Advertisement
Review| Volume 189, ISSUE 11, P2138-2148, November 2019

The Role of MET in Melanoma and Melanocytic Lesions

  • Yan Zhou
    Correspondence
    Address correspondence to Alessio Giubellino, M.D., Ph.D., or Yan Zhou, M.D., Ph.D., Department of Laboratory Medicine and Pathology, University of Minnesota, 420 Delaware St. SE, C516 Mayo, Minneapolis, MN 55455.
    Affiliations
    Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota

    Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
    Search for articles by this author
  • Kyu Young Song
    Affiliations
    Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota

    Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
    Search for articles by this author
  • Alessio Giubellino
    Correspondence
    Address correspondence to Alessio Giubellino, M.D., Ph.D., or Yan Zhou, M.D., Ph.D., Department of Laboratory Medicine and Pathology, University of Minnesota, 420 Delaware St. SE, C516 Mayo, Minneapolis, MN 55455.
    Affiliations
    Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota

    Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
    Search for articles by this author
Open ArchivePublished:August 30, 2019DOI:https://doi.org/10.1016/j.ajpath.2019.08.002
      Melanoma is the leading cause of death due to cutaneous malignancy and its incidence is on the rise. Several signaling pathways, including receptor tyrosine kinases, have been recognized to have an etiopathogenetic role in the development and progression of precursor melanocytic lesions and malignant melanoma. Among those, the hepatocyte growth factor/MET (HGF/MET) axis is emerging as a critical player not only in the tumor itself but also in the immune microenvironment in which the tumor grows and advances in its development. Moreover, the activation of this pathway has emerged as a paradigm of tumor resistance to modern targeted therapies, and the assessment of its expression in patients' samples may be a valuable biomarker of tumor progression and response to targeted therapy. Here we summarize our current understanding of this important receptor tyrosine kinase in normal melanocyte proliferation/motility, in tumor progression and metastasis, its genetic alterations in certain subtype of melanocytic lesions, and how its pathway has been explored for the development of selective inhibitors.
      Melanoma is the most common lethal cancer among all skin malignancies, with a high propensity for metastasis.
      • Siegel R.L.
      • Miller K.D.
      • Jemal A.
      Cancer statistics, 2018.
      The 5-year survival rate drops from about 98% in patients with early, localized disease to only 20% in those with metastatic melanoma.
      • Siegel R.L.
      • Miller K.D.
      • Jemal A.
      Cancer statistics, 2018.
      The estimated 5-year overall survival is 34% even in the era of immunotherapy such as the PD-1 inhibitor pembrolizumab. The annual incidence of malignant melanoma has increased by approximately 50% over the last decade.
      • Siegel R.L.
      • Miller K.D.
      • Jemal A.
      Cancer statistics, 2018.
      • Jemal A.
      • Siegel R.
      • Ward E.
      • Murray T.
      • Xu J.
      • Smigal C.
      • Thun M.J.
      Cancer statistics, 2006.
      A variety of pathogenic mutations are associated with the initiation, progression, and metastasis of melanoma. Of these, the BRAFV600E mutation has been found in approximately half of malignant melanomas and tend to be more frequent in low–cumulative sun-induced damage melanomas.
      • Davies H.
      • Bignell G.R.
      • Cox C.
      • Stephens P.
      • Edkins S.
      • Clegg S.
      • et al.
      Mutations of the BRAF gene in human cancer.
      • Elder D.
      • Lazar A.
      • Barnhill B.
      • Massi D.
      • Bastian B.
      • Mihm M.J.
      • Cook M.
      • Nagore E.
      • de la Fouchardiere A.
      • Scolyer R.
      • Gerami P.
      • Yun S.
      Melanocytic tumours: introduction.
      On the other hand, NRAS, NF1, and other BRAF mutations are more frequently present in high–chronic sun-induced damage melanomas.
      • Elder D.
      • Lazar A.
      • Barnhill B.
      • Massi D.
      • Bastian B.
      • Mihm M.J.
      • Cook M.
      • Nagore E.
      • de la Fouchardiere A.
      • Scolyer R.
      • Gerami P.
      • Yun S.
      Melanocytic tumours: introduction.
      • Shain A.H.
      • Bastian B.C.
      From melanocytes to melanomas.
      Therapies targeting these mutations and relevant pathways have led to improved patient survival. However, the treatment of locally advanced or metastatic melanomas often requires systemic or combination approaches, including immunotherapy (the checkpoint inhibitors anti–programmed cell death protein 1, anti– programmed cell death protein ligand 1, or cytotoxic T lymphocyte–associated antigen 4 antibodies), targeted therapy [BRAF and/or mitogen-activated protein kinase kinase (MEK) inhibitors], and chemotherapy.
      • Chapman P.B.
      • Hauschild A.
      • Robert C.
      • Haanen J.B.
      • Ascierto P.
      • Larkin J.
      • Dummer R.
      • Garbe C.
      • Testori A.
      • Maio M.
      • Hogg D.
      • Lorigan P.
      • Lebbe C.
      • Jouary T.
      • Schadendorf D.
      • Ribas A.
      • O'Day S.J.
      • Sosman J.A.
      • Kirkwood J.M.
      • Eggermont A.M.
      • Dreno B.
      • Nolop K.
      • Li J.
      • Nelson B.
      • Hou J.
      • Lee R.J.
      • Flaherty K.T.
      • McArthur G.A.
      • Group B.-S.
      Improved survival with vemurafenib in melanoma with BRAF V600E mutation.
      • Wolchok J.D.
      • Chiarion-Sileni V.
      • Gonzalez R.
      • Rutkowski P.
      • Grob J.J.
      • Cowey C.L.
      • Lao C.D.
      • Wagstaff J.
      • Schadendorf D.
      • Ferrucci P.F.
      • Smylie M.
      • Dummer R.
      • Hill A.
      • Hogg D.
      • Haanen J.
      • Carlino M.S.
      • Bechter O.
      • Maio M.
      • Marquez-Rodas I.
      • Guidoboni M.
      • McArthur G.
      • Lebbe C.
      • Ascierto P.A.
      • Long G.V.
      • Cebon J.
      • Sosman J.
      • Postow M.A.
      • Callahan M.K.
      • Walker D.
      • Rollin L.
      • Bhore R.
      • Hodi F.S.
      • Larkin J.
      Overall survival with combined nivolumab and ipilimumab in advanced melanoma.
      The absolute survival rate remains quite low.
      • Hamid O.
      • Robert C.
      • Daud A.
      • Hodi F.S.
      • Hwu W.J.
      • Kefford R.
      • Wolchok J.D.
      • Hersey P.
      • Joseph R.
      • Weber J.S.
      • Dronca R.
      • Mitchell T.C.
      • Patnaik A.
      • Zarour H.M.
      • Joshua A.M.
      • Zhao Q.
      • Jensen E.
      • Ahsan S.
      • Ibrahim N.
      • Ribas A.
      Five-year survival outcomes for patients with advanced melanoma treated with pembrolizumab in KEYNOTE-001.
      Furthermore, immunotherapy and targeted therapy are often limited by high rates of resistance.
      • Hugo W.
      • Zaretsky J.M.
      • Sun L.
      • Song C.
      • Moreno B.H.
      • Hu-Lieskovan S.
      • Berent-Maoz B.
      • Pang J.
      • Chmielowski B.
      • Cherry G.
      • Seja E.
      • Lomeli S.
      • Kong X.
      • Kelley M.C.
      • Sosman J.A.
      • Johnson D.B.
      • Ribas A.
      • Lo R.S.
      Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma.
      • Caenepeel S.
      • Cooke K.
      • Wadsworth S.
      • Huang G.
      • Robert L.
      • Moreno B.H.
      • Parisi G.
      • Cajulis E.
      • Kendall R.
      • Beltran P.
      • Ribas A.
      • Coxon A.
      • Hughes P.E.
      MAPK pathway inhibition induces MET and GAB1 levels, priming BRAF mutant melanoma for rescue by hepatocyte growth factor.
      Therefore, a better understanding of the molecular events involved in the progression and therapeutic resistance of melanoma is necessary.
      Increasing attention has been drawn to the critical role of the hepatocyte growth factor (HGF)/MET pathway in melanoma development, progression, and therapeutic resistance.
      • Caenepeel S.
      • Cooke K.
      • Wadsworth S.
      • Huang G.
      • Robert L.
      • Moreno B.H.
      • Parisi G.
      • Cajulis E.
      • Kendall R.
      • Beltran P.
      • Ribas A.
      • Coxon A.
      • Hughes P.E.
      MAPK pathway inhibition induces MET and GAB1 levels, priming BRAF mutant melanoma for rescue by hepatocyte growth factor.
      • Al-U'datt D.G.
      • Al-Husein B.A.A.
      • Qasaimeh G.R.
      A mini-review of c-Met as a potential therapeutic target in melanoma.
      MET receptor, also known as HGF receptor , is expressed in the epithelial cells of many tissues, including skin, and the tumorigenic effect of the HGF/MET pathway has long been observed in malignancies of various organs. Therapies targeted toward this pathway have yielded improved clinical outcomes, especially in renal cell and lung carcinomas.
      • De Silva D.M.
      • Roy A.
      • Kato T.
      • Cecchi F.
      • Lee Y.H.
      • Matsumoto K.
      • Bottaro D.P.
      Targeting the hepatocyte growth factor/Met pathway in cancer.
      • Schöffski P.
      • Wozniak A.
      • Escudier B.
      • Rutkowski P.
      • Anthoney A.
      • Bauer S.
      • Sufliarsky J.
      • van Herpen C.
      • Lindner L.H.
      • Grünwald V.
      • Zakotnik B.
      • Lerut E.
      • Debiec-Rychter M.
      • Marréaud S.
      • Lia M.
      • Raveloarivahy T.
      • Collette S.
      • Albiges L.
      Crizotinib achieves long-lasting disease control in advanced papillary renal-cell carcinoma type 1 patients with MET mutations or amplification. EORTC 90101 CREATE trial.
      Therefore, the observation of MET activation in melanoma may open up a new possibility of aid in melanoma treatment. MET signaling aberrations have been found in melanomas at both sun-exposed and sun-shielded sites. Commonly found MET alterations include MET amplifications in desmoplastic melanoma, a high–chronic sun-induced damage melanoma, and MET rearrangements in Spitz melanoma as well as in its benign/intermediate precursor lesions.
      • Elder D.
      • Lazar A.
      • Barnhill B.
      • Massi D.
      • Bastian B.
      • Mihm M.J.
      • Cook M.
      • Nagore E.
      • de la Fouchardiere A.
      • Scolyer R.
      • Gerami P.
      • Yun S.
      Melanocytic tumours: introduction.
      In the most recent large-scale whole-genome sequencing analysis of melanoma, which included 183 patient samples of cutaneous, mucosal, and acral subtypes, frequent MET aberrations were demonstrated, with 24% gene amplifications, 9% single-nucleotide variations/deletions, and 1% structural variants.
      • Hayward N.K.
      • Wilmott J.S.
      • Waddell N.
      • Johansson P.A.
      • Field M.A.
      • Nones K.
      • et al.
      Whole-genome landscapes of major melanoma subtypes.
      Therapies targeting the HGF/MET pathway have shown promising results in inhibiting melanoma growth and metastasis in preclinical studies. However, translations of MET inhibitors into clinical studies as single-therapy agents in melanoma, as in other cancers, have been largely unfruitful, possibly due to the complex crosstalk of the HGF/MET pathway with other oncogenic pathways. Recent ongoing efforts include the investigation of synergistic therapeutic effects of combination therapies involving MET inhibitors, and mechanistic studies of MET targeting to overcome therapeutic resistance. These studies promise to better define the roles of this pathway in melanoma and other malignancies and to more precisely guide clinical applications of its targeted therapy.

      MET Structure, HGF/MET Signaling, and Biological Functions

      The proto-oncogene MET on the 7q31 locus encodes MET, alias HGF receptor.
      • Bottaro D.P.
      • Rubin J.S.
      • Faletto D.L.
      • Chan A.M.
      • Kmiecik T.E.
      • Vande Woude G.F.
      • Aaronson S.A.
      Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product.
      HGF, a pleiotropic heparin-binding protein, binds to MET and elicits multiple biological activities such as mitogenic, motogenic, and morphogenic responses in various cell types, including melanocytes.
      • Birchmeier C.
      • Birchmeier W.
      • Gherardi E.
      • Vande Woude G.F.
      Met, metastasis, motility and more.
      HGF is produced as an inactive single-chain precursor that is processed to yield an active heterodimer of one α and one β chain linked by a disulfide bond.
      • Nakamura T.
      • Nishizawa T.
      • Hagiya M.
      • Seki T.
      • Shimonishi M.
      • Sugimura A.
      • Tashiro K.
      • Shimizu S.
      Molecular cloning and expression of human hepatocyte growth factor.
      MET is a transmembrane receptor composed of a glycosylated, extracellular α subunit and a transmembrane β subunit.
      • Rodrigues G.A.
      • Naujokas M.A.
      • Park M.
      Alternative splicing generates isoforms of the met receptor tyrosine kinase which undergo differential processing.
      The α and the first 212 residues of the β subunit serve as the extracellular binding site for HGF.
      • Gherardi E.
      • Youles M.E.
      • Miguel R.N.
      • Blundell T.L.
      • Iamele L.
      • Gough J.
      • Bandyopadhyay A.
      • Hartmann G.
      • Butler P.J.
      Functional map and domain structure of MET, the product of the c-met protooncogene and receptor for hepatocyte growth factor/scatter factor.
      The intracellular portion of the β subunit contains three major domains: the juxtamembrane domain, the kinase domain, and the C-terminal docking site.
      • Birchmeier C.
      • Birchmeier W.
      • Gherardi E.
      • Vande Woude G.F.
      Met, metastasis, motility and more.
      Upon ligand binding, two tyrosine residues in the kinase domain, Y1234 and Y1235, are phosphorylated. Phosphorylation of two critical tyrosine residues, Y1349 and Y1356, within the C-terminal docking site recruits multiple intracellular molecules, including GRB2–associated-binding protein 1 (GAB1), growth factor receptor–bound protein 2 (GRB2), phosphatidylinositol 3 kinase (PI3K), phospholipase C γ, Src, and Shc, via binding to a Src homology 2 domain or other recognition motifs.
      • Al-U'datt D.G.
      • Al-Husein B.A.A.
      • Qasaimeh G.R.
      A mini-review of c-Met as a potential therapeutic target in melanoma.
      • Birchmeier C.
      • Birchmeier W.
      • Gherardi E.
      • Vande Woude G.F.
      Met, metastasis, motility and more.
      Consequently, multiple signaling pathways controlling cell survival, cell cycle progression, motility, and migration, including the PI3K/Akt, Ras/mitogen-activated protein kinase (MAPK), Rac1/cell division control protein 42 pathways, are activated (Figure 1).
      • Birchmeier C.
      • Birchmeier W.
      • Gherardi E.
      • Vande Woude G.F.
      Met, metastasis, motility and more.
      Figure thumbnail gr1
      Figure 1Summary of hepatocyte growth factor (HGF)/MET signaling and functions in tumor cells and microenvironment. A: HGF-induced activation of MET signaling cascade by either paracrine or autocrine manner. Phosphorylation of critical tyrosine residues triggers the recruitment of multiple effector molecules inside tumor cells, thus activating several downstream signaling pathways responsible for cell migration, proliferation, and survival. B: Endogenous HGF/MET axis can also be activated in neutrophils and cytotoxic T cells in the tumor microenvironment. MET-dependent neutrophils may also indirectly affect the functions of T cells. APC, adenomatous polyposis coli; EMT, epithelial–mesenchymal transition; FAK, focal adhesion kinase; GAB, GRB2–associated-binding protein; GRB, growth factor receptor–bound protein; MEK, marker extraction kernel; mTOR, mammalian target of rapamycin; PAK, p21-activated kinase; PD-L, programmed cell death protein ligand; PI3K, phosphatidylinositol 3-kinase; PLC, phospholipase C; SHP, small heterodimer partner; SLUG, human embryonic protein SNAI 2; Snai1, zinc finger protein SNA 1; SOS, son of sevenless protein; Twist, Twist family bHLH transcription factor.
      Under normal physiologic conditions, HGF produced by cells of mesenchymal origin acts in a paracrine manner to stimulate MET during embryonic development and throughout adulthood.
      • Birchmeier C.
      • Birchmeier W.
      • Gherardi E.
      • Vande Woude G.F.
      Met, metastasis, motility and more.

      Role of MET and HGF in Melanocytes

      Normal human melanocytes do not secrete HGF but are receptive to HGF through the expression of MET.
      • Saitoh K.
      • Takahashi H.
      • Sawada N.
      • Parsons P.G.
      Detection of the c-met proto-oncogene product in normal skin and tumours of melanocytic origin.
      HGF functions as a mitogen, stimulating melanocyte proliferation, in synergy with basic fibroblast growth factor and mast cell growth factor.
      • Halaban R.
      • Rubin J.S.
      • Funasaka Y.
      • Cobb M.
      • Boulton T.
      • Faletto D.
      • Rosen E.
      • Chan A.
      • Yoko K.
      • White W.
      Met and hepatocyte growth factor/scatter factor signal transduction in normal melanocytes and melanoma cells.
      HGF/MET signaling also promotes melanocyte motility and maintains high levels of tyrosinase activity and melanin content.
      • Saitoh K.
      • Takahashi H.
      • Sawada N.
      • Parsons P.G.
      Detection of the c-met proto-oncogene product in normal skin and tumours of melanocytic origin.
      • Halaban R.
      • Rubin J.S.
      • Funasaka Y.
      • Cobb M.
      • Boulton T.
      • Faletto D.
      • Rosen E.
      • Chan A.
      • Yoko K.
      • White W.
      Met and hepatocyte growth factor/scatter factor signal transduction in normal melanocytes and melanoma cells.
      Ubiquitous overexpression of HGF in transgenic mice leads to hyperpigmentation in neonatal and adult skin and hyperproliferation of melanocytes in ectopic tissues.
      • Takayama H.
      • La Rochelle W.J.
      • Anver M.
      • Bockman D.E.
      • Merlino G.
      Scatter factor/hepatocyte growth factor as a regulator of skeletal muscle and neural crest development.
      In addition, the up-regulation of MET expression via melanocyte-inducing transcription factor has been found to protect melanocytes from apoptosis.
      • Beuret L.
      • Flori E.
      • Denoyelle C.
      • Bille K.
      • Busca R.
      • Picardo M.
      • Bertolotto C.
      • Ballotti R.
      Up-regulation of MET expression by alpha-melanocyte-stimulating hormone and MITF allows hepatocyte growth factor to protect melanocytes and melanoma cells from apoptosis.
      Under certain insults such as UV radiation, melanocyte-inducing transcription factor could directly bind to the MET promoter in response to the increased level of α-melanocyte–stimulating hormone,
      • Beuret L.
      • Flori E.
      • Denoyelle C.
      • Bille K.
      • Busca R.
      • Picardo M.
      • Bertolotto C.
      • Ballotti R.
      Up-regulation of MET expression by alpha-melanocyte-stimulating hormone and MITF allows hepatocyte growth factor to protect melanocytes and melanoma cells from apoptosis.
      further emphasizing the complexity of the interplay of different pathways.
      Other studies have also revealed the regulatory roles of HGF/MET signaling in the development of melanocytes from neural crest.
      • Kos L.
      • Aronzon A.
      • Takayama H.
      • Maina F.
      • Ponzetto C.
      • Merlino G.
      • Pavan W.
      Hepatocyte growth factor/scatter factor-MET signaling in neural crest-derived melanocyte development.
      HGF promotes melanoblast survival and differentiation into pigmented melanocytes in vitro. Both in vitro and in vivo studies in mouse transgenic embryos have shown that the HGF/MET signaling can influence the initial development of neural crest–derived melanocytes.
      • Kos L.
      • Aronzon A.
      • Takayama H.
      • Maina F.
      • Ponzetto C.
      • Merlino G.
      • Pavan W.
      Hepatocyte growth factor/scatter factor-MET signaling in neural crest-derived melanocyte development.
      These studies not only offer a window on the role of this signaling pathway on physiologic melanocyte functions, but also highlight our incomplete understating and the need for additional studies.

      Role of RTKs in Melanoma and Melanocytic Lesions

      In malignancies, the HGF/MET pathway is aberrantly activated through several mechanisms, including paracrine signaling, activating mutations, overexpression, or autocrine loop formation.
      • Lai A.Z.
      • Abella J.V.
      • Park M.
      Crosstalk in Met receptor oncogenesis.
      Abnormalities in receptor tyrosine kinase (RTK) expression have been demonstrated to contribute to melanoma development and progression.
      • Easty D.J.
      • Gray S.G.
      • O'Byrne K.J.
      • O'Donnell D.
      • Bennett D.C.
      Receptor tyrosine kinases and their activation in melanoma.
      In transgenic mice, Ret overexpression or MET activation could lead to melanoma development.
      • Otsuka T.
      • Takayama H.
      • Sharp R.
      • Celli G.
      • LaRochelle W.J.
      • Bottaro D.P.
      • Ellmore N.
      • Vieira W.
      • Owens J.W.
      • Anver M.
      • Merlino G.
      c-Met autocrine activation induces development of malignant melanoma and acquisition of the metastatic phenotype.
      With advancement in technologies such as whole-genome sequencing, multiple forms of RTK aberrations have been discovered in melanoma cell lines and patient-derived samples.
      • Siegel R.L.
      • Miller K.D.
      • Jemal A.
      Cancer statistics, 2018.
      • Hayward N.K.
      • Wilmott J.S.
      • Waddell N.
      • Johansson P.A.
      • Field M.A.
      • Nones K.
      • et al.
      Whole-genome landscapes of major melanoma subtypes.
      More than 20 RTK families, including epidermal growth factor receptor, extracellular region binding proteins 2 and 4, Kit, fibroblast growth factor receptor, MET, and platelet-derived growth factor receptor, are involved in melanoma tumorigenesis.
      • Hayward N.K.
      • Wilmott J.S.
      • Waddell N.
      • Johansson P.A.
      • Field M.A.
      • Nones K.
      • et al.
      Whole-genome landscapes of major melanoma subtypes.
      RTK alterations are frequently identified in cutaneous, acral, and mucosal melanomas, and may represent promising therapeutic targets.
      In a subset of melanocytic neoplasms, recurrent rearrangements of kinases, have been described as a mechanism of oncogenic activation.
      • Wiesner T.
      • He J.
      • Yelensky R.
      • Esteve-Puig R.
      • Botton T.
      • Yeh I.
      • Lipson D.
      • Otto G.
      • Brennan K.
      • Murali R.
      • Garrido M.
      • Miller V.A.
      • Ross J.S.
      • Berger M.F.
      • Sparatta A.
      • Palmedo G.
      • Cerroni L.
      • Busam K.J.
      • Kutzner H.
      • Cronin M.T.
      • Stephens P.J.
      • Bastian B.C.
      Kinase fusions are frequent in Spitz tumours and spitzoid melanomas.
      • Tetzlaff M.T.
      • Reuben A.
      • Billings S.D.
      • Prieto V.G.
      • Curry J.L.
      Toward a molecular-genetic classification of spitzoid neoplasms.
      The resulting chimeric proteins are constitutively active, stimulating oncogenic signaling pathways. In particular, gene rearrangements of MET resulting in in-frame MET kinase fusions are found in Spitz tumors and Spitzoid melanomas.
      • Yeh I.
      • Botton T.
      • Talevich E.
      • Shain A.H.
      • Sparatta A.J.
      • de la Fouchardiere A.
      • Mully T.W.
      • North J.P.
      • Garrido M.C.
      • Gagnon A.
      • Vemula S.S.
      • McCalmont T.H.
      • LeBoit P.E.
      • Bastian B.C.
      Activating MET kinase rearrangements in melanoma and Spitz tumours.
      MET fusions tend to occur in younger patients (with an average age of onset of 20 years), and are present across benign, atypical, to malignant lesions, suggesting early occurrence of the MET fusions during tumor progression.
      • Yeh I.
      • Botton T.
      • Talevich E.
      • Shain A.H.
      • Sparatta A.J.
      • de la Fouchardiere A.
      • Mully T.W.
      • North J.P.
      • Garrido M.C.
      • Gagnon A.
      • Vemula S.S.
      • McCalmont T.H.
      • LeBoit P.E.
      • Bastian B.C.
      Activating MET kinase rearrangements in melanoma and Spitz tumours.
      Common mutations in melanomas involving NRAS, NF1, or BRAF are usually not present in Spitzoid neoplasms. However, some of them can become aggressive and metastasize. These lesions may require systemic therapy, but targeted therapeutic options for these melanocytic lesions do not currently exist. Since MET fusions occur in a subset of Spitzoid melanomas in a mutually exclusive pattern with activating mutations in known melanoma oncogenes, they may represent a unique therapeutic target in those lesions.
      • Tetzlaff M.T.
      • Reuben A.
      • Billings S.D.
      • Prieto V.G.
      • Curry J.L.
      Toward a molecular-genetic classification of spitzoid neoplasms.
      • Yeh I.
      • Botton T.
      • Talevich E.
      • Shain A.H.
      • Sparatta A.J.
      • de la Fouchardiere A.
      • Mully T.W.
      • North J.P.
      • Garrido M.C.
      • Gagnon A.
      • Vemula S.S.
      • McCalmont T.H.
      • LeBoit P.E.
      • Bastian B.C.
      Activating MET kinase rearrangements in melanoma and Spitz tumours.
      Additional functional studies in mouse models and larger cohorts of patients with specific mutations or other genetic alterations will be required to evaluate the effects of each of these genetic alterations in melanoma, and to further develop tailored therapeutic strategies.

      Role of MET and HGF in Primary Melanoma

      Multiple mechanisms that confer oncogenic potential to HGF and MET in a wide variety of human cancers have been described, including autocrine or paracrine loop formation, MET-activating mutations, structural variants, and gene amplification.
      • Lai A.Z.
      • Abella J.V.
      • Park M.
      Crosstalk in Met receptor oncogenesis.
      For example, a study showed that the HGF/MET autocrine loop stimulated the aberrant growth of melanocytes with endogenous MET overexpression and drove tumorigenesis in a transgenic mouse model.
      • Puri N.
      • Ahmed S.
      • Janamanchi V.
      • Tretiakova M.
      • Zumba O.
      • Krausz T.
      • Jagadeeswaran R.
      • Salgia R.
      c-Met is a potentially new therapeutic target for treatment of human melanoma.
      Several other studies have also shown that some melanomas in humans can express both MET and HGF, in contrast to normal melanocytes, which rarely produce HGF, further confirming the formation of an autocrine loop in melanoma development.
      • Shain A.H.
      • Bastian B.C.
      From melanocytes to melanomas.
      • Shain A.H.
      • Yeh I.
      • Kovalyshyn I.
      • Sriharan A.
      • Talevich E.
      • Gagnon A.
      • Dummer R.
      • North J.
      • Pincus L.
      • Ruben B.
      • Rickaby W.
      • D'Arrigo C.
      • Robson A.
      • Bastian B.C.
      The genetic evolution of melanoma from precursor lesions.
      • Li G.
      • Schaider H.
      • Satyamoorthy K.
      • Hanakawa Y.
      • Hashimoto K.
      • Herlyn M.
      Downregulation of E-cadherin and Desmoglein 1 by autocrine hepatocyte growth factor during melanoma development.
      • Natali P.G.
      • Nicotra M.R.
      • Di Renzo M.F.
      • Prat M.
      • Bigotti A.
      • Cavaliere R.
      • Comoglio P.M.
      Expression of the c-Met/HGF receptor in human melanocytic neoplasms: demonstration of the relationship to malignant melanoma tumour progression.
      Various MET mutations have been identified in melanoma.
      • Zenali M.
      • deKay J.
      • Liu Z.
      • Hamilton S.
      • Zuo Z.
      • Lu X.
      • Bakkar R.
      • Mills G.
      • Broaddus R.
      Retrospective review of MET gene mutations.
      Among these, activating mutations in the MET kinase domain are most closely associated with its oncogenic capacity.
      • Lai A.Z.
      • Abella J.V.
      • Park M.
      Crosstalk in Met receptor oncogenesis.
      • Schmidt L.
      • Duh F.M.
      • Chen F.
      • Kishida T.
      • Glenn G.
      • Choyke P.
      • Scherer S.W.
      • Zhuang Z.
      • Lubensky I.
      • Dean M.
      • Allikmets R.
      • Chidambaram A.
      • Bergerheim U.R.
      • Feltis J.T.
      • Casadevall C.
      • Zamarron A.
      • Bernues M.
      • Richard S.
      • Lips C.J.
      • Walther M.M.
      • Tsui L.C.
      • Geil L.
      • Orcutt M.L.
      • Stackhouse T.
      • Lipan J.
      • Slife L.
      • Brauch H.
      • Decker J.
      • Niehans G.
      • Hughson M.D.
      • Moch H.
      • Storkel S.
      • Lerman M.I.
      • Linehan W.M.
      • Zbar B.
      Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas.
      • Athauda G.
      • Giubellino A.
      • Coleman J.A.
      • Horak C.
      • Steeg P.S.
      • Lee M.J.
      • Trepel J.
      • Wimberly J.
      • Sun J.
      • Coxon A.
      • Burgess T.L.
      • Bottaro D.P.
      c-Met ectodomain shedding rate correlates with malignant potential.
      Mutations within the MET juxtamembrane domain also have a role in tumorigenesis, cell motility, and migration. In lung cancer (eg, juxtamembrane), domain mutations result in alternative splicing of MET and production of more stable MET proteins.
      • Wolchok J.D.
      • Chiarion-Sileni V.
      • Gonzalez R.
      • Rutkowski P.
      • Grob J.J.
      • Cowey C.L.
      • Lao C.D.
      • Wagstaff J.
      • Schadendorf D.
      • Ferrucci P.F.
      • Smylie M.
      • Dummer R.
      • Hill A.
      • Hogg D.
      • Haanen J.
      • Carlino M.S.
      • Bechter O.
      • Maio M.
      • Marquez-Rodas I.
      • Guidoboni M.
      • McArthur G.
      • Lebbe C.
      • Ascierto P.A.
      • Long G.V.
      • Cebon J.
      • Sosman J.
      • Postow M.A.
      • Callahan M.K.
      • Walker D.
      • Rollin L.
      • Bhore R.
      • Hodi F.S.
      • Larkin J.
      Overall survival with combined nivolumab and ipilimumab in advanced melanoma.
      • Hugo W.
      • Zaretsky J.M.
      • Sun L.
      • Song C.
      • Moreno B.H.
      • Hu-Lieskovan S.
      • Berent-Maoz B.
      • Pang J.
      • Chmielowski B.
      • Cherry G.
      • Seja E.
      • Lomeli S.
      • Kong X.
      • Kelley M.C.
      • Sosman J.A.
      • Johnson D.B.
      • Ribas A.
      • Lo R.S.
      Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma.
      • Ma P.C.
      • Tretiakova M.S.
      • MacKinnon A.C.
      • Ramnath N.
      • Johnson C.
      • Dietrich S.
      • Seiwert T.
      • Christensen J.G.
      • Jagadeeswaran R.
      • Krausz T.
      • Vokes E.E.
      • Husain A.N.
      • Salgia R.
      Expression and mutational analysis of MET in human solid cancers.
      New missense MET mutations in the juxtamembrane domain, contributing to melanoma growth and progression, have been identified in a cell line (N948S) and tumor tissue (R988C).
      • Puri N.
      • Ahmed S.
      • Janamanchi V.
      • Tretiakova M.
      • Zumba O.
      • Krausz T.
      • Jagadeeswaran R.
      • Salgia R.
      c-Met is a potentially new therapeutic target for treatment of human melanoma.
      Other studies have questioned the association of MET mutations with adverse prognosis in malignant melanoma.
      • Chapman P.B.
      • Hauschild A.
      • Robert C.
      • Haanen J.B.
      • Ascierto P.
      • Larkin J.
      • Dummer R.
      • Garbe C.
      • Testori A.
      • Maio M.
      • Hogg D.
      • Lorigan P.
      • Lebbe C.
      • Jouary T.
      • Schadendorf D.
      • Ribas A.
      • O'Day S.J.
      • Sosman J.A.
      • Kirkwood J.M.
      • Eggermont A.M.
      • Dreno B.
      • Nolop K.
      • Li J.
      • Nelson B.
      • Hou J.
      • Lee R.J.
      • Flaherty K.T.
      • McArthur G.A.
      • Group B.-S.
      Improved survival with vemurafenib in melanoma with BRAF V600E mutation.
      • Birchmeier C.
      • Birchmeier W.
      • Gherardi E.
      • Vande Woude G.F.
      Met, metastasis, motility and more.
      The association of MET pathway activation with other well-known melanoma driver genes has also been investigated.
      • Caenepeel S.
      • Cooke K.
      • Wadsworth S.
      • Huang G.
      • Robert L.
      • Moreno B.H.
      • Parisi G.
      • Cajulis E.
      • Kendall R.
      • Beltran P.
      • Ribas A.
      • Coxon A.
      • Hughes P.E.
      MAPK pathway inhibition induces MET and GAB1 levels, priming BRAF mutant melanoma for rescue by hepatocyte growth factor.
      • Hayward N.K.
      • Wilmott J.S.
      • Waddell N.
      • Johansson P.A.
      • Field M.A.
      • Nones K.
      • et al.
      Whole-genome landscapes of major melanoma subtypes.
      • Chattopadhyay C.
      • Ellerhorst J.A.
      • Ekmekcioglu S.
      • Greene V.R.
      • Davies M.A.
      • Grimm E.A.
      Association of activated c-Met with NRAS-mutated human melanomas.
      In primary melanoma–derived cells in humans, Chattopadhyay et al
      • Chattopadhyay C.
      • Ellerhorst J.A.
      • Ekmekcioglu S.
      • Greene V.R.
      • Davies M.A.
      • Grimm E.A.
      Association of activated c-Met with NRAS-mutated human melanomas.
      observed a higher level of phosphorylation of MET (which leads to more robust pathway activation in response to HGF) in NRAS-mutated tumors when compared to BRAF-mutated tumors.
      • Caenepeel S.
      • Cooke K.
      • Wadsworth S.
      • Huang G.
      • Robert L.
      • Moreno B.H.
      • Parisi G.
      • Cajulis E.
      • Kendall R.
      • Beltran P.
      • Ribas A.
      • Coxon A.
      • Hughes P.E.
      MAPK pathway inhibition induces MET and GAB1 levels, priming BRAF mutant melanoma for rescue by hepatocyte growth factor.
      Concurrently, pharmacologic inhibition of MET resulted in more potent inhibition of melanoma cell proliferation and migration in NRAS-mutated tumors compared to BRAF-mutated tumors. However, in a recent whole-genome analysis of various subtypes of melanoma, MET copy number amplification appeared to be associated with amplification of BRAF hotspot mutations, possibly due to the proximity of the MET and BRAF genes on chromosome 7.
      • Hayward N.K.
      • Wilmott J.S.
      • Waddell N.
      • Johansson P.A.
      • Field M.A.
      • Nones K.
      • et al.
      Whole-genome landscapes of major melanoma subtypes.
      Such an association was not observed between MET and NRAS. Further and better understanding of the association between types and prevalence of MET alterations and other common oncogene mutations in melanoma may be needed, in light of the potential benefit of combined targeting for optimal synergistic effects in selected subtypes of melanomas.

      Role of MET and HGF in Melanoma Metastasis

      Melanomas are highly metastatic tumors. As aforementioned, HGF/MET signaling promotes several critical steps in cancer cell invasion and metastasis, such as cell scattering, migration, extracellular matrix degradation, and angiogenesis.
      • Otsuka T.
      • Takayama H.
      • Sharp R.
      • Celli G.
      • LaRochelle W.J.
      • Bottaro D.P.
      • Ellmore N.
      • Vieira W.
      • Owens J.W.
      • Anver M.
      • Merlino G.
      c-Met autocrine activation induces development of malignant melanoma and acquisition of the metastatic phenotype.
      Mechanistically, cytoplasmic signaling cascades downstream of MET, including PI3K/Akt and Rac1–cell division control protein 42 pathways, may induce cell cytoskeletal changes and affect cell surface integrin and cadherin expressions, thus controlling cell migration and adhesion processes.
      • Gherardi E.
      • Birchmeier W.
      • Birchmeier C.
      • Vande Woude G.
      Targeting MET in cancer: rationale and progress.
      The role of the HGF/MET pathway in metastatic melanoma has been studied in the B16 melanoma cell model, where MET activation was required for metastasis and colonization of melanoma cells in liver, possibly by inducing cell motility and invasion in response to HGF in a paracrine manner.
      • Lin S.
      • Rusciano D.
      • Lorenzoni P.
      • Hartmann G.
      • Birchmeier W.
      • Giordano S.
      • Comoglio P.
      • Burger M.M.
      C-met activation is necessary but not sufficient for liver colonization by B16 murine melanoma cells.
      Moreover, MET-induced melanoma cell migration could be completely inhibited by a selective MET inhibitor, indicating the necessity of its pathway in this process.
      • Qian F.
      • Engst S.
      • Yamaguchi K.
      • Yu P.
      • Won K.A.
      • Mock L.
      • Lou T.
      • Tan J.
      • Li C.
      • Tam D.
      • Lougheed J.
      • Yakes F.M.
      • Bentzien F.
      • Xu W.
      • Zaks T.
      • Wooster R.
      • Greshock J.
      • Joly A.H.
      Inhibition of tumor cell growth, invasion, and metastasis by EXEL-2880 (XL880, GSK1363089), a novel inhibitor of HGF and VEGF receptor tyrosine kinases.
      • Christensen J.G.
      • Schreck R.
      • Burrows J.
      • Kuruganti P.
      • Chan E.
      • Le P.
      • Chen J.
      • Wang X.
      • Ruslim L.
      • Blake R.
      • Lipson K.E.
      • Ramphal J.
      • Do S.
      • Cui J.J.
      • Cherrington J.M.
      • Mendel D.B.
      A selective small molecule inhibitor of c-Met kinase inhibits c-Met-dependent phenotypes in vitro and exhibits cytoreductive antitumor activity in vivo.
      The efficacy of certain MET inhibitors (such as crizotinib) in inhibiting metastasis in preclinical mouse models and patients is currently being evaluated.
      • Surriga O.
      • Rajasekhar V.K.
      • Ambrosini G.
      • Dogan Y.
      • Huang R.
      • Schwartz G.K.
      Crizotinib, a c-Met inhibitor, prevents metastasis in a metastatic uveal melanoma model.

      Role of MET and HGF in Epithelial–Mesenchymal Transition

      Epithelial–mesenchymal transition (EMT) is an essential process contributing to the progression of epithelial cancers from localized disease to invasion and metastasis. Experimental evidence demonstrates the critical roles of phenotype switching (analogous to EMT) in both melanocyte differentiation and melanoma progression to metastatic disease.
      • Li F.Z.
      • Dhillon A.S.
      • Anderson R.L.
      • McArthur G.
      • Ferrao P.T.
      Phenotype switching in melanoma: implications for progression and therapy.
      • Alonso S.R.
      • Tracey L.
      • Ortiz P.
      • Perez-Gomez B.
      • Palacios J.
      • Pollan M.
      • Linares J.
      • Serrano S.
      • Saez-Castillo A.I.
      • Sanchez L.
      • Pajares R.
      • Sanchez-Aguilera A.
      • Artiga M.J.
      • Piris M.A.
      • Rodriguez-Peralto J.L.
      A high-throughput study in melanoma identifies epithelial-mesenchymal transition as a major determinant of metastasis.
      As in epithelial cancers, the EMT-like phenotype switching in melanoma is associated with the loss of E-cadherin and the gains of N-cadherin, osteopontin, and osteonectin.
      • Alonso S.R.
      • Tracey L.
      • Ortiz P.
      • Perez-Gomez B.
      • Palacios J.
      • Pollan M.
      • Linares J.
      • Serrano S.
      • Saez-Castillo A.I.
      • Sanchez L.
      • Pajares R.
      • Sanchez-Aguilera A.
      • Artiga M.J.
      • Piris M.A.
      • Rodriguez-Peralto J.L.
      A high-throughput study in melanoma identifies epithelial-mesenchymal transition as a major determinant of metastasis.
      However, with a neural crest derivation, melanocytes and melanoma cells differ from both epithelial and mesenchymal cells phenotypically. A recent review has described the similarities and differences in the expressions and regulations of the common EMT-transcriptional factors between epithelial cancers and melanoma.
      • Li F.Z.
      • Dhillon A.S.
      • Anderson R.L.
      • McArthur G.
      • Ferrao P.T.
      Phenotype switching in melanoma: implications for progression and therapy.
      For example, zinc finger protein SNA 1 and 2 (SNAIL1 and SNAI2), human embryonic protein SNAI 2 (SLUG), zinc finger E box–binding homeobox 1 and 2 (ZEB1 and ZEB2), and Twist family bHLH transcription factor (Twist) are all considered as important repressors of E-cadherin in epithelial carcinomas. However, an opposite role of ZEB2, that is, the promotion of differentiation and preservation of E-cadherin expression, was found in melanoma.
      • Caramel J.
      • Papadogeorgakis E.
      • Hill L.
      • Browne G.J.
      • Richard G.
      • Wierinckx A.
      • Saldanha G.
      • Osborne J.
      • Hutchinson P.
      • Tse G.
      • Lachuer J.
      • Puisieux A.
      • Pringle J.H.
      • Ansieau S.
      • Tulchinsky E.
      A switch in the expression of embryonic EMT-inducers drives the development of malignant melanoma.
      Once more, these discrepancies outline our incomplete knowledge and the need for additional studies.
      Several studies have demonstrated that the activation of the HGF/MET pathway promotes EMT through the regulation of multiple known repressors of E-cadherin in melanomas (Figure 2).
      • Li G.
      • Schaider H.
      • Satyamoorthy K.
      • Hanakawa Y.
      • Hashimoto K.
      • Herlyn M.
      Downregulation of E-cadherin and Desmoglein 1 by autocrine hepatocyte growth factor during melanoma development.
      • Koefinger P.
      • Wels C.
      • Joshi S.
      • Damm S.
      • Steinbauer E.
      • Beham-Schmid C.
      • Frank S.
      • Bergler H.
      • Schaider H.
      The cadherin switch in melanoma instigated by HGF is mediated through epithelial-mesenchymal transition regulators.
      • Grotegut S.
      • von Schweinitz D.
      • Christofori G.
      • Lehembre F.
      Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail.
      In one study, autocrine activation (by adenovirus-induced HGF expression) of MET leads to constitutive activation of MAPK and PI3K and down-regulation of E-cadherin and desmoglein 1 in both normal melanocytes and melanoma cell lines.
      • Li G.
      • Schaider H.
      • Satyamoorthy K.
      • Hanakawa Y.
      • Hashimoto K.
      • Herlyn M.
      Downregulation of E-cadherin and Desmoglein 1 by autocrine hepatocyte growth factor during melanoma development.
      After exposure to exogenous human recombinant HGF, several melanoma cell lines express up-regulated amounts of SNAIL1, Twist, and human embryonic protein SNAI2 at various time points, mediating the switch from E-cadherin to N-cadherin.
      • Koefinger P.
      • Wels C.
      • Joshi S.
      • Damm S.
      • Steinbauer E.
      • Beham-Schmid C.
      • Frank S.
      • Bergler H.
      • Schaider H.
      The cadherin switch in melanoma instigated by HGF is mediated through epithelial-mesenchymal transition regulators.
      Another study showed that downstream activation of the MAPK/early growth response 1 (Egr-1) pathway is required in HGF/MET–induced SNAIL1 up-regulation.
      • Grotegut S.
      • von Schweinitz D.
      • Christofori G.
      • Lehembre F.
      Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail.
      HGF-induced activation of the MAPK/Egr-1 pathway also exhibits several other functions, including promoting fibronectin matrix synthesis, which mediates melanoma cell migration.
      • Gaggioli C.
      • Deckert M.
      • Robert G.
      • Abbe P.
      • Batoz M.
      • Ehrengruber M.U.
      • Ortonne J.P.
      • Ballotti R.
      • Tartare-Deckert S.
      HGF induces fibronectin matrix synthesis in melanoma cells through MAP kinase-dependent signaling pathway and induction of Egr-1.
      Figure thumbnail gr2
      Figure 2Hepatocyte growth factor (HGF)/MET pathway activation promotes epithelial–mesenchymal transition through up-regulation of multiple E-cadherin repressors and mediating switch from E-cadherin to N-cadherin. Erg, erythroblast transformation-specific transcription factor; MAPK, mitogen-activated protein kinase; PI3K, phosphatidylinositol 3-kinase; SLUG, human embryonic protein SNAI2.
      In addition, CD44 isoforms have been found to be critical regulators of EMT.
      • Xu H.
      • Tian Y.
      • Yuan X.
      • Wu H.
      • Liu Q.
      • Pestell R.G.
      • Wu K.
      The role of CD44 in epithelial-mesenchymal transition and cancer development.
      For example, Recio and Merlino
      • Recio J.A.
      • Merlino G.
      Hepatocyte growth factor/scatter factor induces feedback up-regulation of CD44v6 in melanoma cells through Egr-1.
      found that in a murine melanoma cell line, transcriptional Egr-1 activation up-regulates CD44v6 expression, facilitating the binding and presentation of Hgf to its receptor.
      Together, the findings from these studies unveil the mounting evidence of the role of the HGF/MET pathway in EMT in melanoma, and further confirm the use of MET inhibitors as a viable therapeutic avenue to preventing metastatic disease.

      Role of MET and HGF in Immunomodulation in Melanoma

      The HGF/MET axis is also involved in the modulation of innate and adaptive immune responses and tissue repair.
      • Ilangumaran S.
      • Villalobos-Hernandez A.
      • Bobbala D.
      • Ramanathan S.
      The hepatocyte growth factor (HGF)-MET receptor tyrosine kinase signaling pathway: diverse roles in modulating immune cell functions.
      Immune cells in the tumor microenvironment exert both antitumor and protumor effects in several cancers, including melanoma. In this setting, the role in immunomodulation by the HGF/MET pathway in cancer deserves further investigation and may provide valuable therapeutic implications.
      Recently HGF/MET signaling has been demonstrated to be required for neutrophil migration to the tumor microenvironment in melanoma.
      • Finisguerra V.
      • Di Conza G.
      • Di Matteo M.
      • Serneels J.
      • Costa S.
      • Thompson A.A.
      • Wauters E.
      • Walmsley S.
      • Prenen H.
      • Granot Z.
      • Casazza A.
      • Mazzone M.
      MET is required for the recruitment of anti-tumoural neutrophils.
      These antitumor neutrophils exert cytotoxic effects on tumor cells via the production of inducible nitric oxide synthase and nitric oxide (Figure 3). MET deletion in neutrophils, on the other hand, promote cancer growth and metastasis by reducing antitumoral neutrophilic recruitment. These mechanisms may offer in part an explanation for some limited results of selective MET inhibitors in clinical trials.
      Figure thumbnail gr3
      Figure 3Roles of MET signaling in immunomodulation of melanoma microenvironment. MET activation recruits neutrophils to the tumor microenvironment, which may lead to direct cytotoxicity to melanoma cells or may inhibit functions of tumor infiltrating lymphocytes. HGF, hepatocyte growth factor; ICAM, intercellular adhesion molecule; iNOS, inducible nitric oxide synthase; NO, nitric oxide.
      Glodde et al
      • Glodde N.
      • Bald T.
      • van den Boorn-Konijnenberg D.
      • Nakamura K.
      • O'Donnell J.S.
      • Szczepanski S.
      • Brandes M.
      • Eickhoff S.
      • Das I.
      • Shridhar N.
      • Hinze D.
      • Rogava M.
      • van der Sluis T.C.
      • Ruotsalainen J.J.
      • Gaffal E.
      • Landsberg J.
      • Ludwig K.U.
      • Wilhelm C.
      • Riek-Burchardt M.
      • Muller A.J.
      • Gebhardt C.
      • Scolyer R.A.
      • Long G.V.
      • Janzen V.
      • Teng M.W.L.
      • Kastenmuller W.
      • Mazzone M.
      • Smyth M.J.
      • Tuting T.
      • Holzel M.
      Reactive neutrophil responses dependent on the receptor tyrosine kinase c-MET limit cancer immunotherapy.
      also found that HGF/MET signaling mediated the recruitment of reactive neutrophils from bone marrow to tumor and lymph nodes, following immunotherapies such as adoptive T-cell transfer or checkpoint blockade. However, these MET-expressing neutrophils impaired therapeutic T-cell proliferation, thus limiting the efficacy of immunotherapies (Figure 3). Concurrent inhibition of MET successfully potentiated the efficacy of cancer immunotherapy in melanoma-bearing mouse models. Interestingly, patient data mirrored the results in mouse models, showing an increase in serum HGF and blood neutrophil counts in anti–programmed cell death protein 1 therapy nonresponders with advanced melanoma.
      A subset of endogenous MET-positive cytotoxic T cells has also been found in melanoma patients, and HGF directly limited the tumor-killing functions of these Met+ CD8+ tumor-infiltrating lymphocytes in a metastatic melanoma mouse model.
      • Benkhoucha M.
      • Molnarfi N.
      • Kaya G.
      • Belnoue E.
      • Bjarnadottir K.
      • Dietrich P.Y.
      • Walker P.R.
      • Martinvalet D.
      • Derouazi M.
      • Lalive P.H.
      Identification of a novel population of highly cytotoxic c-Met-expressing CD8(+) T lymphocytes.
      The role of HGF/MET as an immunosuppressive signaling pathway is also put in evidence through the induction of tolerogenic DCs and Langerhans cells, as seen in experimental models of graft-versus-host disease and autoimmune encephalomyelitis.
      • Ilangumaran S.
      • Villalobos-Hernandez A.
      • Bobbala D.
      • Ramanathan S.
      The hepatocyte growth factor (HGF)-MET receptor tyrosine kinase signaling pathway: diverse roles in modulating immune cell functions.
      Finally, in carcinomas, MET signaling–induced phosphorylation of α6β4-integrin possibly contributes to the migration of DCs and Langerhans cells.
      • Trusolino L.
      • Bertotti A.
      • Comoglio P.M.
      A signaling adapter function for alpha6beta4 integrin in the control of HGF-dependent invasive growth.
      Although our current knowledge of the role of the HGF/MET signaling axis is piecemeal at best, overall these pathways appear to be mostly immunosuppressive in cancer immune responses, although additional studies will be necessary to fully understand the therapeutic implications at a time of excitement for the promise of cancer immunotherapy.

      Role of MET and HGF in Therapeutic Resistance in Melanoma

      The treatment of malignant melanoma has been more recently revolutionized by the introduction of small-molecule targeted therapies and immune checkpoint inhibitors. In particular, B-Raf inhibitors (eg, vemurafenib, the first approved targeted therapy for BRAFV600E metastatic melanoma) have achieved significant improvement in PFS and OS, with a response rate of 50% to 60%.
      • Chapman P.B.
      • Hauschild A.
      • Robert C.
      • Haanen J.B.
      • Ascierto P.
      • Larkin J.
      • Dummer R.
      • Garbe C.
      • Testori A.
      • Maio M.
      • Hogg D.
      • Lorigan P.
      • Lebbe C.
      • Jouary T.
      • Schadendorf D.
      • Ribas A.
      • O'Day S.J.
      • Sosman J.A.
      • Kirkwood J.M.
      • Eggermont A.M.
      • Dreno B.
      • Nolop K.
      • Li J.
      • Nelson B.
      • Hou J.
      • Lee R.J.
      • Flaherty K.T.
      • McArthur G.A.
      • Group B.-S.
      Improved survival with vemurafenib in melanoma with BRAF V600E mutation.
      • McArthur G.A.
      • Chapman P.B.
      • Robert C.
      • Larkin J.
      • Haanen J.B.
      • Dummer R.
      • Ribas A.
      • Hogg D.
      • Hamid O.
      • Ascierto P.A.
      • Garbe C.
      • Testori A.
      • Maio M.
      • Lorigan P.
      • Lebbe C.
      • Jouary T.
      • Schadendorf D.
      • O'Day S.J.
      • Kirkwood J.M.
      • Eggermont A.M.
      • Dreno B.
      • Sosman J.A.
      • Flaherty K.T.
      • Yin M.
      • Caro I.
      • Cheng S.
      • Trunzer K.
      • Hauschild A.
      Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study.
      The combination of BRAF and MEK inhibitors has further improved the response rate to 70%.
      • Robert C.
      • Karaszewska B.
      • Schachter J.
      • Rutkowski P.
      • Mackiewicz A.
      • Stroiakovski D.
      • Lichinitser M.
      • Dummer R.
      • Grange F.
      • Mortier L.
      • Chiarion-Sileni V.
      • Drucis K.
      • Krajsova I.
      • Hauschild A.
      • Lorigan P.
      • Wolter P.
      • Long G.V.
      • Flaherty K.
      • Nathan P.
      • Ribas A.
      • Martin A.M.
      • Sun P.
      • Crist W.
      • Legos J.
      • Rubin S.D.
      • Little S.M.
      • Schadendorf D.
      Improved overall survival in melanoma with combined dabrafenib and trametinib.
      However, almost all patients eventually develop resistance after BRAF or BRAF–MEK combined inhibition.
      • McArthur G.A.
      • Chapman P.B.
      • Robert C.
      • Larkin J.
      • Haanen J.B.
      • Dummer R.
      • Ribas A.
      • Hogg D.
      • Hamid O.
      • Ascierto P.A.
      • Garbe C.
      • Testori A.
      • Maio M.
      • Lorigan P.
      • Lebbe C.
      • Jouary T.
      • Schadendorf D.
      • O'Day S.J.
      • Kirkwood J.M.
      • Eggermont A.M.
      • Dreno B.
      • Sosman J.A.
      • Flaherty K.T.
      • Yin M.
      • Caro I.
      • Cheng S.
      • Trunzer K.
      • Hauschild A.
      Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study.
      Resistance to BRAF and/or MEK inhibitors may be acquired via a broad spectrum of both genomic and nongenomic mechanisms.
      • Caenepeel S.
      • Cooke K.
      • Wadsworth S.
      • Huang G.
      • Robert L.
      • Moreno B.H.
      • Parisi G.
      • Cajulis E.
      • Kendall R.
      • Beltran P.
      • Ribas A.
      • Coxon A.
      • Hughes P.E.
      MAPK pathway inhibition induces MET and GAB1 levels, priming BRAF mutant melanoma for rescue by hepatocyte growth factor.
      • Hugo W.
      • Shi H.
      • Sun L.
      • Piva M.
      • Song C.
      • Kong X.
      • Moriceau G.
      • Hong A.
      • Dahlman K.B.
      • Johnson D.B.
      • Sosman J.A.
      • Ribas A.
      • Lo R.S.
      Non-genomic and immune evolution of melanoma acquiring MAPKi resistance.
      Among these, growth factor–mediated reactivation of MAPK and/or PI3K pathway via RTKs has been found to be an important resistance mechanism,
      • Wilson T.R.
      • Fridlyand J.
      • Yan Y.
      • Penuel E.
      • Burton L.
      • Chan E.
      • Peng J.
      • Lin E.
      • Wang Y.
      • Sosman J.
      • Ribas A.
      • Li J.
      • Moffat J.
      • Sutherlin D.P.
      • Koeppen H.
      • Merchant M.
      • Neve R.
      • Settleman J.
      Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors.
      and specifically, HGF/MET pathway activation has been demonstrated recently to elicit both innate and acquired resistance to BRAF inhibitors.
      In a recent preclinical study using 12 BRAF inhibitor–resistant patient-derived xenograft models, MET amplification was observed at a higher frequency, and it tended to coexist with BRAF hotspot mutation.
      • Krepler C.
      • Xiao M.
      • Sproesser K.
      • Brafford P.A.
      • Shannan B.
      • Beqiri M.
      • Liu Q.
      • Xu W.
      • Garman B.
      • Nathanson K.L.
      • Xu X.
      • Karakousis G.C.
      • Mills G.B.
      • Lu Y.
      • Ahmed T.A.
      • Poulikakos P.I.
      • Caponigro G.
      • Boehm M.
      • Peters M.
      • Schuchter L.M.
      • Weeraratna A.T.
      • Herlyn M.
      Personalized preclinical trials in BRAF inhibitor-resistant patient-derived xenograft models identify second-line combination therapies.
      Moreover, triple combination of BRAF, MEK, and MET inhibitors (capmatinib, encorafenib, binimetinib) leads to complete and sustained tumor regression in vivo. On further analysis, both therapy-naive lesions and post-therapy metastatic samples were found to be MET positive, suggesting that MET amplification is a preexisting event contributing to the intrinsic resistance to BRAF inhibitors. In addition, increased HGF secretion in the tumor microenvironment represents another mechanism to induce innate resistance to BRAF inhibitors.
      • Straussman R.
      • Morikawa T.
      • Shee K.
      • Barzily-Rokni M.
      • Qian Z.R.
      • Du J.
      • Davis A.
      • Mongare M.M.
      • Gould J.
      • Frederick D.T.
      • Cooper Z.A.
      • Chapman P.B.
      • Solit D.B.
      • Ribas A.
      • Lo R.S.
      • Flaherty K.T.
      • Ogino S.
      • Wargo J.A.
      • Golub T.R.
      Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion.
      The mechanisms of MET activation in acquired resistance to BRAF/MEK inhibitors have also been studied.
      • Caenepeel S.
      • Cooke K.
      • Wadsworth S.
      • Huang G.
      • Robert L.
      • Moreno B.H.
      • Parisi G.
      • Cajulis E.
      • Kendall R.
      • Beltran P.
      • Ribas A.
      • Coxon A.
      • Hughes P.E.
      MAPK pathway inhibition induces MET and GAB1 levels, priming BRAF mutant melanoma for rescue by hepatocyte growth factor.
      • Hugo W.
      • Shi H.
      • Sun L.
      • Piva M.
      • Song C.
      • Kong X.
      • Moriceau G.
      • Hong A.
      • Dahlman K.B.
      • Johnson D.B.
      • Sosman J.A.
      • Ribas A.
      • Lo R.S.
      Non-genomic and immune evolution of melanoma acquiring MAPKi resistance.
      • Qin Y.
      • Roszik J.
      • Chattopadhyay C.
      • Hashimoto Y.
      • Liu C.
      • Cooper Z.A.
      • Wargo J.A.
      • Hwu P.
      • Ekmekcioglu S.
      • Grimm E.A.
      Hypoxia-driven mechanism of vemurafenib resistance in melanoma.
      Caenepeel et al
      • Caenepeel S.
      • Cooke K.
      • Wadsworth S.
      • Huang G.
      • Robert L.
      • Moreno B.H.
      • Parisi G.
      • Cajulis E.
      • Kendall R.
      • Beltran P.
      • Ribas A.
      • Coxon A.
      • Hughes P.E.
      MAPK pathway inhibition induces MET and GAB1 levels, priming BRAF mutant melanoma for rescue by hepatocyte growth factor.
      found that MAPK pathway inhibition after BRAF inhibitor treatment induced rapid increases in MET and growth factor receptor–bound protein 2–associated binder 1 expression; a similar increase in MET also occurred after MEK pathway inhibition in NRAS-mutated melanoma cell lines. Furthermore, in vivo experiments have suggested that tumor-derived HGF may be required to rescue melanoma cells from BRAF/MEK inhibitors. An association between MET levels and strength of HGF rescue after vemurafenib treatment has been observed, indicating the potential use of MET levels as a biomarker to identify patients suitable for MET inhibitor combination therapy.
      • Caenepeel S.
      • Cooke K.
      • Wadsworth S.
      • Huang G.
      • Robert L.
      • Moreno B.H.
      • Parisi G.
      • Cajulis E.
      • Kendall R.
      • Beltran P.
      • Ribas A.
      • Coxon A.
      • Hughes P.E.
      MAPK pathway inhibition induces MET and GAB1 levels, priming BRAF mutant melanoma for rescue by hepatocyte growth factor.
      Another study identified hypoxia-driven up-regulation of HGF/MET signaling as a major mechanism of resistance to several BRAF inhibitors in melanoma patients and mouse xenografts.
      • Qin Y.
      • Roszik J.
      • Chattopadhyay C.
      • Hashimoto Y.
      • Liu C.
      • Cooper Z.A.
      • Wargo J.A.
      • Hwu P.
      • Ekmekcioglu S.
      • Grimm E.A.
      Hypoxia-driven mechanism of vemurafenib resistance in melanoma.
      A recent transcriptomic-methylomic analysis revealed recurrently increased MET mRNA expression in resistant tumors, possibly due to differential CpG cluster methylation.
      • Yeh I.
      • Botton T.
      • Talevich E.
      • Shain A.H.
      • Sparatta A.J.
      • de la Fouchardiere A.
      • Mully T.W.
      • North J.P.
      • Garrido M.C.
      • Gagnon A.
      • Vemula S.S.
      • McCalmont T.H.
      • LeBoit P.E.
      • Bastian B.C.
      Activating MET kinase rearrangements in melanoma and Spitz tumours.
      • Hugo W.
      • Shi H.
      • Sun L.
      • Piva M.
      • Song C.
      • Kong X.
      • Moriceau G.
      • Hong A.
      • Dahlman K.B.
      • Johnson D.B.
      • Sosman J.A.
      • Ribas A.
      • Lo R.S.
      Non-genomic and immune evolution of melanoma acquiring MAPKi resistance.
      Further investigations of upstream and downstream components involved in the mechanisms of resistance to BRAF/MEK inhibitors are of paramount importance to understand how to overcome therapeutic resistance in melanoma and ultimately understand the therapeutic potential of MET inhibitors in this setting.

      Targeting the HGF/MET Signaling Pathway for the Treatment of Melanoma

      Several HGF/MET pathway inhibitors have been developed in the last 2 decades. Promising results have been reported, especially in papillary renal cell carcinoma and non–small cell lung carcinoma (NSCLC).
      • De Silva D.M.
      • Roy A.
      • Kato T.
      • Cecchi F.
      • Lee Y.H.
      • Matsumoto K.
      • Bottaro D.P.
      Targeting the hepatocyte growth factor/Met pathway in cancer.
      • Schöffski P.
      • Wozniak A.
      • Escudier B.
      • Rutkowski P.
      • Anthoney A.
      • Bauer S.
      • Sufliarsky J.
      • van Herpen C.
      • Lindner L.H.
      • Grünwald V.
      • Zakotnik B.
      • Lerut E.
      • Debiec-Rychter M.
      • Marréaud S.
      • Lia M.
      • Raveloarivahy T.
      • Collette S.
      • Albiges L.
      Crizotinib achieves long-lasting disease control in advanced papillary renal-cell carcinoma type 1 patients with MET mutations or amplification. EORTC 90101 CREATE trial.
      Table 1 focuses on trials that have evaluated these inhibitors in melanoma. Pharmacologic MET inhibition has been tested in melanoma patients both as single agents or in combination with other anticancer therapies. Most recently combinations with immunotherapy or BRAF/MEK inhibitors have been tested to improve efficacy or to overcome resistance. Analyses of MET alteration in several trials have guided the use of these inhibitors.
      Table 1MET Inhibitors for Malignant Melanoma in Clinical Trials
      DrugDesignPhaseStart dateStatusPatient populationCombinations/comparisonsClinical trial
      Available at http://clinicaltrials.gov.
      CrizotinibEfficacy/toxicityIIMarch 2015Active, not recruitingUveal melanoma with high risk of recurrence after definitive therapy with surgery or radiationNoneNCT02223819
      Efficacy/genetic aberrationsIVFebruary 2019Active, not recruitingUnresectable Stage III or Stage IV metastatic melanoma with or without BRAF/NRAS mutationsComparing to standard therapy/clinical trial; matched targeted therapy; trametinib and/or supportive careNCT02645149
      Cabozantinib-s-malate (XL184)Tolerability/efficacyIMay 2013TerminatedRecurrent, Stage III/IV melanoma, Unspecified adult solid tumor, protocol specificVemurafenibNCT01835184
      Efficacy/safety/tolerability/pharmacokinetics/pharmacodynamicsIIAugust 2009CompletedAdvanced/recurrent/metastatic solid tumors (9 types) including melanomaNoneNCT00940225
      Efficacy/safetyIIJuly 2013Completed (no results posted)Recurrent or Stage III/IV uveal melanomaComparing to temozolomide or dacarbazineNCT01835145
      E7050Safety/efficacyIb/IIOctober 2011Unknown
      Has passed its completion date and status not been verified in more than 2 years.
      Unresectable advanced or metastatic solid tumors (including glioblastoma or Stage III or IV melanoma)LenvatinibNCT01433991
      Capmatinib (INC280)EfficacyIISeptember 2018RecruitingPreviously treated unresectable or metastatic melanomaSpartalizumab + either capmatinib or LAG525 or canakinumabNCT03484923
      Efficacy/safetyIIJuly 2014Active, not recruitingLocally advanced or metastatic BRAF V600 melanomaLGX818 + MEK162 + either capmatinib or LEE011 or BGJ398 or BKM120NCT02159066
      Efficacy/safetyIIMarch 2013TerminatedAdvanced BRAF mutant melanomaLGX818 + either capmatinib or MEK162 or LEE011 or BGJ398 or BKM120NCT01820364
      Efficacy/safetyIIMarch 2015RecruitingBRAF/NRAS wild-type Stage III-IV melanomaEither capmatinib or certinib or entrectinib or regorafenib (depending on the fusion kinase status)NCT02587650
      Tivantinib (ARQ197)Safety/efficacyI/IIAugust 2010Active, notrecruitingVarious advanced solid tumors including melanoma, HCC, RCC, NSCLC, breast cancer, and ovarian cancerMonotherapy or in combination with other drug(s)NCT01178411
      Safety/preliminary efficacyISeptember 2009CompletedAdults with advanced solid tumors (HCC, RCC, melanoma, NSCLC, and breast cancer)SorafenibNCT00827177
      Met RNA

      CAR T cells
      Safety/efficacyEarly IDecember 2016RecruitingAdvanced melanoma or breast carcinomaNoneNCT03060356
      CAR, chimeric antigen receptor; HCC, hepatocellular carcinoma; NSCLC, non–small cell lung cancer; RCC, renal cell carcinoma.
      Available at http://clinicaltrials.gov.
      Has passed its completion date and status not been verified in more than 2 years.
      Capmatinib (INC280) is an oral selective MET inhibitor tested in MET fusion–positive patients with wild-type BRAF/NRAS metastatic melanomas (NCT02587650), or in patients with advanced BRAF-mutated melanoma after progression following standard treatments (NCT01820364, NCT02159066). Genetic analysis of tumor biopsy samples has been used to stratify patients into appropriate targeted therapy groups. One of these Phase II trials (NCT01820364) was terminated early for scientific and business factors, not for safety concerns, and given the small cohort of patients, the results were insufficient for a definitive interpretation. The other trial (NCT02159066) is still ongoing, so no results are available at the moment.
      Crizotinib (PF-02341066) is a potent inhibitor of MET, anaplastic lymphoma kinase, and reactive oxygen species 1.
      • Surriga O.
      • Rajasekhar V.K.
      • Ambrosini G.
      • Dogan Y.
      • Huang R.
      • Schwartz G.K.
      Crizotinib, a c-Met inhibitor, prevents metastasis in a metastatic uveal melanoma model.
      It has received US Food and Drug Administration (FDA) approval for the treatment of patients with metastatic NSCLC who were anaplastic lymphoma kinase positive or reactive oxygen species 1 positive in 2011 and 2016, respectively (https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm490391.htm, last accessed July 2, 2019). Moreover, in May 2018, the FDA granted crizotinib two breakthrough designations, one of which was for patients bearing previously treated metastatic NSCLC with MET exon 14 alterations (Pfizer, New York, NY). The inhibitory effects of crizotinib on MET were also observed in other cancers, including urothelial carcinoma, papillary renal cell carcinoma type 1, and uveal melanoma.
      • Schöffski P.
      • Wozniak A.
      • Escudier B.
      • Rutkowski P.
      • Anthoney A.
      • Bauer S.
      • Sufliarsky J.
      • van Herpen C.
      • Lindner L.H.
      • Grünwald V.
      • Zakotnik B.
      • Lerut E.
      • Debiec-Rychter M.
      • Marréaud S.
      • Lia M.
      • Raveloarivahy T.
      • Collette S.
      • Albiges L.
      Crizotinib achieves long-lasting disease control in advanced papillary renal-cell carcinoma type 1 patients with MET mutations or amplification. EORTC 90101 CREATE trial.
      • Surriga O.
      • Rajasekhar V.K.
      • Ambrosini G.
      • Dogan Y.
      • Huang R.
      • Schwartz G.K.
      Crizotinib, a c-Met inhibitor, prevents metastasis in a metastatic uveal melanoma model.
      In uveal melanoma, crizotinib inhibited cell migration at a concentration sufficient for preventing phosphorylation of the MET receptor but not of ALK or reactive oxygen species 1. Moreover, in a metastatic mouse model of uveal melanoma, crizotinib strongly inhibited the development of metastasis of uveal melanoma.
      • Surriga O.
      • Rajasekhar V.K.
      • Ambrosini G.
      • Dogan Y.
      • Huang R.
      • Schwartz G.K.
      Crizotinib, a c-Met inhibitor, prevents metastasis in a metastatic uveal melanoma model.
      Its efficacy in prolonging relapse-free survival in patients with high-risk uveal melanoma has been under investigation in an ongoing Phase II clinical trial (NCT02223819).
      Cabozantinib (XL184) is another broad-spectrum, small-molecule kinase inhibitor targeting multiple proteins including MET, vascular endothelial growth factor receptor 2, Ret proto-oncogene, AXL receptor tyrosine kinase protein, Kit, and fms-like tyrosine kinase 3. It was FDA approved for the treatment of metastatic medullary thyroid cancer in 2012 and for the treatment of advanced renal cell carcinoma after failure from prior antiangiogenic therapy in 2016 (https://www.fda.gov/drugs/informationondrugs/approveddrugs/ucm497483.htm, last accessed July 2, 2019). Due to its potent activity in suppressing tumor growth, angiogenesis, and metastasis in various solid tumors, cabozantinib has been under study for its efficacy in several human malignancies, such as breast, melanoma, and hepatocellular carcinomas; SCLC; NSCLC; and ovarian, pancreatic, and prostate cancers.
      • De Silva D.M.
      • Roy A.
      • Kato T.
      • Cecchi F.
      • Lee Y.H.
      • Matsumoto K.
      • Bottaro D.P.
      Targeting the hepatocyte growth factor/Met pathway in cancer.
      • Daud A.
      • Kluger H.M.
      • Kurzrock R.
      • Schimmoller F.
      • Weitzman A.L.
      • Samuel T.A.
      • Moussa A.H.
      • Gordon M.S.
      • Shapiro G.I.
      Phase II randomised discontinuation trial of the MET/VEGF receptor inhibitor cabozantinib in metastatic melanoma.
      • Cecchi F.
      • Rabe D.C.
      • Bottaro D.P.
      Targeting the HGF/MET signaling pathway in cancer therapy.
      Specifically, in a cohort of patients with metastatic melanoma (NCT00940225), the median progression-free survival with cabozantinib treatment was 5.7 months, longer than that in patients receiving placebo (3 months). However, the difference was not statistically significant, and further investigation on clinical efficacy may be warranted. That study not only covered patients with cutaneous/mucosal subtypes of melanoma (70%), but also those with uveal melanoma (30%). The median PFS in patients with uveal melanoma was 4.8 months, suggesting antitumor activity regardless of melanoma subtype.
      • Daud A.
      • Kluger H.M.
      • Kurzrock R.
      • Schimmoller F.
      • Weitzman A.L.
      • Samuel T.A.
      • Moussa A.H.
      • Gordon M.S.
      • Shapiro G.I.
      Phase II randomised discontinuation trial of the MET/VEGF receptor inhibitor cabozantinib in metastatic melanoma.
      Patients with uveal melanoma are usually excluded from clinical trials in melanoma patients due to resistance to standard therapies, poor prognosis, and high risk for liver metastasis in uveal melanoma.
      • Daud A.
      • Kluger H.M.
      • Kurzrock R.
      • Schimmoller F.
      • Weitzman A.L.
      • Samuel T.A.
      • Moussa A.H.
      • Gordon M.S.
      • Shapiro G.I.
      Phase II randomised discontinuation trial of the MET/VEGF receptor inhibitor cabozantinib in metastatic melanoma.
      However, MET represents a rational target for uveal melanoma; its up-regulation and subsequent pro-proliferation/metastasis effects may be associated with mutations in the GNAQ and GNA11 genes, which are present in >80% of cases of uveal melanoma.
      • Patel M.
      • Smyth E.
      • Chapman P.B.
      • Wolchok J.D.
      • Schwartz G.K.
      • Abramson D.H.
      • Carvajal R.D.
      Therapeutic implications of the emerging molecular biology of uveal melanoma.
      A Phase II trial was initiated to assess the efficacy of cabozantinib specifically in patients with recurrent or advanced uveal melanoma (NCT01835145); results are currently under review.
      Tivantinib (ARQ 197) is a highly selective oral MET inhibitor that binds to the dephosphorylated MET kinase. Its safety and efficacy have been evaluated in several clinical trials in various advanced solid tumors including hepatocellular carcinoma, renal cell carcinoma, melanoma, NSCLC, breast, and ovarian cancers. The preliminary disease control rate (≥8 weeks) was 58% in all patients, 90% in renal cell carcinoma, 65% in hepatocellular carcinoma, and 63% in melanoma.
      • Puzanov I.
      • Sosman J.
      • Santoro A.
      • Saif M.W.
      • Goff L.
      • Dy G.K.
      • Zucali P.
      • Means-Powell J.A.
      • Ma W.W.
      • Simonelli M.
      • Martell R.
      • Chai F.
      • Lamar M.
      • Savage R.E.
      • Schwartz B.
      • Adjei A.A.
      Phase 1 trial of tivantinib in combination with sorafenib in adult patients with advanced solid tumors.
      However, tivantinib failed to improve overall survival over placebo in patients with MET-high advanced hepatocellular carcinoma previously treated with sorafenib in a Phase III clinical trial.
      • Rimassa L.
      • Assenat E.
      • Peck-Radosavljevic M.
      • Pracht M.
      • Zagonel V.
      • Mathurin P.
      • Rota Caremoli E.
      • Porta C.
      • Daniele B.
      • Bolondi L.
      • Mazzaferro V.
      • Harris W.
      • Damjanov N.
      • Pastorelli D.
      • Reig M.
      • Knox J.
      • Negri F.
      • Trojan J.
      • López C.
      • Personeni N.
      • Decaens T.
      • Dupuy M.
      • Sieghart W.
      • Abbadessa G.
      • Schwartz B.
      • Lamar M.
      • Goldberg T.
      • Shuster D.
      • Santoro A.
      • Bruix J.
      Tivantinib for second-line treatment of MET-high, advanced hepatocellular carcinoma (METIV-HCC): a final analysis of a phase 3, randomised, placebo-controlled study.
      Currently no definitive clinical data on melanoma patients in this trial are available.
      Overall, these clinical studies suggest interest in investigating the role of MET inhibitors in treating melanoma, but the efficacy data are still limited. A better patient stratification based on molecular profile may likely aid in the development of these therapies.

      Conclusions

      Recent preclinical and clinical studies highlight the important roles of the HGF/MET signaling pathway in melanoma progression, metastasis, and therapeutic resistance. MET exerts these functions through downstream interactions with a multitude of other signaling pathways critical for proliferation, cell survival, and migration, and by acting on both cancer cells and tumor microenvironment. Targeted therapies inhibiting MET signaling have been under active investigation in patients with malignant melanoma, with promising but still limited efficacy data. Ongoing clinical studies suggest that the combination of HGF/MET inhibitors with immunotherapies or targeted therapies may represent an effective therapeutic approach for improving outcomes in melanoma patients. More research investigating the mechanisms contributing to therapy resistance and/or synergistic effect with other currently available therapies may accelerate the development and application of HGF/MET-targeted therapies in melanoma treatment.

      References

        • Siegel R.L.
        • Miller K.D.
        • Jemal A.
        Cancer statistics, 2018.
        CA Cancer J Clin. 2018; 68: 7-30
        • Jemal A.
        • Siegel R.
        • Ward E.
        • Murray T.
        • Xu J.
        • Smigal C.
        • Thun M.J.
        Cancer statistics, 2006.
        CA Cancer J Clin. 2006; 56: 106-130
        • Davies H.
        • Bignell G.R.
        • Cox C.
        • Stephens P.
        • Edkins S.
        • Clegg S.
        • et al.
        Mutations of the BRAF gene in human cancer.
        Nature. 2002; 417: 949-954
        • Elder D.
        • Lazar A.
        • Barnhill B.
        • Massi D.
        • Bastian B.
        • Mihm M.J.
        • Cook M.
        • Nagore E.
        • de la Fouchardiere A.
        • Scolyer R.
        • Gerami P.
        • Yun S.
        Melanocytic tumours: introduction.
        in: Elder D. Massi D. Scolyer R. Willemze R. WHO Classification of Skin Tumours. ed 4. 2018: 66-75
        • Shain A.H.
        • Bastian B.C.
        From melanocytes to melanomas.
        Nat Rev Cancer. 2016; 16: 345-358
        • Chapman P.B.
        • Hauschild A.
        • Robert C.
        • Haanen J.B.
        • Ascierto P.
        • Larkin J.
        • Dummer R.
        • Garbe C.
        • Testori A.
        • Maio M.
        • Hogg D.
        • Lorigan P.
        • Lebbe C.
        • Jouary T.
        • Schadendorf D.
        • Ribas A.
        • O'Day S.J.
        • Sosman J.A.
        • Kirkwood J.M.
        • Eggermont A.M.
        • Dreno B.
        • Nolop K.
        • Li J.
        • Nelson B.
        • Hou J.
        • Lee R.J.
        • Flaherty K.T.
        • McArthur G.A.
        • Group B.-S.
        Improved survival with vemurafenib in melanoma with BRAF V600E mutation.
        N Engl J Med. 2011; 364: 2507-2516
        • Wolchok J.D.
        • Chiarion-Sileni V.
        • Gonzalez R.
        • Rutkowski P.
        • Grob J.J.
        • Cowey C.L.
        • Lao C.D.
        • Wagstaff J.
        • Schadendorf D.
        • Ferrucci P.F.
        • Smylie M.
        • Dummer R.
        • Hill A.
        • Hogg D.
        • Haanen J.
        • Carlino M.S.
        • Bechter O.
        • Maio M.
        • Marquez-Rodas I.
        • Guidoboni M.
        • McArthur G.
        • Lebbe C.
        • Ascierto P.A.
        • Long G.V.
        • Cebon J.
        • Sosman J.
        • Postow M.A.
        • Callahan M.K.
        • Walker D.
        • Rollin L.
        • Bhore R.
        • Hodi F.S.
        • Larkin J.
        Overall survival with combined nivolumab and ipilimumab in advanced melanoma.
        N Engl J Med. 2017; 377: 1345-1356
        • Hamid O.
        • Robert C.
        • Daud A.
        • Hodi F.S.
        • Hwu W.J.
        • Kefford R.
        • Wolchok J.D.
        • Hersey P.
        • Joseph R.
        • Weber J.S.
        • Dronca R.
        • Mitchell T.C.
        • Patnaik A.
        • Zarour H.M.
        • Joshua A.M.
        • Zhao Q.
        • Jensen E.
        • Ahsan S.
        • Ibrahim N.
        • Ribas A.
        Five-year survival outcomes for patients with advanced melanoma treated with pembrolizumab in KEYNOTE-001.
        Ann Oncol. 2019; 30: 582-588
        • Hugo W.
        • Zaretsky J.M.
        • Sun L.
        • Song C.
        • Moreno B.H.
        • Hu-Lieskovan S.
        • Berent-Maoz B.
        • Pang J.
        • Chmielowski B.
        • Cherry G.
        • Seja E.
        • Lomeli S.
        • Kong X.
        • Kelley M.C.
        • Sosman J.A.
        • Johnson D.B.
        • Ribas A.
        • Lo R.S.
        Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma.
        Cell. 2016; 165: 35-44
        • Caenepeel S.
        • Cooke K.
        • Wadsworth S.
        • Huang G.
        • Robert L.
        • Moreno B.H.
        • Parisi G.
        • Cajulis E.
        • Kendall R.
        • Beltran P.
        • Ribas A.
        • Coxon A.
        • Hughes P.E.
        MAPK pathway inhibition induces MET and GAB1 levels, priming BRAF mutant melanoma for rescue by hepatocyte growth factor.
        Oncotarget. 2017; 8: 17795-17809
        • Al-U'datt D.G.
        • Al-Husein B.A.A.
        • Qasaimeh G.R.
        A mini-review of c-Met as a potential therapeutic target in melanoma.
        Biomed Pharmacother. 2017; 88: 194-202
        • De Silva D.M.
        • Roy A.
        • Kato T.
        • Cecchi F.
        • Lee Y.H.
        • Matsumoto K.
        • Bottaro D.P.
        Targeting the hepatocyte growth factor/Met pathway in cancer.
        Biochem Soc Trans. 2017; 45: 855-870
        • Schöffski P.
        • Wozniak A.
        • Escudier B.
        • Rutkowski P.
        • Anthoney A.
        • Bauer S.
        • Sufliarsky J.
        • van Herpen C.
        • Lindner L.H.
        • Grünwald V.
        • Zakotnik B.
        • Lerut E.
        • Debiec-Rychter M.
        • Marréaud S.
        • Lia M.
        • Raveloarivahy T.
        • Collette S.
        • Albiges L.
        Crizotinib achieves long-lasting disease control in advanced papillary renal-cell carcinoma type 1 patients with MET mutations or amplification. EORTC 90101 CREATE trial.
        Eur J Cancer. 2017; 87: 147-163
        • Hayward N.K.
        • Wilmott J.S.
        • Waddell N.
        • Johansson P.A.
        • Field M.A.
        • Nones K.
        • et al.
        Whole-genome landscapes of major melanoma subtypes.
        Nature. 2017; 545: 175-180
        • Bottaro D.P.
        • Rubin J.S.
        • Faletto D.L.
        • Chan A.M.
        • Kmiecik T.E.
        • Vande Woude G.F.
        • Aaronson S.A.
        Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product.
        Science. 1991; 251: 802-804
        • Birchmeier C.
        • Birchmeier W.
        • Gherardi E.
        • Vande Woude G.F.
        Met, metastasis, motility and more.
        Nat Rev Mol Cell Biol. 2003; 4: 915-925
        • Nakamura T.
        • Nishizawa T.
        • Hagiya M.
        • Seki T.
        • Shimonishi M.
        • Sugimura A.
        • Tashiro K.
        • Shimizu S.
        Molecular cloning and expression of human hepatocyte growth factor.
        Nature. 1989; 342: 440-443
        • Rodrigues G.A.
        • Naujokas M.A.
        • Park M.
        Alternative splicing generates isoforms of the met receptor tyrosine kinase which undergo differential processing.
        Mol Cell Biol. 1991; 11: 2962-2970
        • Gherardi E.
        • Youles M.E.
        • Miguel R.N.
        • Blundell T.L.
        • Iamele L.
        • Gough J.
        • Bandyopadhyay A.
        • Hartmann G.
        • Butler P.J.
        Functional map and domain structure of MET, the product of the c-met protooncogene and receptor for hepatocyte growth factor/scatter factor.
        Proc Natl Acad Sci U S A. 2003; 100: 12039-12044
        • Saitoh K.
        • Takahashi H.
        • Sawada N.
        • Parsons P.G.
        Detection of the c-met proto-oncogene product in normal skin and tumours of melanocytic origin.
        J Pathol. 1994; 174: 191-199
        • Halaban R.
        • Rubin J.S.
        • Funasaka Y.
        • Cobb M.
        • Boulton T.
        • Faletto D.
        • Rosen E.
        • Chan A.
        • Yoko K.
        • White W.
        Met and hepatocyte growth factor/scatter factor signal transduction in normal melanocytes and melanoma cells.
        Oncogene. 1992; 7: 2195-2206
        • Takayama H.
        • La Rochelle W.J.
        • Anver M.
        • Bockman D.E.
        • Merlino G.
        Scatter factor/hepatocyte growth factor as a regulator of skeletal muscle and neural crest development.
        Proc Natl Acad Sci U S A. 1996; 93: 5866-5871
        • Beuret L.
        • Flori E.
        • Denoyelle C.
        • Bille K.
        • Busca R.
        • Picardo M.
        • Bertolotto C.
        • Ballotti R.
        Up-regulation of MET expression by alpha-melanocyte-stimulating hormone and MITF allows hepatocyte growth factor to protect melanocytes and melanoma cells from apoptosis.
        J Biol Chem. 2007; 282: 14140-14147
        • Kos L.
        • Aronzon A.
        • Takayama H.
        • Maina F.
        • Ponzetto C.
        • Merlino G.
        • Pavan W.
        Hepatocyte growth factor/scatter factor-MET signaling in neural crest-derived melanocyte development.
        Pigment Cell Res. 1999; 12: 13-21
        • Lai A.Z.
        • Abella J.V.
        • Park M.
        Crosstalk in Met receptor oncogenesis.
        Trends Cell Biol. 2009; 19: 542-551
        • Easty D.J.
        • Gray S.G.
        • O'Byrne K.J.
        • O'Donnell D.
        • Bennett D.C.
        Receptor tyrosine kinases and their activation in melanoma.
        Pigment Cell Melanoma Res. 2011; 24: 446-461
        • Otsuka T.
        • Takayama H.
        • Sharp R.
        • Celli G.
        • LaRochelle W.J.
        • Bottaro D.P.
        • Ellmore N.
        • Vieira W.
        • Owens J.W.
        • Anver M.
        • Merlino G.
        c-Met autocrine activation induces development of malignant melanoma and acquisition of the metastatic phenotype.
        Cancer Res. 1998; 58: 5157-5167
        • Wiesner T.
        • He J.
        • Yelensky R.
        • Esteve-Puig R.
        • Botton T.
        • Yeh I.
        • Lipson D.
        • Otto G.
        • Brennan K.
        • Murali R.
        • Garrido M.
        • Miller V.A.
        • Ross J.S.
        • Berger M.F.
        • Sparatta A.
        • Palmedo G.
        • Cerroni L.
        • Busam K.J.
        • Kutzner H.
        • Cronin M.T.
        • Stephens P.J.
        • Bastian B.C.
        Kinase fusions are frequent in Spitz tumours and spitzoid melanomas.
        Nat Commun. 2014; 5: 3116
        • Tetzlaff M.T.
        • Reuben A.
        • Billings S.D.
        • Prieto V.G.
        • Curry J.L.
        Toward a molecular-genetic classification of spitzoid neoplasms.
        Clin Lab Med. 2017; 37: 431-448
        • Yeh I.
        • Botton T.
        • Talevich E.
        • Shain A.H.
        • Sparatta A.J.
        • de la Fouchardiere A.
        • Mully T.W.
        • North J.P.
        • Garrido M.C.
        • Gagnon A.
        • Vemula S.S.
        • McCalmont T.H.
        • LeBoit P.E.
        • Bastian B.C.
        Activating MET kinase rearrangements in melanoma and Spitz tumours.
        Nat Commun. 2015; 6: 7174
        • Puri N.
        • Ahmed S.
        • Janamanchi V.
        • Tretiakova M.
        • Zumba O.
        • Krausz T.
        • Jagadeeswaran R.
        • Salgia R.
        c-Met is a potentially new therapeutic target for treatment of human melanoma.
        Clin Cancer Res. 2007; 13: 2246-2253
        • Shain A.H.
        • Yeh I.
        • Kovalyshyn I.
        • Sriharan A.
        • Talevich E.
        • Gagnon A.
        • Dummer R.
        • North J.
        • Pincus L.
        • Ruben B.
        • Rickaby W.
        • D'Arrigo C.
        • Robson A.
        • Bastian B.C.
        The genetic evolution of melanoma from precursor lesions.
        N Engl J Med. 2015; 373: 1926-1936
        • Li G.
        • Schaider H.
        • Satyamoorthy K.
        • Hanakawa Y.
        • Hashimoto K.
        • Herlyn M.
        Downregulation of E-cadherin and Desmoglein 1 by autocrine hepatocyte growth factor during melanoma development.
        Oncogene. 2001; 20: 8125-8135
        • Natali P.G.
        • Nicotra M.R.
        • Di Renzo M.F.
        • Prat M.
        • Bigotti A.
        • Cavaliere R.
        • Comoglio P.M.
        Expression of the c-Met/HGF receptor in human melanocytic neoplasms: demonstration of the relationship to malignant melanoma tumour progression.
        Br J Cancer. 1993; 68: 746-750
        • Zenali M.
        • deKay J.
        • Liu Z.
        • Hamilton S.
        • Zuo Z.
        • Lu X.
        • Bakkar R.
        • Mills G.
        • Broaddus R.
        Retrospective review of MET gene mutations.
        Oncoscience. 2015; 2: 533-541
        • Schmidt L.
        • Duh F.M.
        • Chen F.
        • Kishida T.
        • Glenn G.
        • Choyke P.
        • Scherer S.W.
        • Zhuang Z.
        • Lubensky I.
        • Dean M.
        • Allikmets R.
        • Chidambaram A.
        • Bergerheim U.R.
        • Feltis J.T.
        • Casadevall C.
        • Zamarron A.
        • Bernues M.
        • Richard S.
        • Lips C.J.
        • Walther M.M.
        • Tsui L.C.
        • Geil L.
        • Orcutt M.L.
        • Stackhouse T.
        • Lipan J.
        • Slife L.
        • Brauch H.
        • Decker J.
        • Niehans G.
        • Hughson M.D.
        • Moch H.
        • Storkel S.
        • Lerman M.I.
        • Linehan W.M.
        • Zbar B.
        Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas.
        Nat Genet. 1997; 16: 68-73
        • Athauda G.
        • Giubellino A.
        • Coleman J.A.
        • Horak C.
        • Steeg P.S.
        • Lee M.J.
        • Trepel J.
        • Wimberly J.
        • Sun J.
        • Coxon A.
        • Burgess T.L.
        • Bottaro D.P.
        c-Met ectodomain shedding rate correlates with malignant potential.
        Clin Cancer Res. 2006; 12: 4154-4162
        • Ma P.C.
        • Tretiakova M.S.
        • MacKinnon A.C.
        • Ramnath N.
        • Johnson C.
        • Dietrich S.
        • Seiwert T.
        • Christensen J.G.
        • Jagadeeswaran R.
        • Krausz T.
        • Vokes E.E.
        • Husain A.N.
        • Salgia R.
        Expression and mutational analysis of MET in human solid cancers.
        Genes Chromosomes Cancer. 2008; 47: 1025-1037
        • Chattopadhyay C.
        • Ellerhorst J.A.
        • Ekmekcioglu S.
        • Greene V.R.
        • Davies M.A.
        • Grimm E.A.
        Association of activated c-Met with NRAS-mutated human melanomas.
        Int J Cancer. 2012; 131: E56-65
        • Gherardi E.
        • Birchmeier W.
        • Birchmeier C.
        • Vande Woude G.
        Targeting MET in cancer: rationale and progress.
        Nat Rev Cancer. 2012; 12: 89-103
        • Lin S.
        • Rusciano D.
        • Lorenzoni P.
        • Hartmann G.
        • Birchmeier W.
        • Giordano S.
        • Comoglio P.
        • Burger M.M.
        C-met activation is necessary but not sufficient for liver colonization by B16 murine melanoma cells.
        Clin Exp Metastasis. 1998; 16: 253-265
        • Qian F.
        • Engst S.
        • Yamaguchi K.
        • Yu P.
        • Won K.A.
        • Mock L.
        • Lou T.
        • Tan J.
        • Li C.
        • Tam D.
        • Lougheed J.
        • Yakes F.M.
        • Bentzien F.
        • Xu W.
        • Zaks T.
        • Wooster R.
        • Greshock J.
        • Joly A.H.
        Inhibition of tumor cell growth, invasion, and metastasis by EXEL-2880 (XL880, GSK1363089), a novel inhibitor of HGF and VEGF receptor tyrosine kinases.
        Cancer Res. 2009; 69: 8009-8016
        • Christensen J.G.
        • Schreck R.
        • Burrows J.
        • Kuruganti P.
        • Chan E.
        • Le P.
        • Chen J.
        • Wang X.
        • Ruslim L.
        • Blake R.
        • Lipson K.E.
        • Ramphal J.
        • Do S.
        • Cui J.J.
        • Cherrington J.M.
        • Mendel D.B.
        A selective small molecule inhibitor of c-Met kinase inhibits c-Met-dependent phenotypes in vitro and exhibits cytoreductive antitumor activity in vivo.
        Cancer Res. 2003; 63: 7345-7355
        • Surriga O.
        • Rajasekhar V.K.
        • Ambrosini G.
        • Dogan Y.
        • Huang R.
        • Schwartz G.K.
        Crizotinib, a c-Met inhibitor, prevents metastasis in a metastatic uveal melanoma model.
        Mol Cancer Ther. 2013; 12: 2817-2826
        • Li F.Z.
        • Dhillon A.S.
        • Anderson R.L.
        • McArthur G.
        • Ferrao P.T.
        Phenotype switching in melanoma: implications for progression and therapy.
        Front Oncol. 2015; 5: 31
        • Alonso S.R.
        • Tracey L.
        • Ortiz P.
        • Perez-Gomez B.
        • Palacios J.
        • Pollan M.
        • Linares J.
        • Serrano S.
        • Saez-Castillo A.I.
        • Sanchez L.
        • Pajares R.
        • Sanchez-Aguilera A.
        • Artiga M.J.
        • Piris M.A.
        • Rodriguez-Peralto J.L.
        A high-throughput study in melanoma identifies epithelial-mesenchymal transition as a major determinant of metastasis.
        Cancer Res. 2007; 67: 3450-3460
        • Caramel J.
        • Papadogeorgakis E.
        • Hill L.
        • Browne G.J.
        • Richard G.
        • Wierinckx A.
        • Saldanha G.
        • Osborne J.
        • Hutchinson P.
        • Tse G.
        • Lachuer J.
        • Puisieux A.
        • Pringle J.H.
        • Ansieau S.
        • Tulchinsky E.
        A switch in the expression of embryonic EMT-inducers drives the development of malignant melanoma.
        Cancer Cell. 2013; 24: 466-480
        • Koefinger P.
        • Wels C.
        • Joshi S.
        • Damm S.
        • Steinbauer E.
        • Beham-Schmid C.
        • Frank S.
        • Bergler H.
        • Schaider H.
        The cadherin switch in melanoma instigated by HGF is mediated through epithelial-mesenchymal transition regulators.
        Pigment Cell Melanoma Res. 2011; 24: 382-385
        • Grotegut S.
        • von Schweinitz D.
        • Christofori G.
        • Lehembre F.
        Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail.
        EMBO J. 2006; 25: 3534-3545
        • Gaggioli C.
        • Deckert M.
        • Robert G.
        • Abbe P.
        • Batoz M.
        • Ehrengruber M.U.
        • Ortonne J.P.
        • Ballotti R.
        • Tartare-Deckert S.
        HGF induces fibronectin matrix synthesis in melanoma cells through MAP kinase-dependent signaling pathway and induction of Egr-1.
        Oncogene. 2005; 24: 1423-1433
        • Xu H.
        • Tian Y.
        • Yuan X.
        • Wu H.
        • Liu Q.
        • Pestell R.G.
        • Wu K.
        The role of CD44 in epithelial-mesenchymal transition and cancer development.
        Onco Targets Ther. 2015; 8: 3783-3792
        • Recio J.A.
        • Merlino G.
        Hepatocyte growth factor/scatter factor induces feedback up-regulation of CD44v6 in melanoma cells through Egr-1.
        Cancer Res. 2003; 63: 1576-1582
        • Ilangumaran S.
        • Villalobos-Hernandez A.
        • Bobbala D.
        • Ramanathan S.
        The hepatocyte growth factor (HGF)-MET receptor tyrosine kinase signaling pathway: diverse roles in modulating immune cell functions.
        Cytokine. 2016; 82: 125-139
        • Finisguerra V.
        • Di Conza G.
        • Di Matteo M.
        • Serneels J.
        • Costa S.
        • Thompson A.A.
        • Wauters E.
        • Walmsley S.
        • Prenen H.
        • Granot Z.
        • Casazza A.
        • Mazzone M.
        MET is required for the recruitment of anti-tumoural neutrophils.
        Nature. 2015; 522: 349-353
        • Glodde N.
        • Bald T.
        • van den Boorn-Konijnenberg D.
        • Nakamura K.
        • O'Donnell J.S.
        • Szczepanski S.
        • Brandes M.
        • Eickhoff S.
        • Das I.
        • Shridhar N.
        • Hinze D.
        • Rogava M.
        • van der Sluis T.C.
        • Ruotsalainen J.J.
        • Gaffal E.
        • Landsberg J.
        • Ludwig K.U.
        • Wilhelm C.
        • Riek-Burchardt M.
        • Muller A.J.
        • Gebhardt C.
        • Scolyer R.A.
        • Long G.V.
        • Janzen V.
        • Teng M.W.L.
        • Kastenmuller W.
        • Mazzone M.
        • Smyth M.J.
        • Tuting T.
        • Holzel M.
        Reactive neutrophil responses dependent on the receptor tyrosine kinase c-MET limit cancer immunotherapy.
        Immunity. 2017; 47: 789-802.e9
        • Benkhoucha M.
        • Molnarfi N.
        • Kaya G.
        • Belnoue E.
        • Bjarnadottir K.
        • Dietrich P.Y.
        • Walker P.R.
        • Martinvalet D.
        • Derouazi M.
        • Lalive P.H.
        Identification of a novel population of highly cytotoxic c-Met-expressing CD8(+) T lymphocytes.
        EMBO Rep. 2017; 18: 1545-1558
        • Trusolino L.
        • Bertotti A.
        • Comoglio P.M.
        A signaling adapter function for alpha6beta4 integrin in the control of HGF-dependent invasive growth.
        Cell. 2001; 107: 643-654
        • McArthur G.A.
        • Chapman P.B.
        • Robert C.
        • Larkin J.
        • Haanen J.B.
        • Dummer R.
        • Ribas A.
        • Hogg D.
        • Hamid O.
        • Ascierto P.A.
        • Garbe C.
        • Testori A.
        • Maio M.
        • Lorigan P.
        • Lebbe C.
        • Jouary T.
        • Schadendorf D.
        • O'Day S.J.
        • Kirkwood J.M.
        • Eggermont A.M.
        • Dreno B.
        • Sosman J.A.
        • Flaherty K.T.
        • Yin M.
        • Caro I.
        • Cheng S.
        • Trunzer K.
        • Hauschild A.
        Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study.
        Lancet Oncol. 2014; 15: 323-332
        • Robert C.
        • Karaszewska B.
        • Schachter J.
        • Rutkowski P.
        • Mackiewicz A.
        • Stroiakovski D.
        • Lichinitser M.
        • Dummer R.
        • Grange F.
        • Mortier L.
        • Chiarion-Sileni V.
        • Drucis K.
        • Krajsova I.
        • Hauschild A.
        • Lorigan P.
        • Wolter P.
        • Long G.V.
        • Flaherty K.
        • Nathan P.
        • Ribas A.
        • Martin A.M.
        • Sun P.
        • Crist W.
        • Legos J.
        • Rubin S.D.
        • Little S.M.
        • Schadendorf D.
        Improved overall survival in melanoma with combined dabrafenib and trametinib.
        N Engl J Med. 2015; 372: 30-39
        • Hugo W.
        • Shi H.
        • Sun L.
        • Piva M.
        • Song C.
        • Kong X.
        • Moriceau G.
        • Hong A.
        • Dahlman K.B.
        • Johnson D.B.
        • Sosman J.A.
        • Ribas A.
        • Lo R.S.
        Non-genomic and immune evolution of melanoma acquiring MAPKi resistance.
        Cell. 2015; 162: 1271-1285
        • Wilson T.R.
        • Fridlyand J.
        • Yan Y.
        • Penuel E.
        • Burton L.
        • Chan E.
        • Peng J.
        • Lin E.
        • Wang Y.
        • Sosman J.
        • Ribas A.
        • Li J.
        • Moffat J.
        • Sutherlin D.P.
        • Koeppen H.
        • Merchant M.
        • Neve R.
        • Settleman J.
        Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors.
        Nature. 2012; 487: 505-509
        • Krepler C.
        • Xiao M.
        • Sproesser K.
        • Brafford P.A.
        • Shannan B.
        • Beqiri M.
        • Liu Q.
        • Xu W.
        • Garman B.
        • Nathanson K.L.
        • Xu X.
        • Karakousis G.C.
        • Mills G.B.
        • Lu Y.
        • Ahmed T.A.
        • Poulikakos P.I.
        • Caponigro G.
        • Boehm M.
        • Peters M.
        • Schuchter L.M.
        • Weeraratna A.T.
        • Herlyn M.
        Personalized preclinical trials in BRAF inhibitor-resistant patient-derived xenograft models identify second-line combination therapies.
        Clin Cancer Res. 2016; 22: 1592-1602
        • Straussman R.
        • Morikawa T.
        • Shee K.
        • Barzily-Rokni M.
        • Qian Z.R.
        • Du J.
        • Davis A.
        • Mongare M.M.
        • Gould J.
        • Frederick D.T.
        • Cooper Z.A.
        • Chapman P.B.
        • Solit D.B.
        • Ribas A.
        • Lo R.S.
        • Flaherty K.T.
        • Ogino S.
        • Wargo J.A.
        • Golub T.R.
        Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion.
        Nature. 2012; 487: 500-504
        • Qin Y.
        • Roszik J.
        • Chattopadhyay C.
        • Hashimoto Y.
        • Liu C.
        • Cooper Z.A.
        • Wargo J.A.
        • Hwu P.
        • Ekmekcioglu S.
        • Grimm E.A.
        Hypoxia-driven mechanism of vemurafenib resistance in melanoma.
        Mol Cancer Ther. 2016; 15: 2442-2454
        • Daud A.
        • Kluger H.M.
        • Kurzrock R.
        • Schimmoller F.
        • Weitzman A.L.
        • Samuel T.A.
        • Moussa A.H.
        • Gordon M.S.
        • Shapiro G.I.
        Phase II randomised discontinuation trial of the MET/VEGF receptor inhibitor cabozantinib in metastatic melanoma.
        Br J Cancer. 2017; 116: 432-440
        • Cecchi F.
        • Rabe D.C.
        • Bottaro D.P.
        Targeting the HGF/MET signaling pathway in cancer therapy.
        Expert Opin Ther Targets. 2012; 16: 553-572
        • Patel M.
        • Smyth E.
        • Chapman P.B.
        • Wolchok J.D.
        • Schwartz G.K.
        • Abramson D.H.
        • Carvajal R.D.
        Therapeutic implications of the emerging molecular biology of uveal melanoma.
        Clin Cancer Res. 2011; 17: 2087-2100
        • Puzanov I.
        • Sosman J.
        • Santoro A.
        • Saif M.W.
        • Goff L.
        • Dy G.K.
        • Zucali P.
        • Means-Powell J.A.
        • Ma W.W.
        • Simonelli M.
        • Martell R.
        • Chai F.
        • Lamar M.
        • Savage R.E.
        • Schwartz B.
        • Adjei A.A.
        Phase 1 trial of tivantinib in combination with sorafenib in adult patients with advanced solid tumors.
        Invest New Drugs. 2015; 33: 159-168
        • Rimassa L.
        • Assenat E.
        • Peck-Radosavljevic M.
        • Pracht M.
        • Zagonel V.
        • Mathurin P.
        • Rota Caremoli E.
        • Porta C.
        • Daniele B.
        • Bolondi L.
        • Mazzaferro V.
        • Harris W.
        • Damjanov N.
        • Pastorelli D.
        • Reig M.
        • Knox J.
        • Negri F.
        • Trojan J.
        • López C.
        • Personeni N.
        • Decaens T.
        • Dupuy M.
        • Sieghart W.
        • Abbadessa G.
        • Schwartz B.
        • Lamar M.
        • Goldberg T.
        • Shuster D.
        • Santoro A.
        • Bruix J.
        Tivantinib for second-line treatment of MET-high, advanced hepatocellular carcinoma (METIV-HCC): a final analysis of a phase 3, randomised, placebo-controlled study.
        Lancet Oncol. 2018; 19: 682-693