- Armbruster C.E.
- Forsyth-DeOrnellas V.
- Johnson A.O.
- Smith S.N.
- Zhao L.
- Wu W.
- Mobley H.L.T.
- Weerdenburg E.M.
- Abdallah A.M.
- Rangkuti F.
- Abd El Ghany M.
- Otto T.D.
- Adroub S.A.
- Molenaar D.
- Ummels R.
- Ter Veen K.
- van Stempvoort G.
- van der Sar A.M.
- Ali S.
- Langridge G.C.
- Thomson N.R.
- Pain A.
- Bitter W.
- Wilde A.D.
- Snyder D.J.
- Putnam N.E.
- Valentino M.D.
- Hammer N.D.
- Lonergan Z.R.
- Hinger S.A.
- Aysanoa E.E.
- Blanchard C.
- Dunman P.M.
- Wasserman G.A.
- Chen J.
- Shopsin B.
- Gilmore M.S.
- Skaar E.P.
- Cassat J.E.
- Kasper K.J.
- Zeppa J.J.
- Wakabayashi A.T.
- Xu S.X.
- Mazzuca D.M.
- Welch I.
- Baroja M.L.
- Kotb M.
- Cairns E.
- Cleary P.P.
- Haeryfar S.M.
- McCormick J.K.
Materials and Methods
Bacterial Strains and Growth Conditions
- Kachroo P.
- Eraso J.M.
- Beres S.B.
- Olsen R.J.
- Zhu L.
- Nasser W.
- Bernard P.E.
- Cantu C.C.
- Saavedra M.O.
- Arredondo M.J.
- Strope B.
- Do H.
- Kumaraswami M.
- Vuopio J.
- Grondahl-Yli-Hannuksela K.
- Kristinsson K.G.
- Gottfredsson M.
- Pesonen M.
- Pensar J.
- Davenport E.R.
- Clark A.G.
- Corander J.
- Caugant D.A.
- Gaini S.
- Magnussen M.D.
- Kubiak S.L.
- Nguyen H.A.T.
- Long S.W.
- Porter A.R.
- DeLeo F.R.
- Musser J.M.
Preparation of Transposon Mutant Library Stock Cultures for NHP Infection
NHP Vaginal Colonization Model
Ex Vivo Uterine Wall Infection Model
Massively Parallel Sequencing and TraDIS Data Analysis
Construction and Characterization of Isogenic Deletion-Mutant Strains
Primer | Sequence |
---|---|
isp deletion-1 | F: 5′-GTCCGGATCCAAAATGATTTCAAGTTTCCATCGCC-3′ |
isp deletion-2 | R: 5′-CAGCCTGCTGAGCTGTAAAGGTACTTTTATTCATATATTAATTAGTCA-3′ |
isp deletion-3 | F: 5′-TGACTAATTAATATATGAATAAAAGTACCTTTACAGCTCAGCAGGCTG-3′ |
isp deletion-4 | R: 5′-GTCCGGATCCCATTGACTGTAACCTTTGTGATTTG-3′ |
spyAD deletion-1 | F: 5′-GTCCGGATCCAGGGCGAGATGACCAATCGGATT-3′ |
spyAD deletion-2 | R: 5′-GACAGCTGCCAACATGACGACTCCCTGCTTAACTTGGTTTGGCTTCGT-3′ |
spyAD deletion-3 | F: 5′-ACGAAGCCAAACCAAGTTAAGCAGGGAGTCGTCATGTTGGCAGCTGTC-3′ |
spyAD deletion-4 | R: 5′-GTCCGGATCCTTGTTTGACGCTAAAATATCTTAT-3′ |
emm28 TaqMan-1 | F: 5′-CAAGCCGTCAAGGCCTAAG-3′ |
emm28 TaqMan-2 | R: 5′-GGCTTGCGTCTGAGATTTGT-3′ |
emm28 TaqMan probe | 5′-6FAM-CCGTGACCTTGAAGCGTCTCGTGC-TAMRA-3′ |
tufA TaqMan-1 | F: 5′-GTCGCTTGCCTTCATCAGTT-3′ |
tufA TaMman-2 | R: 5′-AGTGACGAGTTGCAGTTTCG-3′ |
tufA TaqMan probe | 5′-6FAM-CCGCGTTCGCGTTCTTCTGGAGC-TAMRA-3′ |
Quantitative RT-PCR Analysis
Western Immunoblot Analysis of SPN and SLO
SpeB Protease Activity Assay
Vaginal Infection of NHPs with Isogenic Mutant Strains
Infection of NHP Uteri ex Vivo with Isogenic Mutant Strains
Skeletal Muscle Infection of NHPs with Isogenic Mutant Strains
Histopathologic Analysis
Statistical Analysis
Study Approvals
Results
Genome-Wide Transposon Mutagenesis Screen Identifies GAS Genes Required for Vaginal Colonization and Uterine Wall Infection
- Kachroo P.
- Eraso J.M.
- Beres S.B.
- Olsen R.J.
- Zhu L.
- Nasser W.
- Bernard P.E.
- Cantu C.C.
- Saavedra M.O.
- Arredondo M.J.
- Strope B.
- Do H.
- Kumaraswami M.
- Vuopio J.
- Grondahl-Yli-Hannuksela K.
- Kristinsson K.G.
- Gottfredsson M.
- Pesonen M.
- Pensar J.
- Davenport E.R.
- Clark A.G.
- Corander J.
- Caugant D.A.
- Gaini S.
- Magnussen M.D.
- Kubiak S.L.
- Nguyen H.A.T.
- Long S.W.
- Porter A.R.
- DeLeo F.R.
- Musser J.M.


Comparison of GAS Genes Required for Vaginal Colonization, Uterine Wall Infection, and Skeletal Muscle Necrotizing Myositis
Contribution of SpyAD and Isp2 to GAS Fitness in the NHP Genital Tract Environments
- Gallotta M.
- Gancitano G.
- Pietrocola G.
- Mora M.
- Pezzicoli A.
- Tuscano G.
- Chiarot E.
- Nardi-Dei V.
- Taddei A.R.
- Rindi S.
- Speziale P.
- Soriani M.
- Grandi G.
- Margarit I.
- Bensi G.
- Bombaci M.
- Grifantini R.
- Mora M.
- Reguzzi V.
- Petracca R.
- Meoni E.
- Balloni S.
- Zingaretti C.
- Falugi F.
- Manetti A.G.
- Margarit I.
- Musser J.M.
- Cardona F.
- Orefici G.
- Grandi G.
- Bensi G.


SpyAD and Isp2 Contribute Significantly to GAS Necrotizing Myositis
- Olsen R.J.
- Sitkiewicz I.
- Ayeras A.A.
- Gonulal V.E.
- Cantu C.
- Beres S.B.
- Green N.M.
- Lei B.
- Humbird T.
- Greaver J.
- Chang E.
- Ragasa W.P.
- Montgomery C.A.
- Cartwright Jr., J.
- McGeer A.
- Low D.E.
- Whitney A.R.
- Cagle P.T.
- Blasdel T.L.
- DeLeo F.R.
- Musser J.M.

Genes Encoding SpyAD and Isp2 Are Ubiquitous in GAS Isolates
- Kachroo P.
- Eraso J.M.
- Beres S.B.
- Olsen R.J.
- Zhu L.
- Nasser W.
- Bernard P.E.
- Cantu C.C.
- Saavedra M.O.
- Arredondo M.J.
- Strope B.
- Do H.
- Kumaraswami M.
- Vuopio J.
- Grondahl-Yli-Hannuksela K.
- Kristinsson K.G.
- Gottfredsson M.
- Pesonen M.
- Pensar J.
- Davenport E.R.
- Clark A.G.
- Corander J.
- Caugant D.A.
- Gaini S.
- Magnussen M.D.
- Kubiak S.L.
- Nguyen H.A.T.
- Long S.W.
- Porter A.R.
- DeLeo F.R.
- Musser J.M.
Discussion
- Fritzer A.
- Senn B.M.
- Minh D.B.
- Hanner M.
- Gelbmann D.
- Noiges B.
- Henics T.
- Schulze K.
- Guzman C.A.
- Goodacre J.
- von Gabain A.
- Nagy E.
- Meinke A.L.
- Fritzer A.
- Senn B.M.
- Minh D.B.
- Hanner M.
- Gelbmann D.
- Noiges B.
- Henics T.
- Schulze K.
- Guzman C.A.
- Goodacre J.
- von Gabain A.
- Nagy E.
- Meinke A.L.
- Bensi G.
- Mora M.
- Tuscano G.
- Biagini M.
- Chiarot E.
- Bombaci M.
- Capo S.
- Falugi F.
- Manetti A.G.
- Donato P.
- Swennen E.
- Gallotta M.
- Garibaldi M.
- Pinto V.
- Chiappini N.
- Musser J.M.
- Janulczyk R.
- Mariani M.
- Scarselli M.
- Telford J.L.
- Grifantini R.
- Norais N.
- Margarit I.
- Grandi G.
- Gallotta M.
- Gancitano G.
- Pietrocola G.
- Mora M.
- Pezzicoli A.
- Tuscano G.
- Chiarot E.
- Nardi-Dei V.
- Taddei A.R.
- Rindi S.
- Speziale P.
- Soriani M.
- Grandi G.
- Margarit I.
- Bensi G.
- Deng L.
- Spencer B.L.
- Holmes J.A.
- Mu R.
- Rego S.
- Weston T.A.
- Hu Y.
- Sanches G.F.
- Yoon S.
- Park N.
- Nagao P.E.
- Jenkinson H.F.
- Thornton J.A.
- Seo K.S.
- Nobbs A.H.
- Doran K.S.
Acknowledgments
Author Contributions
Supplemental Data
- Supplemental Table S1
- Supplemental Table S2
- Supplemental Table S3
References
- Acute pharyngitis.N Engl J Med. 2001; 344: 205-211
- The global burden of group A streptococcal diseases.Lancet Infect Dis. 2005; 5: 685-694
- Clinical practice: streptococcal pharyngitis.N Engl J Med. 2011; 364: 648-655
- Disease manifestations and pathogenic mechanisms of group A streptococcus.Clin Microbiol Rev. 2014; 27: 264-301
- Evolutionary constraints shaping Streptococcus pyogenes-host interactions.Trends Microbiol. 2017; 25: 562-572
- Infection by anaerobic streptococci in puerperal fever.Br Med J. 1930; 2: 134-137
- Group A streptococcus puerperal sepsis: an emerging obstetric infection?.BJOG. 2019; 126: 54
- The serological differentiation of pathogenic and non-pathogenic strains of hemolytic streptococci from parturient women.J Exp Med. 1935; 61: 335-349
- Population-based surveillance for postpartum invasive group a streptococcus infections, 1995-2000.Clin Infect Dis. 2002; 35: 665-670
- The serotypes of streptococcus pyogenes present in Britain during 1980-1990 and their association with disease.J Med Microbiol. 1993; 39: 165-178
- Group A streptococcal infections in Sweden: a comparative study of invasive and noninvasive infections and analysis of dominant T28 emm28 isolates.Clin Infect Dis. 2003; 37: 1189-1193
- Changes in the pattern of infection caused by Streptococcus pyogenes.Epidemiol Infect. 1988; 100: 257-269
- Beta-haemolytic streptococci from the female genital tract: clinical correlates and outcome of treatment.Epidemiol Infect. 1989; 102: 391-400
- Epidemiology of invasive group a streptococcus disease in the United States, 1995-1999.Clin Infect Dis. 2002; 35: 268-276
- M types of group A streptococcal isolates submitted to the National Centre for Streptococcus (Canada) from 1993 to 1999.J Clin Microbiol. 2002; 40: 4466-4471
- Epidemiological features of invasive and noninvasive group A streptococcal disease in the Netherlands, 1992-1996.Eur J Clin Microbiol Infect Dis. 2004; 23: 434-444
- Gene fitness landscape of group A streptococcus during necrotizing myositis.J Clin Invest. 2019; 129: 887-901
- Genome-wide transposon mutagenesis of Proteus mirabilis: essential genes, fitness factors for catheter-associated urinary tract infection, and the impact of polymicrobial infection on fitness requirements.PLoS Pathog. 2017; 13: e1006434
- Tracking insertion mutants within libraries by deep sequencing and a genome-wide screen for Haemophilus genes required in the lung.Proc Natl Acad Sci U S A. 2009; 106: 16422-16427
- Genome-wide detection of fitness genes in uropathogenic Escherichia coli during systemic infection.PLoS Pathog. 2013; 9: e1003788
- Genome-wide identification of Acinetobacter baumannii genes necessary for persistence in the lung.mBio. 2014; 5 (e01163-14)
- Genome-wide transposon mutagenesis indicates that Mycobacterium marinum customizes its virulence mechanisms for survival and replication in different hosts.Infect Immun. 2015; 83: 1778-1788
- Genome-wide identification of genes required for fitness of group A streptococcus in human blood.Infect Immun. 2013; 81: 862-875
- RNA-seq and Tn-seq reveal fitness determinants of vancomycin-resistant Enterococcus faecium during growth in human serum.BMC Genomics. 2017; 18: 893
- Multiple Legionella pneumophila effector virulence phenotypes revealed through high-throughput analysis of targeted mutant libraries.Proc Natl Acad Sci U S A. 2017; 114: E10446-E10454
- Comprehensive identification of virulence factors required for respiratory melioidosis using Tn-seq mutagenesis.Front Cell Infect Microbiol. 2015; 5: 78
- Genome-wide mutant fitness profiling identifies nutritional requirements for optimal growth of Yersinia pestis in deep tissue.mBio. 2014; 5: e01385-14
- Genome-wide identification by transposon insertion sequencing of Escherichia coli K1 genes essential for in vitro growth, gastrointestinal colonizing capacity, and survival in serum.J Bacteriol. 2018; 200: e00698-17
- Bacterial hypoxic responses revealed as critical determinants of the host-pathogen outcome by TnSeq analysis of Staphylococcus aureus invasive infection.PLoS Pathog. 2015; 11: e1005341
- Genome-wide discovery of novel M1T1 group A streptococcal determinants important for fitness and virulence during soft-tissue infection.PLoS Pathog. 2017; 13: e1006584
- Novel genes required for the fitness of Streptococcus pyogenes in human saliva.mSphere. 2017; 2 (e00147-00117)
- A murine model of group B streptococcus vaginal colonization.J Vis Exp. 2016; 117: 1-26
- A mouse model reproducing the pathophysiology of neonatal group B streptococcal infection.Nat Commun. 2018; 9: 3138
- Murine vaginal colonization model for investigating asymptomatic mucosal carriage of Streptococcus pyogenes.Infect Immun. 2013; 81: 1606-1617
- Plasminogen is a critical host pathogenicity factor for group A streptococcal infection.Science. 2004; 305: 1283-1286
- Reduced thrombin generation increases host susceptibility to group A streptococcal infection.Blood. 2009; 113: 1358-1364
- Bacterial superantigens promote acute nasopharyngeal infection by Streptococcus pyogenes in a human MHC class II-dependent manner.PLoS Pathog. 2014; 10: e1004155
- Enhanced susceptibility to superantigen-associated streptococcal sepsis in human leukocyte antigen-DQ transgenic mice.J Infect Dis. 2001; 184: 166-173
- High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model.Nat Commun. 2014; 5: 3889
- Pathogenesis of group A streptococcal infections.Clin Microbiol Rev. 2000; 13: 470-511
- Genome sequence of a serotype M28 strain of group a streptococcus: potential new insights into puerperal sepsis and bacterial disease specificity.J Infect Dis. 2005; 192: 760-770
- Genetic diversity among type emm28 group A Streptococcus strains causing invasive infections and pharyngitis.J Clin Microbiol. 2005; 43: 4083-4091
- Integrated analysis of population genomics, transcriptomics and virulence provides novel insights into Streptococcus pyogenes pathogenesis.Nat Genet. 2019; 51: 548-559
- The TraDIS toolkit: sequencing and analysis for dense transposon mutant libraries.Bioinformatics. 2016; 32: 1109-1111
- A molecular trigger for intercontinental epidemics of group A streptococcus.J Clin Invest. 2015; 125: 3545-3559
- Polymorphisms in regulator of Cov contribute to the molecular pathogenesis of serotype M28 group A streptococcus.Am J Pathol. 2019; 189: 2002-2018
- Intergenic variable-number tandem-repeat polymorphism upstream of rocA alters toxin production and enhances virulence in Streptococcus pyogenes.Infect Immun. 2016; 84: 2086-2093
- Contribution of secreted NADase and streptolysin O to the pathogenesis of epidemic serotype M1 Streptococcus pyogenes infections.Am J Pathol. 2017; 187: 605-613
- Leaderless secreted peptide signaling molecule alters global gene expression and increases virulence of a human bacterial pathogen.Proc Natl Acad Sci U S A. 2017; 114: E8498-E8507
- Proteomic analysis and identification of Streptococcus pyogenes surface-associated proteins.J Bacteriol. 2007; 189: 1514-1522
- SpyAD, a moonlighting protein of group A Streptococcus contributing to bacterial division and host cell adhesion.Infect Immun. 2014; 82: 2890-2901
- Protein array profiling of tic patient sera reveals a broad range and enhanced immune response against Group A Streptococcus antigens.PLoS One. 2009; 4: e6332
- Antiphagocytic activity of streptococcal M protein: selective binding of complement control protein factor H.Proc Natl Acad Sci U S A. 1988; 85: 1657-1661
- Decreased necrotizing fasciitis capacity caused by a single nucleotide mutation that alters a multiple gene virulence axis.Proc Natl Acad Sci U S A. 2010; 107: 888-893
- Population and whole genome sequence based characterization of invasive group A streptococci recovered in the United States during 2015.mBio. 2017; 8: e01422-17
- Interleukin-17A contributes to the control of Streptococcus pyogenes colonization and inflammation of the female genital tract.Sci Rep. 2016; 6: 26836
- Leukotriene B4 enhances innate immune defense against the puerperal sepsis agent Streptococcus pyogenes.J Immunol. 2013; 190: 1614-1622
- Transcriptomic analysis of Streptococcus pyogenes colonizing the vaginal mucosa identifies hupY, an MtsR-Regulated adhesin involved in heme utilization.mBio. 2019; 10: e00848-19
- New insights into the role of zinc acquisition and zinc tolerance in group A streptococcal infection.Infect Immun. 2018; 86: e00048-18
- Central role of a bacterial two-component gene regulatory system of previously unknown function in pathogen persistence in human saliva.Proc Natl Acad Sci U S A. 2005; 102: 16037-16042
- Comprehensive mass spectrometric survey of Streptococcus pyogenes subcellular proteomes.J Proteome Res. 2018; 17: 600-617
- The CHAP domain: a large family of amidases including GSP amidase and peptidoglycan hydrolases.Trends Biochem Sci. 2003; 28: 234-237
- Novel conserved group A streptococcal proteins identified by the antigenome technology as vaccine candidates for a non-M protein-based vaccine.Infect Immun. 2010; 78: 4051-4067
- Development of a multicomponent vaccine for Streptococcus pyogenes based on the antigenic targets of IVIG.J Infect. 2016; 72: 450-459
- Multi high-throughput approach for highly selective identification of vaccine candidates: the Group A Streptococcus case.Mol Cell Proteomics. 2012; 11 (M111.015693)
- Atlas of group A streptococcal vaccine candidates compiled using large-scale comparative genomics.Nat Genet. 2019; 51 ([Erratum appeared in Nat Genet 2019, 51:1295]): 1035-1043
- Lateral gene transfer of streptococcal ICE element RD2 (region of difference 2) encoding secreted proteins.BMC Microbiol. 2011; 11: 65
- The group B streptococcal surface antigen I/II protein, BspC, interacts with host vimentin to promote adherence to brain endothelium and inflammation during the pathogenesis of meningitis.PLoS Pathog. 2019; 15: e1007848
- Identification and characterization of an antigen I/II family protein produced by group A streptococcus.Infect Immun. 2006; 74: 4200-4213
- A mobile genetic element promotes the association between serotype M28 group A streptococcus isolates and cases of puerperal sepsis.J Infect Dis. 2019; 220: 882-891
- The Doctors' Plague: Germs, Childbed Fever, and the Strange Story of Ignác Semmelweis.WW Norton, New York, NY2003
- Die Aetiologie, der Begriff und die Prophylaxis des Kindbettfiebers.(German) University of Wisconsin Press, Madison1983 (Pest, Germany: C. A. Hartleben, 1861)
Article Info
Publication History
Footnotes
Supported in part by NIH grants AI 146771-01 (J.M.M.) and AI139369-01 (J.M.M.) ; the Fondren Foundation of the Houston Methodist Hospital and Research Institute (J.M.M.); and University of Cambridge Doctoral Training Partnership scheme grant 1503883 , funded by the Biotechnology and Biological Sciences Research Council (A.R.L.C.).
L.Z. and R.J.O. contributed equally to this work.
Disclosures: None declared.
Identification
Copyright
User License
Elsevier user license |
Permitted
For non-commercial purposes:
- Read, print & download
- Text & data mine
- Translate the article
Not Permitted
- Reuse portions or extracts from the article in other works
- Redistribute or republish the final article
- Sell or re-use for commercial purposes
Elsevier's open access license policy