACGACCTGGGAAGC-3′ | |
OSMR | F: 5′-CCAAAAAGAGTTCAGCACACC-3′ |
R: 5′-CCGACCACACTTGTCTCCAT-3′ | |
Ets1 24 | F: 5′-TCCAGACAGACACCTTGCAG-3′ |
R: 5′-GGTGAGGCGGTCACAACTAT-3′ | |
PAI-1 23 | F: 5′-ATGGAGCCTTGACAGTGGG-3′ |
R: 5′-GAGGTCTGGGATGCTGGTT-3′ | |
eNOS 20 | F: 5′-TGAAGATCTCTGCCTCACTCATG-3′ |
R: 5′-AGTCTCAGAGCCATACCAGAATGGTT-3′ | |
IL-1b 18 | F: 5′-TCGTGCTGTCGGACCCATAT-3′ |
R: 5′-TGTCGTTGCTTGGTTCTCCTT-3′ | |
IL-6 18 | F: 5′-GACTTCCATCCAGTTGCCTTCT-3′ |
R: 5′-AGACAGGTCTGTTGGGAGTGGTA-3′ | |
GAPDH 15 | F: 5′-AACTTTGGCATTGTGGAAGG-3′ |
F: 5′-GGATGCAGGGATGATGTTCT-3′ |
Statistical Analysis
Results
Generation of Mice Expressing EGFP under the Transcriptional Control of the PSF1 Promoter (PSF1 Promoter–EGFP Mice), and Assessment of EGFP Expression in Embryonic Tissues

PSF1 Promoter–EGFP Positivity Marks Proliferating Cells in Adult Tissues

PSF1 Promoter Activity Is Up-Regulated in Proliferating ECs

Visualization of Endothelial PSF1 Promoter Activity in Tumor Angiogenesis

PSF1 Promoter–Active ECs in Tumors Have High Proliferative Activity

Classification of Quiescent or Proliferating ECs in the Tumor as Monitored by PSF1 Promoter Activity
- Fischer C.
- Jonckx B.
- Mazzone M.
- Zacchigna S.
- Loges S.
- Pattarini L.
- Chorianopoulos E.
- Liesenborghs L.
- Koch M.
- De Mol M.
- Autiero M.
- Wyns S.
- Plaisance S.
- Moons L.
- van Rooijen N.
- Giacca M.
- Stassen J.M.
- Dewerchin M.
- Collen D.
- Carmeliet P.
- Mazzone M.
- Dettori D.
- de Oliveira R.L.
- Loges S.
- Schmidt T.
- Jonckx B.
- Tian Y.M.
- Lanahan A.A.
- Pollard P.
- de Almodovar C.R.
- De Smet F.
- Vinckier S.
- Aragonés J.
- Debackere K.
- Luttun A.
- Wyns S.
- Jordan B.
- Pisacane A.
- Gallez B.
- Lampugnani M.G.
- Dejana E.
- Simons M.
- Ratcliffe P.
- Maxwell P.
- Carmeliet P.
- Mazzone M.
- Dettori D.
- de Oliveira R.L.
- Loges S.
- Schmidt T.
- Jonckx B.
- Tian Y.M.
- Lanahan A.A.
- Pollard P.
- de Almodovar C.R.
- De Smet F.
- Vinckier S.
- Aragonés J.
- Debackere K.
- Luttun A.
- Wyns S.
- Jordan B.
- Pisacane A.
- Gallez B.
- Lampugnani M.G.
- Dejana E.
- Simons M.
- Ratcliffe P.
- Maxwell P.
- Carmeliet P.

- Jones C.A.
- London N.R.
- Chen H.
- Park K.W.
- Sauvaget D.
- Stockton R.A.
- Wythe J.D.
- Suh W.
- Larrieu-Lahargue F.
- Mukouyama Y.S.
- Lindblom P.
- Seth P.
- Frias A.
- Nishiya N.
- Ginsberg M.H.
- Gerhardt H.
- Zhang K.
- Li D.Y.
Vascular Stabilization Induces Endothelial CD109 Expression

Discussion
- Winkler F.
- Kozin S.V.
- Tong R.T.
- Chae S.S.
- Booth M.F.
- Garkavtsev I.
- Xu L.
- Hicklin D.J.
- Fukumura D.
- di Tomaso E.
- Munn L.L.
- Jain R.K.
- Mazzone M.
- Dettori D.
- de Oliveira R.L.
- Loges S.
- Schmidt T.
- Jonckx B.
- Tian Y.M.
- Lanahan A.A.
- Pollard P.
- de Almodovar C.R.
- De Smet F.
- Vinckier S.
- Aragonés J.
- Debackere K.
- Luttun A.
- Wyns S.
- Jordan B.
- Pisacane A.
- Gallez B.
- Lampugnani M.G.
- Dejana E.
- Simons M.
- Ratcliffe P.
- Maxwell P.
- Carmeliet P.
- Fischer C.
- Jonckx B.
- Mazzone M.
- Zacchigna S.
- Loges S.
- Pattarini L.
- Chorianopoulos E.
- Liesenborghs L.
- Koch M.
- De Mol M.
- Autiero M.
- Wyns S.
- Plaisance S.
- Moons L.
- van Rooijen N.
- Giacca M.
- Stassen J.M.
- Dewerchin M.
- Collen D.
- Carmeliet P.
- Mazzone M.
- Dettori D.
- de Oliveira R.L.
- Loges S.
- Schmidt T.
- Jonckx B.
- Tian Y.M.
- Lanahan A.A.
- Pollard P.
- de Almodovar C.R.
- De Smet F.
- Vinckier S.
- Aragonés J.
- Debackere K.
- Luttun A.
- Wyns S.
- Jordan B.
- Pisacane A.
- Gallez B.
- Lampugnani M.G.
- Dejana E.
- Simons M.
- Ratcliffe P.
- Maxwell P.
- Carmeliet P.
- Nolan D.J.
- Ginsberg M.
- Israely E.
- Palikuqi B.
- Poulos M.G.
- James D.
- Ding B.S.
- Schachterle W.
- Liu Y.
- Rosenwaks Z.
- Butler J.M.
- Xiang J.
- Rafii A.
- Shido K.
- Rabbany S.Y.
- Elemento O.
- Rafii S.
Acknowledgments
Supplemental Data






References
- Targeting the tumour vasculature: insights from physiological angiogenesis.Nat Rev Cancer. 2010; 10: 505-514
- Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia.Cancer Cell. 2014; 26: 605-622
- Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization.Cell. 2009; 136: 839-851
- VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia.J Cell Biol. 2003; 161: 1163-1177
- Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration.Dev Cell. 2013; 26: 204-219
- Molecular regulation of angiogenesis and lymphangiogenesis.Nat Rev Mol Cell Biol. 2007; 8: 464-478
- Genes that distinguish physiological and pathological angiogenesis.Cancer Cell. 2007; 11: 539-554
- PSF1 is essential for early embryogenesis in mice.Mol Cell Biol. 2005; 25: 10528-10532
- Both alleles of PSF1 are required for maintenance of pool size of immature hematopoietic cells and acute bone marrow regeneration.Blood. 2009; 113: 555-562
- PSF1, a DNA replication factor expressed widely in stem and progenitor cells, drives tumorigenic and metastatic properties.Cancer Res. 2010; 70: 1215-1224
- APJ regulates parallel alignment of arteries and veins in the skin.Dev Cell. 2015; 33: 247-259
- A role for hematopoietic stem cells in promoting angiogenesis.Cell. 2000; 102: 199-209
- Identification and characterization of a resident vascular stem/progenitor cell population in preexisting blood vessels.EMBO J. 2011; 31: 842-855
- Neuronal FLT1 receptor and its selective ligand VEGF-B protect against retrograde degeneration of sensory neurons.FASEB J. 2011; 25: 1461-1473
- Serum response factor is required for sprouting angiogenesis and vascular integrity.Dev Cell. 2008; 15: 448-461
- p15Ink4b is a critical tumour suppressor in the absence of p16Ink4a.Nature. 2007; 448: 943-946
- mTOR activation induces tumor suppressors that inhibit leukemogenesis and deplete hematopoietic stem cells after Pten deletion.Cell Stem Cell. 2010; 7: 593-605
- 5-Fluorouracil induces diarrhea with changes in the expression of inflammatory cytokines and aquaporins in mouse intestines.PLoS One. 2013; 8: e54788
- G13 controls angiogenesis through regulation of VEGFR-2 expression.Dev Cell. 2013; 25: 427-434
- Tie1 attenuation reduces murine atherosclerosis in a dose-dependent and shear stress-specific manner.J Clin Invest. 2011; 121: 1624-1635
- Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer.Cancer Res. 2003; 63: 3403-3412
- Apelin as a marker for monitoring the tumor vessel normalization window during antiangiogenic therapy.Cancer Sci. 2016; 107: 36-44
- Smad4 deficiency in smooth muscle cells initiates the formation of aortic aneurysm.Circ Res. 2016; 118: 388-399
- Tumor necrosis factor prevents alendronate-induced osteoclast apoptosis in vivo by stimulating Bcl-xL expression through Ets-2.Arthritis Rheum. 2005; 52: 2708-2718
- Visualizing spatiotemporal dynamics of multicellular cell-cycle progression.Cell. 2008; 132: 487-498
- Ras pathway inhibition prevents neovascularization by repressing endothelial cell sprouting.J Clin Invest. 2013; 123: 4900-4908
- Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels.Cell. 2007; 131: 463-475
- Pericellular proteases in angiogenesis and vasculogenesis.Arterioscler Thromb Vasc Biol. 2006; 4: 716-728
- Integrins in angiogenesis and lymphangiogenesis.Nat Rev Cancer. 2008; 8: 604-617
- Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability.Nat Med. 2008; 14: 448-453
- Angiopoietin-1 alters tumor growth by stabilizing blood vessels or by promoting angiogenesis.Cancer Sci. 2008; 99: 2373-2379
- Differential function of Tie2 at cell-cell contacts and cell-substratum contacts regulated by angiopoietin-1.Nat Cell Biol. 2008; 10: 513-526
- Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases.Cancer Cell. 2004; 6: 553-563
- Modes of resistance to anti-angiogenic therapy.Nat Rev Cancer. 2008; 8: 592-603
- Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis.Exp Cell Res. 2006; 312: 549-560
- Local guidance of emerging vessel sprouts requires soluble Flt-1.Dev Cell. 2009; 17: 377-386
- Sox17 promotes tumor angiogenesis and destabilizes tumor vessels in mice.J Clin Invest. 2013; 123: 418-431
- Sox17 is indispensable for acquisition and maintenance of arterial identity.Nat Commun. 2013; 4: 2609
- The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis.Cell. 2009; 137: 1124-1135
- Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting.Proc Natl Acad Sci U S A. 2007; 104: 3219-3224
- Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis.Nature. 2007; 445: 776-780
- Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis.Nature. 2006; 444: 1032-1037
- Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis.Nature. 2006; 444: 1083-1087
- Identification of CD109 as part of the TGF-beta receptor system in human keratinocytes.FASEB J. 2006; 20: 1525-1527
Article Info
Publication History
Footnotes
Supported by the Japan Agency for Medical Research and Development Projects for Technological Development, Research Center Network for Realization of Regenerative Medicine and for Development of Innovative Research on Cancer Therapeutics (N.T.), Japan Society for the Promotion of Science grant-in-aid for Scientific Research (A) 15H02545 (N.T.) and grant-in-aid for Young Scientists (B) JP20631097 (D.Y.), and the Takeda Science Foundation (D.Y.).
D.Y. and W.J. contributed equally to this work.
Disclosures: None declared.
Identification
Copyright
User License
Elsevier user license |
Permitted
For non-commercial purposes:
- Read, print & download
- Text & data mine
- Translate the article
Not Permitted
- Reuse portions or extracts from the article in other works
- Redistribute or republish the final article
- Sell or re-use for commercial purposes
Elsevier's open access license policy