- Rogers C.S.
- Hao Y.
- Rokhlina T.
- Samuel M.
- Stoltz D.A.
- Li Y.
- Petroff E.
- Vermeer D.W.
- Kabel A.C.
- Yan Z.
- Spate L.
- Wax D.
- Murphy C.N.
- Rieke A.
- Whitworth K.
- Linville M.L.
- Korte S.W.
- Engelhardt J.F.
- Welsh M.J.
- Prather R.S.
- Sun X.S.
- Sui H.S.
- Fisher J.T.
- Yan Z.Y.
- Liu X.M.
- Cho H.J.
- Joo N.S.
- Zhang Y.L.
- Zhou W.H.
- Yi Y.L.
- Kinyon J.M.
- Lei-Butters D.C.
- Griffin M.A.
- Naumann P.
- Luo M.H.
- Ascher J.
- Wang K.
- Frana T.
- Wine J.J.
- Meyerholz D.K.
- Engelhardt J.F.
- Tuggle K.L.
- Birket S.E.
- Cui X.
- Hong J.
- Warren J.
- Reid L.
- Chambers A.
- Ji D.
- Gamber K.
- Chu K.K.
- Tearney G.
- Tang L.P.
- Fortenberry J.A.
- Du M.
- Cadillac J.M.
- Bedwell D.M.
- Rowe S.M.
- Sorscher E.J.
- Fanucchi M.V.
- Steines B.
- Dickey D.D.
- Bergen J.
- Excoffon K.J.D.A.
- Weinstein J.R.
- Li X.
- Yan Z.
- Abou Alaiwa M.H.
- Shah V.S.
- Bouzek D.C.
- Powers L.S.
- Gansemer N.D.
- Ostedgaard L.S.
- Engelhardt J.F.
- Stoltz D.A.
- Welsh M.J.
- Sinn P.L.
- Schaffer D.V.
- Zabner J.
- Alton E.W.F.W.
- Middleton P.G.
- Caplen N.J.
- Smith S.N.
- Steel D.M.
- Munkonge F.M.
- Jeffery P.K.
- Geddes D.M.
- Hart S.L.
- Williamson R.
- Fasold K.I.
- Miller A.D.
- Dickinson P.
- Stevenson B.J.
- McLachlan G.
- Dorin J.R.
- Porteous D.J.
- Sun X.
- Yi Y.
- Yan Z.
- Rosen B.H.
- Liang B.
- Winter M.C.
- Evans T.I.A.
- Rotti P.G.
- Yang Y.
- Gray J.S.
- Park S.Y.
- Zhou W.
- Zhang Y.
- Moll S.R.
- Woody L.
- Tran D.M.
- Jiang L.
- Vonk A.M.
- Beekman J.M.
- Negulescu P.
- Van Goor F.
- Fiorino D.F.
- Gibson-Corley K.N.
- Engelhardt J.F.
- Tuggle K.L.
- Birket S.E.
- Cui X.
- Hong J.
- Warren J.
- Reid L.
- Chambers A.
- Ji D.
- Gamber K.
- Chu K.K.
- Tearney G.
- Tang L.P.
- Fortenberry J.A.
- Du M.
- Cadillac J.M.
- Bedwell D.M.
- Rowe S.M.
- Sorscher E.J.
- Fanucchi M.V.
Materials and Methods
Generation of Founder Animals
CRISPR/Cas9 Gene Editing and Microinjection
Template | Sequence |
---|---|
gRNA | 5′-ATCAAAGAAAATATCATCTT(TGG)-3′ |
HDR oligonucleotide | 5′-GTTTCATTCTCCTCTCAAATTTCTTGGATTATGCCGGGTACTATCAAAGAAAATATCATCGGTGTTTCCTATGATGAGTACAGATATAAGAGTGTTGTCAAAGCTTGCCAACTACAGGAG-3′ |
Identification of Founder Animals
Characterization of the Models
Animal Husbandry
Genotyping
Quantitative Real-Time PCR for CFTR mRNA Quantification
Histology
Morphometric Analysis of Tracheal Tissue
RNA in Situ Hybridization (RNAscope)
RNAscope CFTR Transcript Quantification
Immunohistochemistry
Nasal Potential Difference Measures
Blood Counts and Serum Chemistry
Bronchoalveolar Lavage Fluid Cell Differentials
Statistical Analysis
Results
Phe508del and KO Founders Were Generated Using CRISPR/Cas9
Breeder Rats Have Normal Reproduction Rates
Genotype | Wild-type | Heterozygous | CF |
---|---|---|---|
Phe508del | 0 | 47.2 | 52.8 |
Knockout | 26.7 | 51.9 | 21.4 |
Growth Trajectories Are Reduced in Phe508del and KO Rats

Survival Is Impaired in Phe508del and KO Rats

CFTR mRNA Is Reduced in the Lungs of KO Rats while Phe508del Levels Are Unaffected

- Trapnell B.C.
- Chu C.S.
- Paakko P.K.
- Banks T.C.
- Yoshimura K.
- Ferrans V.J.
- Chernick M.S.
- Crystal R.G.
Immunostaining Reveals Reduced CFTR and Differential Localization in Phe508del and KO Rats

Hematology and Serum Chemistry Parameters Are Unaffected in CF Rats
Bioelectric Defects Are Present in the Nasal Airways of Phe508del and KO Rats

Lung, Nasal, and Liver Tissues Are Histologically Normal in Phe508del and KO Rats
Tracheal Tissue Is Histologically Abnormal in KO Rats

KO Rats Exhibit Disease of the Exocrine Pancreas

Phe508del and KO Rats Demonstrate Lethal Intestinal Obstruction
- Tuggle K.L.
- Birket S.E.
- Cui X.
- Hong J.
- Warren J.
- Reid L.
- Chambers A.
- Ji D.
- Gamber K.
- Chu K.K.
- Tearney G.
- Tang L.P.
- Fortenberry J.A.
- Du M.
- Cadillac J.M.
- Bedwell D.M.
- Rowe S.M.
- Sorscher E.J.
- Fanucchi M.V.
- Sun X.
- Olivier A.K.
- Yi Y.
- Pope C.E.
- Hayden H.S.
- Liang B.
- Sui H.
- Zhou W.
- Hager K.R.
- Zhang Y.
- Liu X.
- Yan Z.
- Fisher J.T.
- Keiser N.W.
- Song Y.
- Tyler S.R.
- Goeken J.A.
- Kinyon J.M.
- Radey M.C.
- Fligg D.
- Wang X.
- Xie W.
- Lynch T.J.
- Kaminsky P.M.
- Brittnacher M.J.
- Miller S.I.
- Parekh K.
- Meyerholz D.K.
- Hoffman L.R.
- Frana T.
- Stewart Z.A.
- Engelhardt J.F.
Phe508del and KO Rats Exhibit Colonic Crypt Dilation and Mucus Accumulation

Male Phe508del and KO Rats Exhibit Reproductive Tract Malformations


Phe508del and KO Rats Demonstrate Abnormal Dentition
- Tuggle K.L.
- Birket S.E.
- Cui X.
- Hong J.
- Warren J.
- Reid L.
- Chambers A.
- Ji D.
- Gamber K.
- Chu K.K.
- Tearney G.
- Tang L.P.
- Fortenberry J.A.
- Du M.
- Cadillac J.M.
- Bedwell D.M.
- Rowe S.M.
- Sorscher E.J.
- Fanucchi M.V.

Discussion
- Sun X.
- Yi Y.
- Yan Z.
- Rosen B.H.
- Liang B.
- Winter M.C.
- Evans T.I.A.
- Rotti P.G.
- Yang Y.
- Gray J.S.
- Park S.Y.
- Zhou W.
- Zhang Y.
- Moll S.R.
- Woody L.
- Tran D.M.
- Jiang L.
- Vonk A.M.
- Beekman J.M.
- Negulescu P.
- Van Goor F.
- Fiorino D.F.
- Gibson-Corley K.N.
- Engelhardt J.F.
- Ostedgaard L.S.
- Meyerholz D.K.
- Chen J.-H.
- Pezzulo A.A.
- Karp P.H.
- Rokhlina T.
- Ernst S.E.
- Hanfland R.A.
- Reznikov L.R.
- Ludwig P.S.
- Rogan M.P.
- Davis G.J.
- Dohrn C.L.
- Wohlford-Lenane C.
- Taft P.J.
- Rector M.V.
- Hornick E.
- Nassar B.S.
- Samuel M.
- Zhang Y.
- Richter S.S.
- Uc A.
- Shilyansky J.
- Prather R.S.
- McCray Jr., P.B.
- Zabner J.
- Welsh M.J.
- Stoltz D.A.
- Pezzulo A.A.
- Tang X.X.
- Hoegger M.J.
- Abou Alaiwa M.H.
- Ramachandran S.
- Moninger T.O.
- Karp P.H.
- Wohlford-Lenane C.L.
- Haagsman H.P.
- van Eijk M.
- Banfi B.
- Horswill A.R.
- Stoltz D.A.
- McCray Jr., P.B.
- Welsh M.J.
- Zabner J.
- Stoltz D.A.
- Meyerholz D.K.
- Pezzulo A.A.
- Ramachandran S.
- Rogan M.P.
- Davis G.J.
- Hanfland R.A.
- Wohlford-Lenane C.
- Dohrn C.L.
- Bartlett J.A.
- Nelson G.A.
- Chang E.H.
- Taft P.J.
- Ludwig P.S.
- Estin M.
- Hornick E.E.
- Launspach J.L.
- Samuel M.
- Rokhlina T.
- Karp P.H.
- Ostedgaard L.S.
- Uc A.
- Starner T.D.
- Horswill A.R.
- Brogden K.A.
- Prather R.S.
- Richter S.S.
- Shilyansky J.
- McCray Jr., P.B.
- Zabner J.
- Welsh M.J.
- Tuggle K.L.
- Birket S.E.
- Cui X.
- Hong J.
- Warren J.
- Reid L.
- Chambers A.
- Ji D.
- Gamber K.
- Chu K.K.
- Tearney G.
- Tang L.P.
- Fortenberry J.A.
- Du M.
- Cadillac J.M.
- Bedwell D.M.
- Rowe S.M.
- Sorscher E.J.
- Fanucchi M.V.
- Tuggle K.L.
- Birket S.E.
- Cui X.
- Hong J.
- Warren J.
- Reid L.
- Chambers A.
- Ji D.
- Gamber K.
- Chu K.K.
- Tearney G.
- Tang L.P.
- Fortenberry J.A.
- Du M.
- Cadillac J.M.
- Bedwell D.M.
- Rowe S.M.
- Sorscher E.J.
- Fanucchi M.V.
- Sun X.
- Olivier A.K.
- Yi Y.
- Pope C.E.
- Hayden H.S.
- Liang B.
- Sui H.
- Zhou W.
- Hager K.R.
- Zhang Y.
- Liu X.
- Yan Z.
- Fisher J.T.
- Keiser N.W.
- Song Y.
- Tyler S.R.
- Goeken J.A.
- Kinyon J.M.
- Radey M.C.
- Fligg D.
- Wang X.
- Xie W.
- Lynch T.J.
- Kaminsky P.M.
- Brittnacher M.J.
- Miller S.I.
- Parekh K.
- Meyerholz D.K.
- Hoffman L.R.
- Frana T.
- Stewart Z.A.
- Engelhardt J.F.
- Blackman S.M.
- Deering-Brose R.
- McWilliams R.
- Naughton K.
- Coleman B.
- Lai T.
- Algire M.
- Beck S.
- Hoover-Fong J.
- Hamosh A.
- Fallin M.D.
- West K.
- Arking D.E.
- Chakravarti A.
- Cutler D.J.
- Cutting G.R.
- Dorfman R.
- Li W.
- Sun L.
- Lin F.
- Wang Y.
- Sandford A.
- Paré P.D.
- McKay K.
- Kayserova H.
- Piskackova T.
- Macek M.
- Czerska K.
- Sands D.
- Tiddens H.
- Margarit S.
- Repetto G.
- Sontag M.K.
- Accurso F.J.
- Blackman S.
- Cutting G.R.
- Tsui L.-C.
- Corey M.
- Durie P.
- Zielenski J.
- Strug L.J.
- Tuggle K.L.
- Birket S.E.
- Cui X.
- Hong J.
- Warren J.
- Reid L.
- Chambers A.
- Ji D.
- Gamber K.
- Chu K.K.
- Tearney G.
- Tang L.P.
- Fortenberry J.A.
- Du M.
- Cadillac J.M.
- Bedwell D.M.
- Rowe S.M.
- Sorscher E.J.
- Fanucchi M.V.
- Sun X.
- Olivier A.K.
- Yi Y.
- Pope C.E.
- Hayden H.S.
- Liang B.
- Sui H.
- Zhou W.
- Hager K.R.
- Zhang Y.
- Liu X.
- Yan Z.
- Fisher J.T.
- Keiser N.W.
- Song Y.
- Tyler S.R.
- Goeken J.A.
- Kinyon J.M.
- Radey M.C.
- Fligg D.
- Wang X.
- Xie W.
- Lynch T.J.
- Kaminsky P.M.
- Brittnacher M.J.
- Miller S.I.
- Parekh K.
- Meyerholz D.K.
- Hoffman L.R.
- Frana T.
- Stewart Z.A.
- Engelhardt J.F.
- Tuggle K.L.
- Birket S.E.
- Cui X.
- Hong J.
- Warren J.
- Reid L.
- Chambers A.
- Ji D.
- Gamber K.
- Chu K.K.
- Tearney G.
- Tang L.P.
- Fortenberry J.A.
- Du M.
- Cadillac J.M.
- Bedwell D.M.
- Rowe S.M.
- Sorscher E.J.
- Fanucchi M.V.
- Ostedgaard L.S.
- Meyerholz D.K.
- Chen J.-H.
- Pezzulo A.A.
- Karp P.H.
- Rokhlina T.
- Ernst S.E.
- Hanfland R.A.
- Reznikov L.R.
- Ludwig P.S.
- Rogan M.P.
- Davis G.J.
- Dohrn C.L.
- Wohlford-Lenane C.
- Taft P.J.
- Rector M.V.
- Hornick E.
- Nassar B.S.
- Samuel M.
- Zhang Y.
- Richter S.S.
- Uc A.
- Shilyansky J.
- Prather R.S.
- McCray Jr., P.B.
- Zabner J.
- Welsh M.J.
- Stoltz D.A.
- Sun X.
- Olivier A.K.
- Yi Y.
- Pope C.E.
- Hayden H.S.
- Liang B.
- Sui H.
- Zhou W.
- Hager K.R.
- Zhang Y.
- Liu X.
- Yan Z.
- Fisher J.T.
- Keiser N.W.
- Song Y.
- Tyler S.R.
- Goeken J.A.
- Kinyon J.M.
- Radey M.C.
- Fligg D.
- Wang X.
- Xie W.
- Lynch T.J.
- Kaminsky P.M.
- Brittnacher M.J.
- Miller S.I.
- Parekh K.
- Meyerholz D.K.
- Hoffman L.R.
- Frana T.
- Stewart Z.A.
- Engelhardt J.F.
- Blackman S.M.
- Deering-Brose R.
- McWilliams R.
- Naughton K.
- Coleman B.
- Lai T.
- Algire M.
- Beck S.
- Hoover-Fong J.
- Hamosh A.
- Fallin M.D.
- West K.
- Arking D.E.
- Chakravarti A.
- Cutler D.J.
- Cutting G.R.

Acknowledgments
Supplemental Data



- Supplemental Table S1
References
- CFTR and lung homeostasis.Am J Physiol Lung Cell Mol Physiol. 2014; 307: 917-923
- Understanding how cystic fibrosis mutations disrupt CFTR function: from single molecules to animal models.Int J Biochem Cell Biol. 2014; 52: 47-57
- Pathophysiology of gene-targeted mouse models for cystic fibrosis.Physiol Rev. 1999; 79: S193-S214
- Mouse models of cystic fibrosis: phenotypic analysis and research applications.J Cyst Fibros. 2011; 10: S152-S171
- Production of CFTR-null and CFTR-Delta F508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer.J Clin Invest. 2008; 118: 1571-1577
- Disease phenotype of a ferret CFTR-knockout model of cystic fibrosis.J Clin Invest. 2010; 120: 3149-3160
- Characterization of defects in ion transport and tissue development in cystic fibrosis transmembrane conductance regulator (CFTR)-knockout rats.PLoS One. 2014; 9: e91253
- A sheep model of cystic fibrosis generated by CRISPR/Cas9 disruption of the CFTR gene.JCI Insight. 2018; 3: 123529
- CF rabbits: the UNC experience.Pediatr Pulmonol. 2018; 53: S148-S456
- Airway disease phenotypes in animal models of cystic fibrosis.Respir Res. 2018; 19: 54
- Animal models of cystic fibrosis pathology: phenotypic parallels and divergences.Biomed Res Int. 2016; 2016: 5258727
- Animal models in the pathophysiology of cystic fibrosis.Front Pharmacol. 2019; 9: 1475
- Lessons learned from the cystic fibrosis pig.Theriogenology. 2016; 86: 427-432
- Development of an airway mucus defect in the cystic fibrosis rat.JCI Insight. 2018; 3: e97199
- Ferret and pig models of cystic fibrosis: prospects and promise for gene therapy.Hum Gene Ther Clin Dev. 2015; 26: 38-49
- CFTR gene transfer with AAV improves early cystic fibrosis pig phenotypes.JCI Insight. 2016; 1: e88728
- Lentiviral-mediated phenotypic correction of cystic fibrosis pigs.JCI Insight. 2016; 1: e88730
- Long-term therapeutic and reporter gene expression in lentiviral vector treated cystic fibrosis mice.J Gene Med. 2014; 16: 291-299
- Non–invasive liposome–mediated gene delivery can correct the ion transport defect in cystic fibrosis mutant mice.Nat Genet. 1993; 5: 135-142
- Inefficient gene transfer by adenovirus vector to cystic fibrosis airway epithelia of mice and humans.Nature. 1994; 371: 802-806
- In utero and postnatal VX-770 administration rescues multiorgan disease in a ferret model of cystic fibrosis.Sci Transl Med. 2019; 11: eaau7531
- Pharmacological therapy for cystic fibrosis: from bench to bedside.J Cyst Fibros. 2011; 10: S129-S145
- New features in the development of the submucosal gland of the respiratory tract.J Anat. 1978; 127: 223-238
- Role of airway surface liquid and submucosal glands in cystic fibrosis lung disease.Am J Physiol Cell Physiol. 2003; 284: C2-C15
- Biosynthesis and degradation of CFTR.Physiol Rev. 1999; 79: S167-S173
- Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis.Cell. 1990; 63: 827-834
- Processing of CFTR: traversing the cellular maze--how much CFTR needs to go through to avoid cystic fibrosis?.Pediatr Pulmonol. 2005; 39: 479-491
- Selection of housekeeping genes for real-time PCR in atopic human bronchial epithelial cells.Eur Respir J. 2008; 32: 755
- Histopathologic examination of the rat nasal cavity.Fundam Appl Toxicol. 1981; 1: 309-312
- Sex-specific reference intervals of hematologic and biochemical analytes in Sprague-Dawley rats using the nonparametric rank percentile method.PLoS One. 2017; 12: e0189837
- A Language and Environment for Statistical Computing.R Foundation for Statistical Computing, Vienna, Austria2012 (2019)
- Expression of the cystic fibrosis transmembrane conductance regulator gene in the respiratory tract of normal individuals and individuals with cystic fibrosis.Proc Natl Acad Sci U S A. 1991; 88: 6565-6569
- Distribution of tracheal and laryngeal mucous glands in some rodents and the rabbit.J Anat. 2001; 198: 207-221
- Cystic fibrosis of the pancreas and its relation to celiac disease: a clinical and pathologic study.JAMA Pediatr. 1938; 56: 344-399
- Pathology of cystic fibrosis review of the literature and comparison with 146 autopsied cases.Perspect Pediatr Pathol. 1975; 2: 241-278
- Ultrastructural changes of the pancreas and liver in cystic fibrosis.Am J Clin Pathol. 1964; 42: 451-465
- Production of a severe cystic fibrosis mutation in mice by gene targeting.Nat Genet. 1993; 4: 35-41
- Gastrointestinal pathology in juvenile and adult CFTR-knockout ferrets.Am J Pathol. 2014; 184: 1309-1322
- Pathology of gastrointestinal organs in a porcine model of cystic fibrosis.Am J Pathol. 2010; 176: 1377-1389
- Abnormal enamel development in a cystic fibrosis transgenic mouse model.J Dent Res. 1996; 75: 966-973
- The delta F508 mutation causes CFTR misprocessing and cystic fibrosis-like disease in pigs.Sci Transl Med. 2011; 3: 74ra24
- Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung.Nature. 2012; 487: 109-113
- Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth.Sci Transl Med. 2010; 2: 29ra31
- Peripheral protein quality control removes unfolded CFTR from the plasma membrane.Science. 2010; 329: 805-810
- Processing and function of CFTR-Delta F508 are species-dependent.Proc Natl Acad Sci U S A. 2007; 104: 15370-15375
- The CFTR frameshift mutation 3905insT and its effect at transcript and protein level.Eur J Hum Genet. 2010; 18: 212-217
- Expression of the cystic fibrosis gene in adult human lung.J Clin Invest. 1994; 93: 737-749
- Loss of CFTR function exacerbates the phenotype of Na+ hyperabsorption in murine airways.Am J Physiol Lung Cell Mol Physiol. 2013; 304: L469-L480
- Submucosal gland dysfunction as a primary defect in cystic fibrosis.FASEB J. 2005; 19: 431-433
- Submucosal glands and airway defense.Proc Am Thorac Soc. 2004; 1: 47-53
- Hyposecretion, not hyperabsorption, is the basic defect of cystic fibrosis airway glands.J Biol Chem. 2006; 281: 7392-7398
- Pathological confirmation of cystic fibrosis in the fetus following prenatal diagnosis.Am J Med Genet. 1987; 28: 935-947
- Pathology of pancreatic and intestinal disorders in cystic fibrosis.J R Soc Med. 1998; 91 Suppl 34: 40-49
- Relative contribution of genetic and nongenetic modifiers to intestinal obstruction in cystic fibrosis.Gastroenterology. 2006; 131: 1030-1039
- Modifier gene study of meconium ileus in cystic fibrosis: statistical considerations and gene mapping results.Hum Genet. 2009; 126: 763-778
- Variation in MSRA modifies risk of neonatal intestinal obstruction in cystic fibrosis.PLoS Genet. 2012; 8: e1002580
- Animal models of gastrointestinal and liver diseases: animal models of cystic fibrosis: gastrointestinal, pancreatic, and hepatobiliary disease and pathophysiology.Am J Physiol Gastrointest Liver Physiol. 2015; 308: G459-G471
- Intestinal physiology and pathology in gene-targeted mouse models of cystic fibrosis.Am J Physiol. 1997; 273: G258-G266
- Pancreatic pathophysiology in cystic fibrosis.J Pathol. 2016; 238: 311-320
- Characteristic multiorgan pathology of cystic fibrosis in a long-living cystic fibrosis transmembrane regulator knockout murine model.Am J Pathol. 2004; 164: 1481-1493
- Generation and characterization of a delta F508 cystic fibrosis mouse model.Nat Genet. 1995; 10: 445-452
- Identification of the cystic fibrosis gene: genetic analysis.Science. 1989; 245: 1073-1080
- Reproductive failure in males with cystic fibrosis.N Engl J Med. 1968; 279: 65-69
- Cystic fibrosis mutation screening in healthy men with reduced sperm quality.Hum Reprod. 1996; 11: 513-517
- Cystic fibrosis gene mutations and infertile men with primary testicular failure.Hum Reprod. 2000; 15: 436-439
- Regulation of male fertility by CFTR and implications in male infertility.Hum Reprod Update. 2012; 18: 703-713
Article Info
Publication History
Footnotes
Supported by Cystic Fibrosis South Australia for seed funding to establish the cystic fibrosis rat colony and in part by the Fay Fuller Foundation , the National Health and Medical Research Council GNT1160011 , the Cystic Fibrosis Foundation PARSON18GO for the characterization studies, a MS McLeod PhD scholarship (A.M.). The Australian Phenomics Network is supported by the Australian Government through the National Collaborative Research Infrastructure Strategy Program.
A.M. and P.C. contributed equally to this work.
D.P. and M.D. contributed equally as senior authors.
Disclosures: None declared.
Identification
Copyright
User License
Elsevier user license |
Permitted
For non-commercial purposes:
- Read, print & download
- Text & data mine
- Translate the article
Not Permitted
- Reuse portions or extracts from the article in other works
- Redistribute or republish the final article
- Sell or re-use for commercial purposes
Elsevier's open access license policy