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Chronic inflammatory diseases cause profound alterations in tissue homeostasis, including unchecked
activation of immune and nonimmune cells leading to disease complications such as aberrant tissue
repair and fibrosis. Current anti-inflammatory therapies are often insufficient in preventing or reversing
these complications. Remodeling of the intracellular cytoskeleton is critical for cell activation in
inflamed and fibrotic tissues; however, the cytoskeleton has not been adequately explored as a ther-
apeutic target in inflammation. Septins are GTP-binding proteins that self-assemble into higher order
cytoskeletal structures. The septin cytoskeleton exhibits a number of critical cellular functions,
including regulation of cell shape and polarity, cytokinesis, cell migration, vesicle trafficking, and
receptor signaling. Surprisingly, little is known about the role of the septin cytoskeleton in inflam-
mation. This article reviews emerging evidence implicating different septins in the regulation of host-
pathogen interactions, immune cell functions, and tissue fibrosis. Targeting of the septin cytoskeleton
as a potential future therapeutic intervention in human inflammatory and fibrotic diseases is also

discussed. (Am J Pathol 2021, 191: 40—51; https://doi.org/10.1016/j.ajpath.2020.09.007)

Acute and chronic inflammation result in dramatic changes
in tissue homeostasis. These changes include altered cellular
composition and interactions between immune and nonim-
mune cells in affected tissues, as well as the perturbed
biochemical environment driven by the release of various
pro- and anti-inflammatory mediators.” Similarly, the
physical properties of affected tissues change due to acute
and chronic inflammation-induced development of edema,
aberrant tissue remodeling, and fibrosis.™ On a cellular
level, inflammatory states result in functional adaptations
toward accelerated recognition and elimination of the
invaded pathogens, as well as enhanced production of
extracellular matrix and tissue turnover.””® These alter-
ations of cellular function in inflamed tissues are mediated
by reprograming of the fundamental molecular processes,
including gene expression, protein synthesis, vesicle
trafficking, and cytoskeletal assembly.

The cytoskeleton is a critical regulator of the architecture
and function of eukaryotic cells. It comprises various
filamentous structures formed via self-assembly and the

polymerization of specialized proteins.” The four compo-
nents of the cytoskeleton include: actin filaments, microtu-
bules, intermediate filaments, and septin polymers. These
cytoskeletal elements play crucial roles in mediating
housekeeping and specialized functions in multiple cell
types. Examples include regulation of cell shape and size,
cell division, migration, cell—cell interactions, protein
uptake and secretion, receptor signaling, etc.” ” Defects in
the assembly and remodeling of different cytoskeletal
elements play major roles in the development of various
diseases, which is exemplified by tumor progression and

Supported by NIH-NIDDK grants RO1 DK108278 (A.LL), KO8
DK110415, and RO1 DK123233 (F.R.); and the Kenneth Rainin Founda-
tion Synergy Award (A.LL and F.R.).

Disclosures: F.R. is a consultant or on an advisory board for Agomab,
Allergan, AbbVie, BMS, Boehringer Ingelheim, Celgene, CDISC, Cowen,
Falk Pharma, Genentech, Gilead, Gossamer, Guidepoint, Helmsley, Index
Pharma, Janssen, Koutif, Metacrine, Morphic, Pfizer, Pliant, Prometheus
Biosciences, Receptos, RedX, Roche, Samsung, Takeda, Techlab, Ther-
avance, Thetis, and UCB.

Copyright © 2021 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ajpath.2020.09.007


mailto:ivanova2@ccf.org
mailto:ivanova2@ccf.org
mailto:riederf@ccf.org
https://doi.org/10.1016/j.ajpath.2020.09.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajpath.2020.09.007&domain=pdf
https://doi.org/10.1016/j.ajpath.2020.09.007
http://ajp.amjpathol.org
https://doi.org/10.1016/j.ajpath.2020.09.007

Septins in Inflammation and Fibrosis

metastasis.””'”"'" The cytoskeletal regulation of tissue

inflammation has also been extensively investigated. For
example, the actin cytoskeleton controls the inflammatory
response by regulating activation of immune cells and
permeability of epithelial and endothelial barriers.'” '*
Microtubules regulate pathogens sensing by inflamma-
somes,'” assembly of the immune synapse,'® and vascular
leakage in the inflamed tissues.'’ Finally, intermediate
filaments have been implicated in glial cell activation during
neural inflammation'® and development of inflammatory
skin disorders.'” Although the roles of actin filaments, mi-
crotubules, and intermediate filament in tissue inflammation
has attracted significant attention, the role of the fourth
cytoskeletal element, the septin cytoskeleton, in modulating
the inflammatory response remains poorly understood. This
review addresses this knowledge gap by summarizing
existing evidence for the involvement of the septin cyto-
skeleton in inflammation and tissue fibrosis and outlining
possible mechanisms of such involvement.

Diversity of the Septin Protein Family

Septins (SEPT) are small GTP-binding proteins abundantly
expressed in all eukaryotic organisms except for higher
plants. In mammals, there are 13 septin genes (SEPT! to
SEPTI2 and SEPTI4) and at least 11 pseudogenes, with
extensive post-transcriptional alternative splicing in many
septin genes.”’”' Existence of multiple members of the
septin family (paralogs) along with expression of their
differentially spliced isoforms gives rise to a complex array
of different septin proteins playing either redundant or
unique functional roles in different tissues. Bioinformatics
analysis of the amino acid sequence homology separates
mammalian septins into the following four groups named by
their founding members: SEPT2 (SEPTI, -2, -4, and -5),
SEPT3 (SEPT3, -9, and -12), SEPT6 (SEPT®6, -8, -10, -11,
and -14), and SEPT7 (SEPT7).”’ All members of these
groups share a GTP-binding domain flanked by an N-ter-
minal polybasic domain and a C-terminal septin unique
element.”” The groups diverge in their N-terminal exten-
sions and C-terminal parts that contain different number of
coiled-coil repeats.

Although septins are widely expressed in human tissues,
some septin paralogs (SEPT2, -4, -7, -8, -9, and -10) appear
to be ubiquitous, whereas others are enriched in specific
tissues.”>** For example, high expression of SEPT3, -4, -5,
and -8 is observed in the central nervous system, SEPT1, -6,
and -9 are enriched in hematopoietic cells, whereas SEPT12
is especially abundant in testes.”””* A recent correlative
analysis indicated consistent co-expression of subsets of
septin paralogs in various tissues. For example, SEPT3 and
SEPTS5 expression displays high correlation in different
brain regions, whereas a subset of septins including SEPT2,
-7, -10, and to a lesser extent, SEPT11, are consistently
co-expressed in non-neural tissues.”* It has been suggested
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that septin family members with highly correlated tissue
expression could be parts of the same protein complexes.

Assembly and Interactions of Septin Proteins

One of the most characteristic features of septins is their
ability to self-associate, forming nonpolar rod-like hetero-
oligomers and higher-order polymeric structures. Although
the existence of septin rod complexes is well-documented
from yeasts to mammals, their exact molecular composition
is a subject of continuous debates and revisions.”> Thus,
recent studies have challenged a decade-old model of the
organization of mammalian septin oligomers by suggesting
a novel subunit arrangement in the rod complexes.
According to these studies, the simplest building block of
the septin cytoskeleton is composed of either six or eight
protein subunits. A typical hexamer and octamer have the
following subunit order: SEPT2-SEPT6-SEPT7-SEPT7-
SEPT6-SEPT2 and SEPT2-SEPT6-SEPT7-SEPT9-SEPT-
9-SEPT7-SEPT6-SEPT?2, respectively.””® Such oligomeric
composition suggests that members of all four septin groups
participate in the complex formation. Furthermore, accord-
ing to the Kinoshita rule, members of the same septin group
are interchangeable in the oligomers. For example, SEPT2
may be replaced by either SEPT4 or SEPTS, whereas
SEPT9 may be replaced by either SEPT3 or SEPT12. This
enables the assembly of functional septin complexes in
different tissues that express distinct repertoires of septin
genes. Based on this, SEPT7, the only member in its group,
is predicted to be the most common and important
component of the septin cytoskeleton. Indeed, several
studies have demonstrated that loss of SEPT7 destabilizes
other subunits of the septin oligomers and triggers their
degradation.””*® The septin rod oligomers spontaneously
collide to form short filaments that can further assemble by
end-to-end joining or lateral interactions into bundles, rings,
gauzes, and sheer-like structures (Figure 1).*7 It is note-
worthy that the composition of septin oligomers is primarily
based on the in vitro reconstitution studies that utilized
purified recombinant septin proteins.””° The composition
of such oligomers could be much more complex in vivo.
Septin complexes isolated from different mammalian cells
belong to either the canonical hetero-oligomers (SEPT2, -6,
-7, -9; SEPT3, -5, -7; or SEPT7, -9, -11), or have unusual
subunit composition inconsistent with the canonical oligo-
merization (SEPT2, -5, -6, -7; SEPT4, -5, -8; SEPT2, -5,
etc).”’ It is also possible that the hetero-oligomerization is
not an obligate mechanism of septin assembly and activity,
and some septin family members can function as monomers
or homo-oligomers. For example, loss of SEPTI1, but not
SEPT2, SEPT6, SEPT7, or SEPT9, has been shown to
disrupt Golgi morphology in cervical cancer cells,”’ which
selectively implicates SEPT1 in the regulation of Golgi
integrity and trafficking. Furthermore, a specific SEPT4
splice isoform, SEPT4_i2, alias apoptosis-related protein in
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Figure 1  Organization and cellular function of the septin cytoskeleton.
The assembly of the septin cytoskeleton involves initial formation of
hetero-oligomers with their subsequent polymerization into higher order
structures. The most well-characterized functions of septin polymers
include the regulation of cell division, migration, cell—cell adhesions, and
intracellular vesicle trafficking.

the transforming growth factor (TGF)-f signaling pathway
(ARTS), was shown to selectively localize to mitochondria
in kidney epithelial cells and regulate cell apoptosis.”” Such
peculiar functional activity of SEPT4 may be linked to its
ability to homo-oligomerize and form amyloid-like fila-
ments in vitro.”> The unique cellular activities of certain
septin paralogs and splice isoforms could add another level
of complexity to the septin functions and regulation in
different mammalian cells and tissues.

Importantly, a current paradigm considers the septin
cytoskeleton as a universal molecular scaffold mediating the
organization of other key cytoskeletal elements and their
interactions with lipid membranes.™***" This puts the septin
cytoskeleton into the center of cytoskeletal regulation.
Several important molecular features of septin polymers
enable such a scaffolding role. First, due to a slow rate of the
GTP hydrolysis, septin filaments are more stable compared
with actin filaments and microtubules.’* Hence, they can
serve as templates and provide a structural memory for the
assembly of more labile cytoskeletal elements. Second,
septins are known to physically interact with and regulate
the organization of actin filaments and microtubules.”°
Indeed, Drosophila SEPTI1/SEPT2/SEPT7 and human
SEPT2/SEPT6/SEPT7 complexes, as well as human SEPT9
cross-link actin filaments into long, curved bundles.””®
Furthermore, SEPT9 suppresses F-actin disassembly
caused by the actin-depolymerizing protein cofilin.”” SEPT2
and SEPT9 are known to interact with a key actin motor,
nonmuscle myosin I (NM II).**" Interestingly, such
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interactions have opposite effects on the NM II activity,
with SEPT?2 activating and SEPT9 inhibiting this motor
protein.””*! In addition to their association with actomyosin
structures, septins also interact with microtubules.>®
SEPT9_il splice isoform directly binds to B-tubulin and
induces microtubule bundling,42 whereas the SEPT2/6/7
complex preferentially associates with microtubule plus
ends and modulates their dynamics.”” The functional rele-
vance of these septin-microtubule interactions was high-
lighted by the findings that either SEPT2, or SEPT7
depletion disrupts different microtubule populations in
polarized and migrating epithelial cells.*** It should be
noted that the ability of septins to form multiprotein com-
plexes is not limited to their oligomerization and in-
teractions with actin filaments and microtubules. Published
interactomes of different septin family members show a
large variety of additional binding partners that include
actin-binding proteins, regulators of vesicle trafficking, and
signaling molecules such as kinases, phosphatases, and
small GTPases.***® However, functional significance of the
majority of these interactions remains to be established.

Another key molecular feature of the septin oligomers is
their affinity to lipid membranes. Mammalian septins
preferentially bind to phosphoinositides on different
cellular membranes.””** Such binding could be essential
for the annealing of short septin oligomers and assembly of
higher order polymeric structures.”’ Interestingly, septins
have been identified among the very few eukaryotic pro-
teins that can sense a micron-scale membrane
curvature.”’ >? Because of this, septin polymers preferen-
tially assemble at the curvature-associated cellular struc-
tures such as cytokinetic furrows, bases of dendritic spines
in neurons, branches in filamentous fungi, and intracellular
lipid droplets.”’”'"* Septin—membrane interactions not
only promote assembly of higher-order septin cytoskeletal
structures, but also significantly affect the membrane or-
ganization. For example, septin binding can induce
membrane deformation, thereby controlling the shape of
cellular organelles and vesicles.**””  Furthermore,
membrane-associated septin polymers create physical bar-
riers for the lateral diffusion of lipids and transmembrane
proteins, enabling formation of distinct membrane
compartments.” Finally, due to their dual affinity to
membrane lipids and other cytoskeletal elements, septins
physically link cellular membranes to actin filaments and
microtubules, thereby creating a higher order cellular
architecture.

Cellular Functions of the Septin Cytoskeleton

Given the unique ability of septins to engage in multiple
interactions at different cellular compartments, it is not
surprising that the septin cytoskeleton has been implicated
in the regulation of a variety of cellular functions (Figure 1).
Because cellular roles of septins have been described in
several excellent reviews,””" this review briefly
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summarizes their role in tissue inflammation and fibrosis.
However, the canonical activity of the septin cytoskeleton in
regulating cell division, also essential for septin functions in
inflamed tissues has been extensively reviewed elsewhere
and not discussed here.””"’

Intracellular Vesicular Trafficking

The prominent lipid-binding ability of septins allows
them to act as important regulators of intracellular vesicle
trafficking. At the plasma membrane, SEPT2 participates
in the formation of macropinosomes that mediate bulk
uptake of the surrounding liquids.”* SEPT2, SEPT6, and
SEPT7 are essential for the intracellular trafficking of
internalized liquid cargo by regulating its transit from
early to late endosomes and delivery to lysosomes.”*”” A
different line of evidence has implicated mammalian
septins in the control of internalization and intracellular
fate of plasma membrane receptors, most notably mem-
bers of the epidermal growth factor receptor family.”®’
Specifically, binding with SEPT2 or SEPT9 stabilizes
these receptors at the plasma membrane and attenuates
their ubiquitination and degradation. Modulation of
endocytosis and endosomal transit of the internalized
molecules represents only one aspect of septin-dependent
regulation of vesicle trafficking. In addition, septins are
important for the formation of Golgi-derived vesicles and
regulation of both constitutive and stimulated protein
exocytosis.”®”® The diverse septin-dependent trafficking
events indicate that the septin cytoskeleton may play
important roles in regulating receptor signaling on the
plasma membrane, controlling transmembrane fluxes of
ions and metabolites, and regulating protein secretion.
The ability of septins to control multiple steps of vesicle
trafficking underlies the important functions of the septin
cytoskeleton in regulating host—pathogen interactions
and deposition of the extracellular matrix in fibrotic tis-
sues as discussed below.

Cell Migration and Matrix Adhesion

Another important function of the septin cytoskeleton in-
volves regulation of cell migration. Several studies
demonstrate that loss of SEPT2, SEPT7, and SEPT9
consistently attenuates wound healing in cultured epithelial
and cancer cell monolayers, as well as in Xenopus
embryo.””*77%%° The observed promigratory activity of the
septin cytoskeleton may be mediated by different
mechanisms such as control of cortical microtubule as-
sembly at the migrating cell edge,”” formation of basal
actin-based stress ﬁbers,37 stabilization of focal adhe-
sions,”””” and activation of mitogen-activated protein
(MAP) kinase signaling.®” Interestingly, SEPT2 and SEPT9
are not only essential for focal adhesion maturation, but also
regulate the assembly of other adhesion structures (such as
podosomes), that mediate matrix degradation.”’** As
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discussed below, septin-dependent regulation of cell
migration could be an important contributor to leukocyte
infiltration in the inflamed tissues.

Regulation of Cellular Signaling

In addition to interacting with other cytoskeletal structures,
septins  participate  in  additional  protein—protein
interactions, thereby regulating different intracellular
signaling pathways. Thus, the plasma
membrane—endoplasmic reticulum contact sites are impor-
tant places for the septin activity in mammalian cancer cells
and Drosophila neurons, where SEPT2, SEPT4, SEPTS,
and SEPT7 control assembly of STIM1-ORAII calcium
channels and regulate store-operated calcium entry.®**
SEPT4 has recently been identified as a novel regulator of
a signal transducer and activator of transcription (STAT) 3
activity in vascular smooth muscle cells.”” SEPT4 binds to
STAT3 and promotes its interaction with SIRT1 deacety-
lase, which results in inhibition of STAT3-mediated
signaling.®” In contrast to STAT3 inhibition, septin bind-
ing may promote MAP kinase-dependent signaling, as
supported by the direct interaction of the SEPT9_v1 isoform
with c-Jun N-terminal kinase (JNK) in human mammary
epithelial cells, protecting it from degradation and
increasing kinase activity.”® This results in a marked
enhancement of JNK-dependent gene expression. Similarly,
the protective effects of septin binding have significant
functional consequences for hypoxia-inducible factor-1
(HIF-1) signaling. SEPT9_v1 is an important binding part-
ner for HIF-1a in human cancer cell lines.®”°® This inter-
action protects HIF-1a protein from ubiquitination and
degradation under normoxic and hypoxic conditions and
markedly enhances its transcriptional activity.”® The septin-
dependent regulation of STAT3, JNK, and HIF-1a. signaling
could be particularly important during mucosal inflamma-
tion where these signaling events are markedly up-regulated
by proinflammatory cytokines and tissue hypoxia.”®’

Septin-Dependent Regulation of Inflammation
and Tissue Fibrosis

Since the discovery of the first septins in yeast cells more
than 30 years ago, these proteins have been extensively
studied by cell and developmental biologists. Recently, it
became clear that abnormal organization and regulation of
the septin cytoskeleton may contribute to the pathophysi-
ology of different human diseases. The main focus in these
studies is on understanding the roles of septin dysfunction in
the development of neurodegenerative diseases and can-
cer.'”’%"" Although several lines of evidence strongly
suggest roles of septins in inflammatory disorders, very little
is known about the specfics of those roles. The most plau-
sible functions of the septin cytoskeleton during tissue
inflammation are discussed below. They involve regulation
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of pathogen uptake, control of immune cell infiltration and

activity, regulation of tissue barrier permeability, and

contribution to tissue fibrosis. A summary of these functions

can be found in Table 1 and Figure 2.

Table 1

Host—Pathogen Interactions

Septin-dependent regulation of host—pathogen interactions

have been initially alluded to by a study that identified

Functional Effects of Targeting Different Septins on Experimental Infection, Inflammation, and Fibrosis Models

Interference with the

septin Effects of the septin cytoskeleton
Septin paralog cytoskeleton Experimental system perturbation Reference
Host—pathogen interactions
SEPT2 siRNA-mediated Hela cervical epithelial cells, Inhibited Listeria and Shigella invasion 72
knockdown JEG-3 trophoblast cells
SEPT2, SEPT7,  siRNA-mediated Hela cells Inhibited Salmonella invasion 73
SEPT9 knockdown
SEPT7 siRNA-mediated Human endothelial cells Inhibited Candida endocytosis 74
knockdown
SEPT9 siRNA-mediated Hela cells Inhibited enteropathogenic Escherichia 75
knockdown coli attachment
SEPT2, SEPT7  siRNA-mediated Hela cells Increased survival and proliferation of 76,77
knockdown intracellular Shigella
SEPT2, SEPT7,  siRNA-mediated Hela cells Inhibited Chlamydia extrusion by host 78
SEPT9 knockdown cells
SEPT7 siRNA-mediated A549 lung epithelial cells Accelerated vaccinia virus release from 79
knockdown host cells
SEPT9 siRNA-mediated Huh7 liver epithelial cells Inhibited hepatitis C virus (HCV) 47
knockdown replication
SEPT7 Morpholino-mediated Zebrafish larvae Increased susceptibility to Shigella 80
knockdown infection
Immune cell development and tissue barrier integrity
SEPT2 small harpin (sh)RNA- Hela cells, RAW264.7 Inhibited Fc receptor—mediated 81
mediated knockdown macrophages phagocytosis
SEPT7 shRNA-mediated D10.G4 T-cell line Decreased spontaneous crawling 82
knockdown velocity. Increased transmigration
through porous membrane
SEPT7 T-cell—specific knockout Mice Declines T-cell population in vivo. 83
Inhibited proliferation of stimulated
T cells
SEPT9 T-cell—specific knockout Mice Decreased mature T-cell number in vivo 84
SEPT2 shRNA-mediated Primary human bronchial Increased epithelial permeability 85
knockdown epithelial cells
SEPT7 Clustered regularly HT-29 human colonic epithelial ~ Increased epithelial permeability 28
interspaced short cells
palindromic repeats
(CRISPR)-Cas9
—mediated knockout
SEPT2 shRNA-mediated Primary human endothelial cells  Increased endothelial permeability. 86
knockdown Accelerated leukocyte transmigration
SEPT2 siRNA-mediated Primary human endothelial cells  Exaggeration of thrombin-induced 87
knockdown barrier breakdown
Tissue fibrosis
SEPT4 Whole-body knockout Mice More severe liver fibrosis in 3 in vivo 88
models
SEPT4 Adenovirus-mediated Mice Suppression of Schistosoma-induced 89
overexpression liver fibrosis
SEPT6 shRNA-mediated Mice Suppression of thioacetamide-induced 90
knockdown liver fibrosis
SEPT8 Whole-body knockout Mice No effect on the unilateral ureteral 91
obstruction model of kidney fibrosis
44 ajp.amjpathol.org m The American Journal of Pathology


http://ajp.amjpathol.org

Septins in Inflammation and Fibrosis

‘% Bacteria in septin cages

% Septin oligomers

\\ Actin stress fibers

Bacteria in septin-coated vacuoles

=< Cortical actin filaments Extracellular matrix proteins

Iil TGF-B receptor

Figure 2  Mechanisms of regulation of inflammation and fibrosis
through septins. This figure depicts the known or proposed impact of
septins on: TGF-B and MAP kinase signaling (1); pathogen invasion, pro-
cessing, and dissemination (2); exocytosis and assembly of extracellular
matrix proteins (3); and immune cell migration (4). SEPT, septin; TGF-p,
transforming growth factor-f.

SEPT9 as a major protein enriched in phagosomes
responsible for the cellular entry of Listeria mono-
cytogenes.”” Subsequent studies showed crucial regulatory
roles of the septin cytoskeleton during infection of cultured
mammalian cells with different bacterial, fungal, or viral
pathogens.*”” Interestingly, septins appear to have a dual
role in controlling pathogen invasion and spread in the host
cells. On the one hand, pathogens hijack the septin cyto-
skeleton to invade the host cells, as supported by septin
accumulation at the pathogen entry sites during L. mono-
cytogenes, Shigella flexneri, Salmonella typhimurium, and
Candida albicans invasion.”””’* On the other hand,
depletion of key septin paralogs, such as SEPT2, SEPT7,
and SEPT9, markedly inhibits internalization of these
bacterial pathogens.”””’* Although mechanisms underly-
ing septin-dependent regulation of bacterial entry remain
poorly investigated, they likely involve remodeling of the
cortical actin cytoskeleton. Thus, SEPT7 mediates recruit-
ment of an important actin cytoskeletal regulator, Rho-
associated kinase 2, to the S. fyphimurium entry sites and
promotes Salmonella-induced phosphorylation of the actin
polymerizing protein, formin homology domain contain-
ing-1.”° Additionally, atomic force microscopy indicates
decreased viscosity and elasticity of the cell cortex
following SEPT2 or SEPT11 depletion, which is consistent
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with altered organization of the submembranous actin
cytoskeleton.”* Altered organization of the cortical actin
cytoskeleton in septin-deficient cells can also explain the
inhibitory effects of SEPT9 depletion on the attachment of
enteropathogenic Escherichia coli, which requires exten-
sive cytoskeletal remodeling of the host cell.”

Despite accelerating pathogen entry, septin cytoskeleton
also acts as a negative regulator of infection by limiting
survival and spread of intracellular pathogens. Septin
filament assembly entraps a significant fraction of intra-
cytosolic Shigella, including actively dividing bacteria.””*”°
This septin caging inhibits bacterial metabolism,
proliferation, and motility inside the host cells.”*’"?°
More importantly, assembled septin cages recruit compo-
nents of the autophagosomal machinery that accelerates the
delivery of entrapped Shigella into lysosomes for degra-
dation.”>”® Formation of septin cages is not a unique event
of Shigella infection, and also occurs during invasion of
other intracellular pathogens. For example, septin filament
network assembles around intracellular vacuoles containing
Chlamydia trachomatis in human epithelial cells’® and
internalized enteropathogenic E. coli in macrophages.’’
Furthermore, during vaccinia virus infection, septin fila-
ments wrap around newly assembled virions attached to the
host cell surface, forming cage-like structures.’” Interest-
ingly, encaging of Chlamydia and vaccinia virus by the host
septin cytoskeleton has opposite effects on the pathogen
release from the host cells. Specifically, the septin cyto-
skeleton prevents vaccinia virus release and cell-to-cell
dissemination while promoting Chlamydia extrusion.”"’
Finally, a different mechanism exploiting the lipid-
binding ability of the septin cytoskeleton was shown to
drive hepatitis C virus (HCV) infection of liver cells.”’
HCV infection markedly accelerates SEPT9 expression
and septin filament assembly. This results in accumulation
of intracellular lipid droplets, which is dependent on septin
filament interactions with phosphoinositide and microtu-
bules. Such septin-driven formation of lipid droplets is
crucial for efficient HCV replication.”’

While a growing number of studies focus on the septin-
dependent regulation of pathogen interactions with cultured
cells in vitro, almost nothing is known about the ability of
the septin cytoskeleton to regulate pathogen infection
in vivo. The only study addressing this reported that septins
restrict Shigella infection and the associated inflammatory
response in zebrafish larvae.* In this study, loss of SEPT7
increased bacterial burden, which was linked to over-
activation of IL-1B signaling and increase in bacteria-
induced neutrophil death.®” Interestingly, pharmacologic
inhibition of the inflammatory response using IL-1 receptor
antagonist rescued neutrophil survival and decreased
bacterial burden in septin-deficient zebrafish. Together,
these studies strongly suggest that the septin cytoskeleton
could serve as an important regulator of host—pathogen
interactions and inflammatory responses triggered by
bacterial or viral infections.
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Immune Cell Development and Functions

Different septin paralogs are abundantly expressed in
human macrophages, lymphocytes, and dendritic
cells.®""*>”® However, the role of the septin cytoskeleton in
regulation of immune cell development and functions re-
mains poorly understood (Table 1). In macrophages,
SEPT2 and SEPT11 accumulate at the phagosomes in actin
cytoskeleton-dependent fashion, and SEPT?2 depletion was
shown to inhibit Fc receptor—mediated phagocytosis.”'
Disruption of the septin cytoskeleton by SEPT7 depletion
causes profound alterations in T lymphocyte cell
morphology manifested by the excessive membrane bleb-
bing and increased uropod length.*”*” The disruption of the
septin cytoskeleton also has a complex effect on T-cell
motility such that SEPT7-deficient T cells exhibit decreased
crawling velocity during random planar migration, but are
able to more efficiently transmigrate through confined
spaces, such as the small pores in the Transwell membrane
filters.®” It has been suggested that decreased rigidity of the
cell cortex in septin-deficient T cells increases the ability of
the cell membrane to form protrusions, which impairs the
processive and directional movement of the cell in open
spaces. By contrast, such cortical destabilization allows for
higher deformability of septin-depleted cells that acceler-
ates their passing through narrow spaces.*>'”’ Disruption
of the septin cytoskeleton negatively impacts other aspects
of T-cell development and functions. Thus, transgenic mice
with T-cell—specific ablation of SEPT9 are characterized
by a decreased number of mature peripheral T cells, espe-
cially the CD8" T-cell population.** These maturation de-
fects are associated with the decreased proliferation
capacity of SEPT9-deficient CD8" T cells. Similarly,
conditional knockout of SEPT7 in T lymphocytes results in
the diminished CD8" cell population in aged mice.*
Additionally, isolated SEPT7-deficient CD8" T cells
show markedly reduced proliferation and cytokinesis
failure after stimulation with soluble immune activators
such as cytokines, phorbol ester, or ionomycin.*

Regulation of Tissue Barriers

In addition to playing important roles in regulating
pathogen engagement and immune cell responses, septin
cytoskeleton serves as essential regulator of the integrity
and permeability of tissue barriers (Table 1). Indeed,
disruption of epithelial and vascular endothelial barriers is a
common feature of different inflammatory processes.'’'"'"”
Limited and transient increased barrier permeability has
beneficial effects by allowing tissue influx of immune cells
and efficient pathogen clearance. However, poorly
controlled and prolonged disruption of epithelial and
endothelial barriers is detrimental because it increases body
exposure to environmental pathogens and stressors, and
exaggerates the inflammatory response.'”""'** Permeability
of epithelial and endothelial barriers is regulated by
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specialized adhesive structures, adherens and tight junc-
tions, which are regulated by the underlying cortical acto-
myosin cytoskeleton.'”'*'"* Emerging evidence suggests
that the septin cytoskeleton acts as an important regulator of
epithelial and endothelial junctions. For example, SEPT2 is
enriched at intercellular junctions in cultured human
endothelial®® and bronchial epithelial cells.*” Down-
regulation of SEPT2 and SEPT7 expression increases
permeability of model bronchial and intestinal epithelial
cell monolayers, respectively.”**” In vascular endothelium,
loss of SEPT?2 accelerates leakiness of a resting endothelial
barrier,”® as well as exaggerates barrier disruption and at-
tenuates barrier recovery following endothelial stimulation
with thrombin.*” Interestingly, increased vascular perme-
ability of SEPT2-depleted endothelium promotes trans-
endothelial migration of natural killer cells.*® Furthermore,
loss of SEPT?2 sensitizes bronchial epithelial cells to the
barrier-disruptive action of an environmental hazard, par-
ticulate matter.”> These examples demonstrate that septin-
dependent stabilization of epithelial and endothelial
barriers could serve as a protective mechanism limiting
immune cell exposure to environmental pathogens during
tissue inflammation.

Tissue Fibrosis

Limited evidence, primarily derived from the liver and
kidney, implicates the septin cytoskeleton in the regulation
of aberrant tissue repair and fibrosis (Table 1). The only
comprehensive characterization of septin expression in
fibrotic tissues was performed in a mouse model of kidney
fibrosis.”' A gene expression analysis for different septins
(SEPT1 and SEPT4 through SEPT11) demonstrates a
significant up-regulation of all septin transcripts in the
fibrotic kidney compared with controls. Immunohistologic
experiments detect SEPT7 and SEPTS protein up-regulation
primarily in the tubulointerstitial region of the fibrotic
kidney. Myofibroblasts are considered the chief profibrotic
cell type across organs. Interestingly, septins were shown to
significantly colocalize with the myofibroblast marker o-
smooth muscle actin in the diseased kidneys.”' SEPT4 and
SEPT6 were also found up-regulated in different rodent
models of liver fibrosis, where they were associated with
hepatic stellate cells (HSC).”'"* However, given a recent
report that shows down-regulation of SEPT9 expression in
carbon tetrachloride—induced liver fibrosis, septin expres-
sion could be a subject of more complex regulation in
fibrotic tissues.'"”

Functional effects of selected septins on fibrogenesis were
examined in a limited number of studies that utilized
knockout mice models and adenovirus-mediated manipula-
tion of septin expression in vivo. Mice with total knockout
of SEPT4 display exaggerated hepatic fibrosis in three
different experimental models (carbon tetrachloride, and
cholestasis- and steatohepatitis-induced fibrosis).”® These
profibrotic effects of SEPT4 deletion are linked to the
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increased activation and collagen-producing ability of HSC,
the major myofibroblast precursor cell type in the liver.
Supporting this loss of function data, adenoviral-mediated
overexpression of SEPT4 suppresses hepatic fibrosis
induced by Schistosoma japonicum infection in mice.”
Antifibrotic effects of SEPT4 overexpression are associ-
ated with inhibition of HSC activity and their increased
apoptosis. It is noteworthy that SEPT4 was shown to be a
potent regulator of spontaneous and TGF-f—induced
apoptosis in different tissues.’>'’° In contrast to the reported
antifibrotic functions of SEPT4, a recent study describes a
profibrotic activity of SEPT6.” Indeed, shRNA-mediated
depletion of SEPT6 in vivo attenuates thioacetamide-
induced hepatic fibrosis in rats by inhibiting HSC
activation and decreasing the excessive extracellular matrix
deposition seen in fibrosis.” Finally, SEPT8-null mice do
not show any differences in the development of kidney
fibrosis as compared with wild-type controls, thereby sug-
gesting dispensability of SEPTS in this disease model.” At
present, it is unclear whether the conflicting evidence re-
flects peculiar roles of different members of the septin
family in fibrosis, or tissue-specific effects of the septin
cytoskeleton on fibrogenesis. In addition, a temporal role of
the septin cytoskeleton in early versus late tissue damage
has not been evaluated yet.

On a cellular level, septin-dependent regulation of tissue
fibrosis is likely linked to the central profibrotic signaling
pathway involving TGF-B. TGF-f is known to modulate
septin expression and localization by up-regulating
SEPT6”"'"” and down-regulating SEPT9 levels in the
liver,'” as well as triggering nuclear translocation of SEPT4/
ARTS in epithelial cells.”” Septins themselves could act as
positive regulators of TGF-B signaling by stimulating
expression of this growth factor and promoting TGF-
B—driven Smad signaling, as was shown for SEPT6 and
SEPT9 actions in HSC” and glioma cells,'”® respectively.
These data indicate that the septin cytoskeleton could be part
of an important fibrogenic positive feedback loop mechanism
involving TGF-B—induced up-regulation of septins, which in
turn triggers further increase in TGF-B level and activity.
Septins modulate other signaling pathways important for
fibrogenesis in HSC. For example, SEPT6 up-regulates the
activity of all three major MAP kinases: ERK, JNK, and
p38,”? all of which have been implicated in organ fibrosis.'"”
Furthermore, SEPT4 can limit HSC activation by stimulating
expression of a Wnt antagonist, Dickkopf2, thereby inhibit-
ing the canonical Wnt signaling.' "’

The Septin Cytoskeleton as a Potential Target
for Therapeutic Interventions

Emerging functions of the septin cytoskeleton in regulating
various aspects of the immune response and tissue remod-
eling during inflammation and fibrosis raise the important
question of whether septins could be successfully targeted to
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develop novel anti-inflammatory and antifibrotic therapies.
In general, functional activity of different cytoskeletal
structures such as actin filaments and microtubules could be
modulated by cell-permeable small molecules that cause
either stabilization or disassembly of targeted cytoskeletal
structures. The feasibility of clinical application of such
compounds is illustrated by the successful use of
microtubule-stabilizing taxane class drugs as anticancer
agents. However, pharmacologic modulation of the septin
cytoskeleton, while possible, remains at the very early stage
of exploration. The experimental toolbox of septin-
modulating compounds is very narrow with only one
small molecule, forchlorfenuron (FCF), being extensively
used to target the septin cytoskeleton in different experi-
mental systems.''' FCF was shown to block septin filament
turnover, resulting in accumulation of thick septin bundles
and aggregates.''” Interestingly, such FCF-induced stabili-
zation of the septin cytoskeleton mimics functional effects
of the depletion of key septin paralogs by inhibiting cell
division, migration, vesicle trafficking, calcium entry, and
cell—cell adhesions.”’”%0*¥>-112 Degpite diverse effects
on cell function, FCF itself may not be suitable for clinical
use in its current form. It has a relatively low affinity for
septin filaments and hence is only active at high, sub-
millimolar concentrations. Furthermore, possible off-target
effects and animal tissue toxicity of FCF have been
reported.zg’”l’113 Nevertheless, studies utilizing FCF have
laid the ground for the development of next-generation
septin inhibitors. We expect that these inhibitors will be
first developed as anticancer drugs, given the substantial
body of evidence about mutations or altered expression of
different septin paralogs being associated with tumorigen-
esis.'’ Indeed, two recent studies report synthesis of
different chemical derivatives of FCF and their effects on
cancer cells.''*'"* While one study characterizes cytotoxic
effects of FCF derivatives in malignant mesothelioma
cells, ' the other compares effects of FCF and its analogs
on viability of ovarian and endometrial cancer cells.''* Not
much is known about the possibility of pharmacologic in-
hibition of the septin cytoskeleton during inflammation and
tissue fibrosis. Further studies are required to examine po-
tential utilization of FCF and its derivatives for the devel-
opment of novel anti-inflammatory and antifibrotic
therapies.

Conclusion

The septin cytoskeleton represents a critical component of
cellular architecture that is known to mediate a variety of
housekeeping and specialized functions. Most known for
their roles in normal tissue development and homeostasis,
septins are increasingly recognized as important contribu-
tors to human diseases. A significant body of literature links
the altered expression and mutations of different septins
with the development of neurological diseases and cancer.
Much less is known about the role of the septin cytoskeleton
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in regulating tissue inflammation and fibrosis. As demon-
strated in this review article, exciting recent developments in
this field include discovering the roles of septins in the
regulation of host interactions with bacterial and viral
pathogens, modulation of lymphocytes differentiation, and
profibrotic signaling (Table 1 and Figure 2). However, a
number of important questions remain to be answered. For
example, it is crucial to understand whether, as part of the
same cytockeletal structure, different septins similarly
regulate inflammatory and fibrotic responses, or whether
members of the septin protein family have unique functional
roles. It would be important to examine how septins regulate
signaling by pattern recognition receptors that sense
different pathogens, as well as signaling by different
inflammatory cytokines and growth factors. Given the
known roles of septins in the regulation of vesicle
trafficking and the Golgi, it should be a research priority to
determine whether the septin cytoskeleton controls secretion
of different inflammatory factors by activated immune cells
and regulates deposition of the extracellular matrix in
fibrotic tissues. There is obvious need for extensive in vivo
studies involving mouse models with tissue-specific
knockout of different septins. From a therapeutic
standpoint, it is critical to understand whether the septin
cytoskeleton could be a druggable target during inflamma-
tion and tissue fibrosis, and to develop specific pharmaco-
logic modulators of septin cytoskeletal assembly and
dynamics. We are still at the very beginning of the explo-
ration in this exciting and potentially fruitful research field,
and future studies will pave the way for the modulation of
septins to treat human inflammatory and fibrotic diseases.
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