- Nezu M.
- Souma T.
- Yu L.
- Sekine H.
- Takahashi N.
- Wei A.Z.
- Ito S.
- Fukamizu A.
- Zsengeller Z.K.
- Nakamura T.
- Hozawa A.
- Karumanchi S.A.
- Suzuki N.
- Yamamoto M.
- Burke S.D.
- Zsengeller Z.K.
- Khankin E.V.
- Lo A.S.
- Rajakumar A.
- DuPont J.J.
- McCurley A.
- Moss M.E.
- Zhang D.
- Clark C.D.
- Wang A.
- Seely E.W.
- Kang P.M.
- Stillman I.E.
- Jaffe I.Z.
- Karumanchi S.A.
- Nagamatsu T.
- Fujii T.
- Kusumi M.
- Zou L.
- Yamashita T.
- Osuga Y.
- Momoeda M.
- Kozuma S.
- Taketani Y.
- Venkatesha S.
- Toporsian M.
- Lam C.
- Hanai J.
- Mammoto T.
- Kim Y.M.
- Bdolah Y.
- Lim K.H.
- Yuan H.T.
- Libermann T.A.
- Stillman I.E.
- Roberts D.
- D'Amore P.A.
- Epstein F.H.
- Sellke F.W.
- Romero R.
- Sukhatme V.P.
- Letarte M.
- Karumanchi S.A.
- Maynard S.E.
- Min J.Y.
- Merchan J.
- Lim K.H.
- Li J.
- Mondal S.
- Libermann T.A.
- Morgan J.P.
- Sellke F.W.
- Stillman I.E.
- Epstein F.H.
- Sukhatme V.P.
- Karumanchi S.A.
- Maynard S.E.
- Min J.Y.
- Merchan J.
- Lim K.H.
- Li J.
- Mondal S.
- Libermann T.A.
- Morgan J.P.
- Sellke F.W.
- Stillman I.E.
- Epstein F.H.
- Sukhatme V.P.
- Karumanchi S.A.
- Roberts J.M.
- Myatt L.
- Spong C.Y.
- Thom E.A.
- Hauth J.C.
- Leveno K.J.
- Pearson G.D.
- Wapner R.J.
- Varner M.W.
- Thorp Jr., J.M.
- Mercer B.M.
- Peaceman A.M.
- Ramin S.M.
- Carpenter M.W.
- Samuels P.
- Sciscione A.
- Harper M.
- Smith W.J.
- Saade G.
- Sorokin Y.
- Anderson G.B.
Vitamins C and E to prevent complications of pregnancy-associated hypertension.
- Szczesny B.
- Modis K.
- Yanagi K.
- Coletta C.
- Le Trionnaire S.
- Perry A.
- Wood M.E.
- Whiteman M.
- Szabo C.
- Szczesny B.
- Modis K.
- Yanagi K.
- Coletta C.
- Le Trionnaire S.
- Perry A.
- Wood M.E.
- Whiteman M.
- Szabo C.
Materials and Methods
Materials
Cytotrophoblast Isolation and Cell Culture Studies
Cell Viability/Cytotoxicity Measurements
Biochemical Measurements
- Szczesny B.
- Modis K.
- Yanagi K.
- Coletta C.
- Le Trionnaire S.
- Perry A.
- Wood M.E.
- Whiteman M.
- Szabo C.
Western Blot Analysis
- Rajakumar A.
- Cerdeira A.S.
- Rana S.
- Zsengeller Z.
- Edmunds L.
- Jeyabalan A.
- Hubel C.A.
- Stillman I.E.
- Parikh S.M.
- Karumanchi S.A.
IHC and Morphometry
- Khong T.Y.
- Mooney E.E.
- Ariel I.
- Balmus N.C.
- Boyd T.K.
- Brundler M.A.
- Derricott H.
- Evans M.J.
- Faye-Petersen O.M.
- Gillan J.E.
- Heazell A.E.
- Heller D.S.
- Jacques S.M.
- Keating S.
- Kelehan P.
- Maes A.
- McKay E.M.
- Morgan T.K.
- Nikkels P.G.
- Parks W.T.
- Redline R.W.
- Scheimberg I.
- Schoots M.H.
- Sebire N.J.
- Timmer A.
- Turowski G.
- van der Voorn J.P.
- van Lijnschoten I.
- Gordijn S.J.
- Mukhopadhyay P.
- Horvath B.
- Zsengeller Z.
- Batkai S.
- Cao Z.
- Kechrid M.
- Holovac E.
- Erdelyi K.
- Tanchian G.
- Liaudet L.
- Stillman I.E.
- Joseph J.
- Kalyanaraman B.
- Pacher P.
Characteristic | Control (n = 7),Mean ± SEM | Range | Preeclampsia (n = 7), Mean ± SEM | Range |
---|---|---|---|---|
Maternal age, years | 30.57 ± 2.78 | 18–36 | 30.9 ± 2 | 26–40 |
Gestational age at delivery, weeks | 36 ± 1.5 | 31–40 | 30.4 ± 0.9 | 26–33 |
Gravity | 1.57 ± 0.3 | 1–3 | 1.71 ± 0.57 | 1–5 |
Parity | 0.28 ± 0.18 | 0–1 | 0.43 ± .029 | 0–2 |
Birth weight, grams | 2852 ± 393 | 1585–3845 | 1375 ± 181 | 520–2020 |
Systolic blood pressure, mmHg | 123.7 ± 4.2 | 110–142 | 172 ± 4 | 159–190 |
Diastolic blood pressure, mmHg | 73.7 ± 1.6 | 67–80 | 105.3 ± 2.5 | 96–115 |
Enzyme-Linked Immunosorbent Assay
COX in Situ Enzyme Chemistry and Functional Electron Microscopy
Statistical Analysis
Results







Discussion
- Vaka V.R.
- McMaster K.M.
- Cunningham Jr., M.W.
- Ibrahim T.
- Hazlewood R.
- Usry N.
- Cornelius D.C.
- Amaral L.M.
- LaMarca B.
- Szczesny B.
- Modis K.
- Yanagi K.
- Coletta C.
- Le Trionnaire S.
- Perry A.
- Wood M.E.
- Whiteman M.
- Szabo C.
- Wang K.
- Ahmad S.
- Cai M.
- Rennie J.
- Fujisawa T.
- Crispi F.
- Baily J.
- Miller M.R.
- Cudmore M.
- Hadoke P.W.
- Wang R.
- Gratacos E.
- Buhimschi I.A.
- Buhimschi C.S.
- Ahmed A.
- Possomato-Vieira J.S.
- Goncalves-Rizzi V.H.
- Graca T.U.
- Nascimento R.A.
- Dias-Junior C.A.
Conclusions
Supplemental Data
- Supplemental Figure S1
Immunohistochemistry controls. Immunohistochemical assays for sFLT1 (immunoreactivity: brown precipitate; A), isotype-matched antibody (ab) control (B), and no primary Ab control (C) were performed in placental tissues of a preeclamptic patient. Nitrotyrosine immunohistochemistry (immunoreactivity: brown precipitate; D), isotype-matched Ab control (E), and no primary Ab control (F). Scale bar = 50 μm (A–F). NT, nitrotyrosine; sp., specific.
- Supplemental Figure S2
Functional electron microscopy reveals that COX activity is decreased in syncytiotrophoblasts, but maintained in cytotrophoblasts, in preeclampsia (PE) placentas. Functional electron microscopy imaging of human nonhypertensive control (A–J) and PE placentas (K–T). Red dashed lines depict syncytiotrophoblast cell layer; red arrows depict intact, COX-positive mitochondria; blue arrows depict mitochondria with decreased COX activity. n = 4 (A–T). Scale bars: 2 μm (A, C, G, H, J, K, O, and Q); 1 μm (B, D–F, I, L–N, and R–T); 4 μm (P). BM, basement membrane; MV, microvilli; Nucl, nucleus; RBC, red blood cell; SCT, syncytiotrophoblast layer; V, vessel.
- Supplemental Figure S3
sFLT1 enzyme-linked immunosorbent assay (ELISA) demonstrates similar levels at 21% and 8% O2 exposure of primary trophoblast cells. sFLT1 ELISA in primary trophoblasts pretreated with AP39 (10, 25, and 50 μmol/L) for 30 minutes, then exposed to 18 hours of 8% or 21% O2.
- Data Profile
References
- Hypertension in pregnancy: report of the American College of Obstetricians and Gynecologists' Task Force on Hypertension in Pregnancy.Obstet Gynecol. 2013; 122: 1122-1131
- Pregnancy-related mortality from preeclampsia and eclampsia.Obstet Gynecol. 2001; 97: 533-538
- Latest advances in understanding preeclampsia.Science. 2005; 308: 1592-1594
- Maternal-placental interactions of oxidative stress and antioxidants in preeclampsia.Semin Reprod Endocrinol. 1998; 16: 93-104
- Placental mitochondria as a source of oxidative stress in pre-eclampsia.Placenta. 1998; 19: 581-586
- Placental superoxide is increased in pre-eclampsia.Placenta. 2001; 22: 304-308
- MIR-210 modulates mitochondrial respiration in placenta with preeclampsia.Placenta. 2012; 33: 816-823
- Oxidative stress causes vascular dysfunction in the placenta.J Matern Fetal Med. 2000; 9: 79-82
- Oxidative stress in the placenta.Histochem Cell Biol. 2004; 122: 369-382
- Oxidative stress in the pathogenesis of preeclampsia.Proc Soc Exp Biol Med. 1999; 222: 222-235
- Oxidative stress and preeclampsia: rationale for antioxidant clinical trials.Hypertension. 2004; 44: 374-380
- Thiol status and antioxidant capacity in womenwith a history of severe pre-eclampsia.BJOG. 2004; 111: 207-212
- Onset of maternal arterial blood flow and placental oxidative stress: a possible factor in human early pregnancy failure.Am J Pathol. 2000; 157: 2111-2122
- Placental oxidative stress: from miscarriage to preeclampsia.J Soc Gynecol Investig. 2004; 11: 342-352
- Invasive cytotrophoblasts manifest evidence of oxidative stress in preeclampsia.Am J Pathol. 2000; 156: 321-331
- Nrf2 inactivation enhances placental angiogenesis in a preeclampsia mouse model and improves maternal and fetal outcomes.Sci Signal. 2017; 10 (pii: eaam5711)
- Soluble fms-like tyrosine kinase 1 promotes angiotensin II sensitivity in preeclampsia.J Clin Invest. 2016; 126: 2561-2574
- Trophoblast mitochondrial function is impaired in preeclampsia and correlates negatively with the expression of soluble fms-like tyrosine kinase 1.Pregnancy Hypertens. 2016; 6: 313-319
- Evidence for the functional activity of hypoxia-inducible transcription factors overexpressed in preeclamptic placentae.Placenta. 2004; 25: 763-769
- Proteasomal activity in placentas from women with preeclampsia and intrauterine growth restriction: implications for expression of HIF-alpha proteins.Placenta. 2008; 29: 290-299
- Disrupted balance of angiogenic and antiangiogenic signalings in preeclampsia.J Pregnancy. 2011; 2011: 123717
- Oxidative stress-induced Gadd45alpha inhibits trophoblast invasion and increases sFlt1/sEng secretions via p38 MAPK involving in the pathology of pre-eclampsia.J Matern Fetal Neonatal Med. 2016; 29: 3776-3785
- Cytotrophoblasts up-regulate soluble fms-like tyrosine kinase-1 expression under reduced oxygen: an implication for the placental vascular development and the pathophysiology of preeclampsia.Endocrinology. 2004; 145: 4838-4845
- Severe intrauterine growth restriction pregnancies have increased placental endoglin levels: hypoxic regulation viatransforming growth factor-beta 3.Am J Pathol. 2008; 172: 77-85
- Soluble endoglin contributes to the pathogenesis of preeclampsia.Nat Med. 2006; 12: 642-649
- Circulating angiogenic factors and the risk of preeclampsia.N Engl J Med. 2004; 350: 672-683
- Soluble endoglin and other circulating antiangiogenic factors in preeclampsia.N Engl J Med. 2006; 355: 992-1005
- Prospective study of placental angiogenic factors and maternal vascular function before and after preeclampsia and gestational hypertension.Circulation. 2010; 122: 478-487
- Overexpression of the soluble vascular endothelial growth factor receptor in preeclamptic patients: pathophysiological consequences.J Clin Endocrinol Metab. 2003; 88: 5555-5563
- Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia.J Clin Invest. 2003; 111: 649-658
- Association of maternal endothelial dysfunction with preeclampsia.JAMA. 2001; 285: 1607-1612
- Endothelial dysfunction: a link among preeclampsia, recurrent pregnancy loss, and future cardiovascular events?.Hypertension. 2007; 49: 90-95
- Vascular dysfunction in women with a history of preeclampsia and intrauterine growth restriction: insights into future vascular risk.Circulation. 2010; 122: 1846-1853
- Vitamins C and E to prevent complications of pregnancy-associated hypertension.N Engl J Med. 2010; 362: 1282-1291
- Vitamins C and E and the risks of preeclampsia and perinatal complications.N Engl J Med. 2006; 354: 1796-1806
- Mitochondrial delivery of coenzyme Q10 via systemic administration using a MITO-Porter prevents ischemia/reperfusion injury in the mouse liver.J Control Release. 2015; 213: 86-95
- The mitochondria-targeted anti-oxidant MitoQ decreases ischemia-reperfusion injury in a murine syngeneic heart transplant model.J Heart Lung Transplant. 2015; 34: 1471-1480
- Cardioprotective function of mitochondrial-targeted and transcriptionally inactive STAT3 against ischemia and reperfusion injury.Basic Res Cardiol. 2015; 110: 53
- Measurement of mitochondrial respiration in trophoblast culture.Placenta. 2012; 33: 456-458
- Effect of preeclampsia on placental function: influence of sexual dimorphism, microRNA's and mitochondria.Adv Exp Med Biol. 2014; 814: 133-146
- Mitochondrial role in adaptive response to stress conditions in preeclampsia.Sci Rep. 2016; 6: 32410
- Mitochondrial [dys]function: culprit in pre-eclampsia?.Clin Sci (Lond). 2016; 130: 1179-1184
- Both the H2S biosynthesis inhibitor aminooxyacetic acid and the mitochondrially targeted H2S donor AP39 exert protective effects in a mouse model of burn injury.Pharmacol Res. 2016; 113: 348-355
- AP39, a mitochondrially targeted hydrogen sulfide donor, exerts protective effects in renal epithelial cells subjected to oxidative stress in vitro and in acute renal injury in vivo.Shock. 2016; 45: 88-97
- AP39, a novel mitochondria-targeted hydrogen sulfide donor, stimulates cellular bioenergetics, exerts cytoprotective effects and protects against the loss of mitochondrial DNA integrity in oxidatively stressed endothelial cells in vitro.Nitric Oxide. 2014; 41: 120-130
- International Union of Basic and Clinical Pharmacology. CII: pharmacological modulation of H2S levels: H2S donors and H2S biosynthesis inhibitors.Pharmacol Rev. 2017; 69: 497-564
- The synthesis and functional evaluation of a mitochondria-targeted hydrogen sulfide donor, (10-oxo-10-(4-(3-thioxo-3H-1, 2-dithiol-5-yl)phenoxy)decyl)triphenylphosphonium bromide (AP39).Med Chemistry. 2014; 5: 728-736
- Regulation of mitochondrial bioenergetic function by hydrogen sulfide, part I: biochemical and physiological mechanisms.Br J Pharmacol. 2014; 171: 2099-2122
- Effect of S-adenosyl-L-methionine (SAM), an allosteric activator of cystathionine-beta-synthase (CBS) on colorectal cancer cell proliferation and bioenergetics in vitro.Nitric Oxide. 2014; 41: 146-156
- Increase in epidermal growth factor receptor and its messenger ribonucleic acid levels with differentiation of human trophoblast cells in culture.J Cell Physiol. 1993; 154: 122-128
- Purification, characterization, and in vitro differentiation of cytotrophoblasts from human term placentae.Endocrinology. 1986; 118: 1567-1582
- Ouabain inhibits placental sFlt1 production by repressing HSP27-dependent HIF-1alpha pathway.FASEB J. 2014; 28: 4324-4334
- Transcriptionally active syncytial aggregates in the maternal circulation may contribute to circulating soluble fms-like tyrosine kinase 1 in preeclampsia.Hypertension. 2012; 59: 256-264
- Sampling and definitions of placental lesions: Amsterdam placental workshop group consensus statement.Arch Pathol Lab Med. 2016; 140: 698-713
- Mitochondrial reactive oxygen species generation triggers inflammatory response and tissue injury associated with hepatic ischemia-reperfusion: therapeutic potential of mitochondrially targeted antioxidants.Adv Exp Med Biol. 2012; 53: 1123-1138
- Nondroplet ultrastructural demonstration of cytochrome oxidase activity with a polymerizing osmiophilic reagent, diaminobenzidine (DAB).J Cell Biol. 1968; 38: 1-14
- The ultrastructural localization of cytochrome oxidase via cytochrome.J Histochem Cytochem. 1975; 23: 13-20
- Mapping of mitochondrial metabolic competence by cytochrome oxidase and succinic dehydrogenase cytochemistry.J Histochem Cytochem. 2001; 49: 1191-1192
- Methylmalonic acidemia: a megamitochondrial disorder affecting the kidney.Pediatr Nephrol. 2014; 29: 2139-2146
- Cisplatin nephrotoxicity involves mitochondrial injury with impaired tubular mitochondrial enzyme activity.J Histochem Cytochem. 2012; 60: 521-529
- Review: oxygen and trophoblast biology—a source of controversy.Placenta. 2011; 32: S109-S118
- Pericellular oxygen concentration of cultured primary human trophoblasts.Placenta. 2013; 34: 106-109
- Role of mitochondrial dysfunction and reactive oxygen species in mediating hypertension in the reduced uterine perfusion pressure rat model of preeclampsia.Hypertension. 2018; 72: 703-711
- Benzo(a)pyren-7,8-dihydrodiol-9,10-epoxide induces human trophoblast Swan 71 cell dysfunctions due to cell apoptosis through disorder of mitochondrial fission/fusion.Environ Pollut. 2018; 233: 820-832
- MicroRNA-128a-induced apoptosis in HTR-8/SVneo trophoblast cells contributes to pre-eclampsia.Biomed Pharmacother. 2016; 81: 63-70
- The endocannabinoid anandamide induces apoptosis in cytotrophoblast cells: involvement of both mitochondrial and death receptor pathways.Placenta. 2015; 36: 69-76
- Nitroso-redox balance and mitochondrial homeostasis are regulated by STOX1, a pre-eclampsia-associated gene.Antioxid Redox Signal. 2014; 21: 819-834
- Opposing role of JNK-p38 kinase and ERK1/2 in hydrogen peroxide-induced oxidative damage of human trophoblast-like JEG-3 cells.Int J Clin Exp Pathol. 2014; 7: 959-968
- Radical roles for RAGE in the pathogenesis of oxidative stress in cardiovascular diseases and beyond.Int J Mol Sci. 2013; 14: 19891-19910
- Effects of 4-hydroxynonenal on vascular endothelial and smooth muscle cell redox signaling and function in health and disease.Redox Biol. 2013; 1: 319-331
- Zhonghua Fu Chan Ke Za Zhi. 2013; 48 (Chinese): 193-197
- Melatonin enhances antioxidant action of alpha-tocopherol and ascorbate against NADPH- and iron-dependent lipid peroxidation in human placental mitochondria.J Pineal Res. 2010; 49: 149-155
- The novel mitochondria-targeted hydrogen sulfide (H2S) donors AP123 and AP39 protect against hyperglycemic injury in microvascular endothelial cells in vitro.Pharmacol Res. 2016; 113: 186-198
- Hydrogen sulphide and its therapeutic potential.Nat Rev Drug Discov. 2007; 6: 917-935
- Hydrogen sulphide and angiogenesis: mechanisms and applications.Br J Pharmacol. 2011; 164: 853-865
- Emerging role of hydrogen sulfide in health and disease: critical appraisal of biomarkers and pharmacological tools.Clin Sci (Lond). 2011; 121: 459-488
- Sulfide, the first inorganic substrate for human cells.FASEB J. 2007; 21: 1699-1706
- Mitochondria and sulfide: a very old story of poisoning, feeding, and signaling?.Antioxid Redox Signal. 2011; 15: 379-391
- Physiological implications of hydrogen sulfide: a whiff exploration that blossomed.Physiol Rev. 2012; 92: 791-896
- Hypoxia and sFlt-1 in preeclampsia: the “chicken-and-egg” question.Endocrinology. 2004; 145: 4835-4837
- Hydrogen sulfide inhibits hypoxia- but not anoxia-induced hypoxia-inducible factor 1 activation in a von hippel-lindau- and mitochondria-dependent manner.Antioxid Redox Signal. 2012; 16: 203-216
- Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing.J Biol Chem. 2000; 275: 25130-25138
- Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF-1alpha-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer.Am J Physiol Heart Circ Physiol. 2008; 294: H570-H578
- Dysregulation of hydrogen sulfide producing enzyme cystathionine gamma-lyase contributes to maternal hypertension and placental abnormalities in preeclampsia.Circulation. 2013; 127: 2514-2522
- The association of single nucleotide polymorphisms of the maternal cystathionine-beta-synthase gene with early-onset preeclampsia.Pregnancy Hypertens. 2016; 6: 60-65
- Gasotransmitters: a solution for the therapeutic dilemma in preeclampsia?.Hypertension. 2013; 62: 653-659
- Hydrogen sulfide: role in vascular physiology and pathology.Curr Opin Nephrol Hypertens. 2015; 24: 170-176
- Evidence-based revised view of the pathophysiology of preeclampsia.Adv Exp Med Biol. 2017; 956: 355-374
- Hydrogen sulfide attenuates sFlt1-induced hypertension and renal damage by upregulating vascular endothelial growth factor.J Am Soc Nephrol. 2014; 25: 717-725
- Sodium hydrosulfide prevents hypertension and increases in vascular endothelial growth factor and soluble fms-like tyrosine kinase-1 in hypertensive pregnant rats.Naunyn Schmiedebergs Arch Pharmacol. 2016; 389: 1325-1332
Article Info
Publication History
Footnotes
Supported by institutional support from the Beth Israel Deaconess Medical Center Departments of Medicine and Obstetrics and Gynecology.
Disclosures: S.A.K. is a coinventor on patents related to angiogenic biomarkers that are held by Beth Israel Deaconess Medical Center. S.A.K. has financial interest in Aggamin LLC, which is developing therapies for preeclampsia.
Identification
Copyright
User License
Elsevier user license |
Permitted
For non-commercial purposes:
- Read, print & download
- Text & data mine
- Translate the article
Not Permitted
- Reuse portions or extracts from the article in other works
- Redistribute or republish the final article
- Sell or re-use for commercial purposes
Elsevier's open access license policy