- Neumann M.
- Sampathu D.M.
- Kwong L.K.
- Truax A.C.
- Micsenyi M.C.
- Chou T.T.
- Bruce J.
- Schuck T.
- Grossman M.
- Clark C.M.
- McCluskey L.F.
- Miller B.L.
- Masliah E.
- Mackenzie I.R.
- Feldman H.
- Feiden W.
- Kretzschmar H.A.
- Trojanowski J.Q.
- Lee V.M.
- Neumann M.
- Sampathu D.M.
- Kwong L.K.
- Truax A.C.
- Micsenyi M.C.
- Chou T.T.
- Bruce J.
- Schuck T.
- Grossman M.
- Clark C.M.
- McCluskey L.F.
- Miller B.L.
- Masliah E.
- Mackenzie I.R.
- Feldman H.
- Feiden W.
- Kretzschmar H.A.
- Trojanowski J.Q.
- Lee V.M.
- Ke Y.D.
- van Hummel A.
- Stevens C.H.
- Gladbach A.
- Ippati S.
- Bi M.
- Lee W.S.
- Kruger S.
- van der Hoven J.
- Volkerling A.
- Bongers A.
- Halliday G.
- Haass N.K.
- Kiernan M.
- Delerue F.
- Ittner L.M.
- Kabashi E.
- Valdmanis P.N.
- Dion P.
- Spiegelman D.
- McConkey B.J.
- Vande Velde C.
- Bouchard J.P.
- Lacomblez L.
- Pochigaeva K.
- Salachas F.
- Pradat P.F.
- Camu W.
- Meininger V.
- Dupre N.
- Rouleau G.A.
- Van Deerlin V.M.
- Leverenz J.B.
- Bekris L.M.
- Bird T.D.
- Yuan W.
- Elman L.B.
- Clay D.
- Wood E.M.
- Chen-Plotkin A.S.
- Martinez-Lage M.
- Steinbart E.
- McCluskey L.
- Grossman M.
- Neumann M.
- Wu I.L.
- Yang W.S.
- Kalb R.
- Galasko D.R.
- Montine T.J.
- Trojanowski J.Q.
- Lee V.M.
- Schellenberg G.D.
- Yu C.E.
- DeJesus-Hernandez M.
- Mackenzie I.R.
- Boeve B.F.
- Boxer A.L.
- Baker M.
- Rutherford N.J.
- Nicholson A.M.
- Finch N.A.
- Flynn H.
- Adamson J.
- Kouri N.
- Wojtas A.
- Sengdy P.
- Hsiung G.Y.
- Karydas A.
- Seeley W.W.
- Josephs K.A.
- Coppola G.
- Geschwind D.H.
- Wszolek Z.K.
- Feldman H.
- Knopman D.S.
- Petersen R.C.
- Miller B.L.
- Dickson D.W.
- Boylan K.B.
- Graff-Radford N.R.
- Rademakers R.
- Ke Y.D.
- van Hummel A.
- Stevens C.H.
- Gladbach A.
- Ippati S.
- Bi M.
- Lee W.S.
- Kruger S.
- van der Hoven J.
- Volkerling A.
- Bongers A.
- Halliday G.
- Haass N.K.
- Kiernan M.
- Delerue F.
- Ittner L.M.
- Wils H.
- Kleinberger G.
- Janssens J.
- Pereson S.
- Joris G.
- Cuijt I.
- Smits V.
- Ceuterick-de Groote C.
- Van Broeckhoven C.
- Kumar-Singh S.
- Cannon A.
- Yang B.
- Knight J.
- Farnham I.M.
- Zhang Y.
- Wuertzer C.A.
- D'Alton S.
- Lin W.L.
- Castanedes-Casey M.
- Rousseau L.
- Scott B.
- Jurasic M.
- Howard J.
- Yu X.
- Bailey R.
- Sarkisian M.R.
- Dickson D.W.
- Petrucelli L.
- Lewis J.
- Ke Y.D.
- van Hummel A.
- Stevens C.H.
- Gladbach A.
- Ippati S.
- Bi M.
- Lee W.S.
- Kruger S.
- van der Hoven J.
- Volkerling A.
- Bongers A.
- Halliday G.
- Haass N.K.
- Kiernan M.
- Delerue F.
- Ittner L.M.
Materials and Methods
Mice
- Ke Y.D.
- van Hummel A.
- Stevens C.H.
- Gladbach A.
- Ippati S.
- Bi M.
- Lee W.S.
- Kruger S.
- van der Hoven J.
- Volkerling A.
- Bongers A.
- Halliday G.
- Haass N.K.
- Kiernan M.
- Delerue F.
- Ittner L.M.
MRI
- Ke Y.D.
- van Hummel A.
- Stevens C.H.
- Gladbach A.
- Ippati S.
- Bi M.
- Lee W.S.
- Kruger S.
- van der Hoven J.
- Volkerling A.
- Bongers A.
- Halliday G.
- Haass N.K.
- Kiernan M.
- Delerue F.
- Ittner L.M.
Gait Analysis
Motor Testing
- Ke Y.D.
- van Hummel A.
- Stevens C.H.
- Gladbach A.
- Ippati S.
- Bi M.
- Lee W.S.
- Kruger S.
- van der Hoven J.
- Volkerling A.
- Bongers A.
- Halliday G.
- Haass N.K.
- Kiernan M.
- Delerue F.
- Ittner L.M.
- van Eersel J.
- Stevens C.H.
- Przybyla M.
- Gladbach A.
- Stefanoska K.
- Chan C.K.
- Ong W.Y.
- Hodges J.R.
- Sutherland G.T.
- Kril J.J.
- Abramowski D.
- Staufenbiel M.
- Halliday G.M.
- Ittner L.M.
Rota-Rod
Pole Test
Hanging Wire Test
Grip Strength Test
Histology and Staining
- Ittner A.
- Chua S.W.
- Bertz J.
- Volkerling A.
- van der Hoven J.
- Gladbach A.
- Przybyla M.
- Bi M.
- van Hummel A.
- Stevens C.H.
- Ippati S.
- Suh L.S.
- Macmillan A.
- Sutherland G.
- Kril J.J.
- Silva A.P.
- Mackay J.
- Poljak A.
- Delerue F.
- Ke Y.D.
- Ittner L.M.
Statistical Analysis
Results
Loss of Upper Motor Neurons in Aged iTDP-43A315T Mice
- Ke Y.D.
- van Hummel A.
- Stevens C.H.
- Gladbach A.
- Ippati S.
- Bi M.
- Lee W.S.
- Kruger S.
- van der Hoven J.
- Volkerling A.
- Bongers A.
- Halliday G.
- Haass N.K.
- Kiernan M.
- Delerue F.
- Ittner L.M.

- Ke Y.D.
- van Hummel A.
- Stevens C.H.
- Gladbach A.
- Ippati S.
- Bi M.
- Lee W.S.
- Kruger S.
- van der Hoven J.
- Volkerling A.
- Bongers A.
- Halliday G.
- Haass N.K.
- Kiernan M.
- Delerue F.
- Ittner L.M.
Severe Motor Deficits in Aged iTDP-43A315T Mice
- Ke Y.D.
- van Hummel A.
- Stevens C.H.
- Gladbach A.
- Ippati S.
- Bi M.
- Lee W.S.
- Kruger S.
- van der Hoven J.
- Volkerling A.
- Bongers A.
- Halliday G.
- Haass N.K.
- Kiernan M.
- Delerue F.
- Ittner L.M.

Progressive Gait Problems in Aging iTDP-43A315T Mice

Muscle Atrophy in Aged iTDP-43A315T Mice
- Ke Y.D.
- van Hummel A.
- Stevens C.H.
- Gladbach A.
- Ippati S.
- Bi M.
- Lee W.S.
- Kruger S.
- van der Hoven J.
- Volkerling A.
- Bongers A.
- Halliday G.
- Haass N.K.
- Kiernan M.
- Delerue F.
- Ittner L.M.

TDP-43 Pathologic Disorders in Spinal Cord Motor Neurons of Aged iTDP-43A315T Mice
- Ke Y.D.
- van Hummel A.
- Stevens C.H.
- Gladbach A.
- Ippati S.
- Bi M.
- Lee W.S.
- Kruger S.
- van der Hoven J.
- Volkerling A.
- Bongers A.
- Halliday G.
- Haass N.K.
- Kiernan M.
- Delerue F.
- Ittner L.M.

Discussion
- Ke Y.D.
- van Hummel A.
- Stevens C.H.
- Gladbach A.
- Ippati S.
- Bi M.
- Lee W.S.
- Kruger S.
- van der Hoven J.
- Volkerling A.
- Bongers A.
- Halliday G.
- Haass N.K.
- Kiernan M.
- Delerue F.
- Ittner L.M.
- Ke Y.D.
- van Hummel A.
- Stevens C.H.
- Gladbach A.
- Ippati S.
- Bi M.
- Lee W.S.
- Kruger S.
- van der Hoven J.
- Volkerling A.
- Bongers A.
- Halliday G.
- Haass N.K.
- Kiernan M.
- Delerue F.
- Ittner L.M.
- Ke Y.D.
- van Hummel A.
- Stevens C.H.
- Gladbach A.
- Ippati S.
- Bi M.
- Lee W.S.
- Kruger S.
- van der Hoven J.
- Volkerling A.
- Bongers A.
- Halliday G.
- Haass N.K.
- Kiernan M.
- Delerue F.
- Ittner L.M.
- Schludi M.H.
- Becker L.
- Garrett L.
- Gendron T.F.
- Zhou Q.
- Schreiber F.
- Popper B.
- Dimou L.
- Strom T.M.
- Winkelmann J.
- von Thaden A.
- Rentzsch K.
- May S.
- Michaelsen M.
- Schwenk B.M.
- Tan J.
- Schoser B.
- Dieterich M.
- Petrucelli L.
- Holter S.M.
- Wurst W.
- Fuchs H.
- Gailus-Durner V.
- de Angelis M.H.
- Klopstock T.
- Arzberger T.
- Edbauer D.
Conclusions
- Ke Y.D.
- van Hummel A.
- Stevens C.H.
- Gladbach A.
- Ippati S.
- Bi M.
- Lee W.S.
- Kruger S.
- van der Hoven J.
- Volkerling A.
- Bongers A.
- Halliday G.
- Haass N.K.
- Kiernan M.
- Delerue F.
- Ittner L.M.
Acknowledgments
Supplemental Data
- Data Profile
References
- The frontotemporal dementia-motor neuron disease continuum.Lancet. 2016; 388: 919-931
- Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis.Science. 2006; 314: 130-133
- Staging TDP-43 pathology in Alzheimer's disease.Acta Neuropathol. 2014; 127: 441-450
- Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9.J Biol Chem. 2001; 276: 36337-36343
- Disturbance of nuclear and cytoplasmic TAR DNA-binding protein (TDP-43) induces disease-like redistribution, sequestration, and aggregate formation.J Biol Chem. 2008; 283: 13302-13309
- Short-term suppression of A315T mutant human TDP-43 expression improves functional deficits in a novel inducible transgenic mouse model of FTLD-TDP and ALS.Acta Neuropathol. 2015; 130: 661-678
- Functional recovery in new mouse models of ALS/FTLD after clearance of pathological cytoplasmic TDP-43.Acta Neuropathol. 2015; 130: 643-660
- An insoluble frontotemporal lobar degeneration-associated TDP-43 C-terminal fragment causes neurodegeneration and hippocampus pathology in transgenic mice.Hum Mol Genet. 2015; 24: 7241-7254
- TDP-43-mediated neurodegeneration: towards a loss-of-function hypothesis?.Trends Mol Med. 2014; 20: 66-71
- TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis.Nat Genet. 2008; 40: 572-574
- TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis.Lancet Neurol. 2008; 7: 409-416
- Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS.Neuron. 2011; 72: 245-256
- A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD.Neuron. 2011; 72: 257-268
- Mouse models of frontotemporal dementia.Ann Neurol. 2012; 72: 837-849
- TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration.Proc Natl Acad Sci U S A. 2009; 106: 18809-18814
- TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration.Proc Natl Acad Sci U S A. 2010; 107: 3858-3863
- Expression of TDP-43 C-terminal fragments in vitro recapitulates pathological features of TDP-43 proteinopathies.J Biol Chem. 2009; 284: 8516-8524
- Neuronal sensitivity to TDP-43 overexpression is dependent on timing of induction.Acta Neuropathol. 2012; 123: 807-823
- Divergent phenotypes in mutant TDP-43 transgenic mice highlight potential confounds in TDP-43 transgenic modeling.PLoS One. 2014; 9: e86513
- Dysregulation of the ALS-associated gene TDP-43 leads to neuronal death and degeneration in mice.J Clin Invest. 2011; 121: 726-738
- Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice.Nature. 2017; 544: 367-371
- The inhibition of TDP-43 mitochondrial localization blocks its neuronal toxicity.Nat Med. 2016; 22: 869-878
- Enhancing survival motor neuron expression extends lifespan and attenuates neurodegeneration in mutant TDP-43 mice.Hum Mol Genet. 2016; 25: 4080-4093
- Exosome secretion is a key pathway for clearance of pathological TDP-43.Brain. 2016; 139: 3187-3201
- Genome editing in mice using CRISPR/Cas9: achievements and prospects.Clon Transgen. 2015; 4: 135
- Inducible, tightly regulated and non-leaky neuronal gene expression in mice.Transgenic Res. 2014; 23: 225-233
- A segmentation protocol and MRI atlas of the C57BL/6J mouse neocortex.Neuroimage. 2013; 78: 196-203
- Early-onset axonal pathology in a novel P301S-Tau transgenic mouse model of frontotemporal lobar degeneration.Neuropathol Appl Neurobiol. 2015; 41: 906-925
- No overt deficits in aged tau-deficient C57Bl/6.Mapttm1(EGFP)Kit GFP knockin mice.PLoS One. 2016; 11: e0163236
- Site-specific phosphorylation of tau inhibits amyloid-beta toxicity in Alzheimer's mice.Science. 2016; 354: 904-908
- Muscle specific kinase autoantibodies cause synaptic failure through progressive wastage of postsynaptic acetylcholine receptors.Exp Neurol. 2012; 237: 286-295
- Gait variability in people with neurological disorders: a systematic review and meta-analysis.Hum Mov Sci. 2016; 47: 197-208
- Cortical synaptic and dendritic spine abnormalities in a presymptomatic TDP-43 model of amyotrophic lateral sclerosis.Sci Rep. 2016; 6: 37968
- Synapse dysfunction of layer V pyramidal neurons precedes neurodegeneration in a mouse model of TDP-43 proteinopathies.Cereb Cortex. 2017; 27: 3630-3647
- Selective motor neuron resistance and recovery in a new inducible mouse model of TDP-43 proteinopathy.J Neurosci. 2016; 36: 7707-7717
- Gait performance and use of mental imagery as a measure of disease progression in amyotrophic lateral sclerosis.Eur Neurol. 2016; 75: 109-112
- A novel approach for analysis of altered gait variability in amyotrophic lateral sclerosis.Med Biol Eng Comput. 2016; 54: 1399-1408
- Gait in amyotrophic lateral sclerosis: is gait pattern differently affected in spinal and bulbar onset of the disease during dual task walking?.Amyotroph Lateral Scler Frontotemporal Degener. 2014; 15: 488-493
- Expression of mutant TDP-43 induces neuronal dysfunction in transgenic mice.Mol Neurodegener. 2011; 6: 73
- Evolution of gait abnormalities in SOD1(G93A) transgenic mice.Brain Res. 2011; 1406: 65-73
- Excitatory and inhibitory neuronal circuits in the spinal cord and their role in the control of motor neuron function and degeneration.ACS Chem Neurosci. 2018; 9: 211-216
- Early ALS-type gait abnormalities in AMP-dependent protein kinase-deficient mice suggest a role for this metabolic sensor in early stages of the disease.Metab Brain Dis. 2015; 30: 1369-1377
- Spinal poly-GA inclusions in a C9orf72 mouse model trigger motor deficits and inflammation without neuron loss.Acta Neuropathol. 2017; 134: 241-254
Article info
Publication history
Footnotes
Supported by Australian National Health & Medical Research Council (NHMRC) grants 1037746 (L.M.I., G.M.H., and M.C.K.), 1081916 (L.M.I.), 1132524 (L.M.I., G.M.H., M.C.K., and O.P.), 1143848 (Y.D.K.), 1095215 (R.S.C.), and 1143978 (Y.D.K.); Australian Research Council grants DP150104321 (Y.D.K.), DP170100781 (L.M.I.), and DP170100843 (L.M.I.); Motor Neurone Disease Australia grant GIA1824 (L.M.I.); the University of New South Wales; NHMRC R.D. Wright Biomedical Fellow grant 1123564 (Y.D.K.); NHMRC Senior Research Fellow grant 1103258 (O.P.); and NHMRC Principal Research Fellow grant 1136241 (L.M.I.).
Disclosures: None declared.
Identification
Copyright
User license
Elsevier user license |
Permitted
For non-commercial purposes:
- Read, print & download
- Text & data mine
- Translate the article
Not Permitted
- Reuse portions or extracts from the article in other works
- Redistribute or republish the final article
- Sell or re-use for commercial purposes
Elsevier's open access license policy