SARS-CoV-2 Infection and ACE2 Down-Regulation
- Kuba K.
- Imai Y.
- Rao S.
- Gao H.
- Guo F.
- Guan B.
- Huan Y.
- Yang P.
- Zhang Y.
- Deng W.
- Bao L.
- Zhang B.
- Liu G.
- Wang Z.
- Chappell M.
- Liu Y.
- Zheng D.
- Leibbrandt A.
- Wada T.
- Slutsky A.S.
- Liu D.
- Qin C.
- Jiang C.
- Penninger J.M.
Immunothrombosis (Thromboinflammation) and COVID-19
- Massberg S.
- Grahl L.
- von Bruehl M.L.
- Manukyan D.
- Pfeiler S.
- Goosmann C.
- Brinkmann V.
- Lorenz M.
- Bidzhekov K.
- Khandagale A.B.
- Konrad I.
- Kennerknecht E.
- Reges K.
- Holdenrieder S.
- Braun S.
- Reinhardt C.
- Spannagl M.
- Preissner K.T.
- Engelmann B.
- Barnes B.J.
- Adrover J.M.
- Baxter-Stoltzfus A.
- Borczuk A.
- Cools-Lartigue J.
- Crawford J.M.
- Daßler-Plenker J.
- Guerci P.
- Huynh C.
- Knight J.S.
- Loda M.
- Looney M.R.
- McAllister F.
- Rayes R.
- Renaud S.
- Rousseau S.
- Salvatore S.
- Schwartz R.E.
- Spicer J.D.
- Yost C.C.
- Weber A.
- Zuo Y.
- Egeblad M.
- Leppkes M.
- Knopf J.
- Naschberger E.
- Lindemann A.
- Singh J.
- Herrmann I.
- Stürzl M.
- Staats L.
- Mahajan A.
- Schauer C.
- Kremer A.N.
- Völkl S.
- Amann K.
- Evert K.
- Falkeis C.
- Wehrfritz A.
- Rieker R.J.
- Hartmann A.
- Kremer A.E.
- Neurath M.F.
- Muñoz L.E.
- Schett G.
- Herrmann M.
Clinical Evidence of Thrombotic Disorders in COVID-19: A Procoagulant Disease
- Rodriguez-Morales A.J.
- Cardona-Ospina J.A.
- Gutiérrez-Ocampo E.
- Villamizar-Peña R.
- Holguin-Rivera Y.
- Escalera-Antezana J.P.
- Alvarado-Arnez L.E.
- Bonilla-Aldana D.K.
- Franco-Paredes C.
- Henao-Martinez A.F.
- Paniz-Mondolfi A.
- Lagos-Grisales G.J.
- Ramírez-Vallejo E.
- Suárez J.A.
- Zambrano L.I.
- Villamil-Gómez W.E.
- Balbin-Ramon G.J.
- Rabaan A.A.
- Harapan H.
- Dhama K.
- Nishiura H.
- Kataoka H.
- Ahmad T.
- Sah R.
Clinical, laboratory and imaging features of COVID-19: a systematic review and meta-analysis.
- Klok F.A.
- Kruip M.J.H.A.
- van der Meer N.J.M.
- Arbous M.S.
- Gommers D.
- Kant K.M.
- Kaptein F.H.J.
- van Paassen J.
- Stals M.A.M.
- Huisman M.V.
- Endeman H.
- Wichmann D.
- Sperhake J.P.
- Lütgehetmann M.
- Steurer S.
- Edler C.
- Heinemann A.
- Heinrich F.
- Mushumba H.
- Kniep I.
- Schröder A.S.
- Burdelski C.
- de Heer G.
- Nierhaus A.
- Frings D.
- Pfefferle S.
- Becker H.
- Bredereke-Wiedling H.
- de Weerth A.
- Paschen H.R.
- Sheikhzadeh-Eggers S.
- Stang A.
- Schmiedel S.
- Bokemeyer C.
- Addo M.M.
- Aepfelbacher M.
- Püschel K.
- Kluge S.
- Bhayana R.
- Som A.
- Li M.D.
- Carey D.E.
- Anderson M.A.
- Blake M.A.
- Catalano O.
- Gee M.S.
- Hahn P.F.
- Harisinghani M.
- Kilcoyne A.
- Lee S.I.
- Mojtahed A.
- Pandharipande P.V.
- Pierce T.T.
- Rosman D.A.
- Saini S.
- Samir A.E.
- Simeone J.F.
- Gervais D.A.
- Velmahos G.
- Misdraji J.
- Kambadakone A.
- Ciceri F.
- Beretta L.
- Scandroglio A.M.
- Colombo S.
- Landoni G.
- Ruggeri A.
- Peccatori J.
- D’Angelo A.
- de Cobelli F.
- Rovere-Querini P.
- Tresoldi M.
- Dagna L.
- Zangrillo A.
- Leppkes M.
- Knopf J.
- Naschberger E.
- Lindemann A.
- Singh J.
- Herrmann I.
- Stürzl M.
- Staats L.
- Mahajan A.
- Schauer C.
- Kremer A.N.
- Völkl S.
- Amann K.
- Evert K.
- Falkeis C.
- Wehrfritz A.
- Rieker R.J.
- Hartmann A.
- Kremer A.E.
- Neurath M.F.
- Muñoz L.E.
- Schett G.
- Herrmann M.
- Carsana L.
- Sonzogni A.
- Nasr A.
- Rossi R.S.
- Pellegrinelli A.
- Zerbi P.
- Rech R.
- Colombo R.
- Antinori S.
- Corbellino M.
- Galli M.
- Catena E.
- Tosoni A.
- Gianatti A.
- Nebuloni M.
- Buja L.M.
- Wolf D.A.
- Zhao B.
- Akkanti B.
- McDonald M.
- Lelenwa L.
- Reilly N.
- Ottaviani G.
- Elghetany M.T.
- Trujillo D.O.
- Aisenberg G.M.
- Madjid M.
- Kar B.
- Colmenero I.
- Santonja C.
- Alonso-Riaño M.
- Noguera-Morel L.
- Hernández-Martín A.
- Andina D.
- Wiesner T.
- Rodríguez-Peralto J.L.
- Requena L.
- Torrelo A.
ACE2 Down-Regulation Promoting RAAS Dysregulation
- Sparks M.A.
- South A.M.
- Badley A.D.
- Baker-Smith C.M.
- Batlle D.
- Bozkurt B.
- Cattaneo R.
- Crowley S.D.
- Dell’Italia L.J.
- Ford A.L.
- Griendling K.
- Gurley S.B.
- Kasner S.E.
- Murray J.A.
- Nath K.A.
- Pfeffer M.A.
- Rangaswami J.
- Taylor W.R.
- Garovic V.D.
- Sparks M.A.
- South A.M.
- Badley A.D.
- Baker-Smith C.M.
- Batlle D.
- Bozkurt B.
- Cattaneo R.
- Crowley S.D.
- Dell’Italia L.J.
- Ford A.L.
- Griendling K.
- Gurley S.B.
- Kasner S.E.
- Murray J.A.
- Nath K.A.
- Pfeffer M.A.
- Rangaswami J.
- Taylor W.R.
- Garovic V.D.

ACE2 Down-Regulation and Tissue Damage: Clinical and Experimental Data
- Liu Y.
- Yang Y.
- Zhang C.
- Huang F.
- Wang F.
- Yuan J.
- Wang Z.
- Li J.
- Li J.
- Feng C.
- Zhang Z.
- Wang L.
- Peng L.
- Chen L.
- Qin Y.
- Zhao D.
- Tan S.
- Yin L.
- Xu J.
- Zhou C.
- Jiang C.
- Liu L.
- Kuba K.
- Imai Y.
- Rao S.
- Gao H.
- Guo F.
- Guan B.
- Huan Y.
- Yang P.
- Zhang Y.
- Deng W.
- Bao L.
- Zhang B.
- Liu G.
- Wang Z.
- Chappell M.
- Liu Y.
- Zheng D.
- Leibbrandt A.
- Wada T.
- Slutsky A.S.
- Liu D.
- Qin C.
- Jiang C.
- Penninger J.M.
- Kuba K.
- Imai Y.
- Rao S.
- Gao H.
- Guo F.
- Guan B.
- Huan Y.
- Yang P.
- Zhang Y.
- Deng W.
- Bao L.
- Zhang B.
- Liu G.
- Wang Z.
- Chappell M.
- Liu Y.
- Zheng D.
- Leibbrandt A.
- Wada T.
- Slutsky A.S.
- Liu D.
- Qin C.
- Jiang C.
- Penninger J.M.
COVID-19: A Transient Acquired Regulatory Molecular Disease Causing a Major Problem in the Microcirculatory Environment

- Sparks M.A.
- South A.M.
- Badley A.D.
- Baker-Smith C.M.
- Batlle D.
- Bozkurt B.
- Cattaneo R.
- Crowley S.D.
- Dell’Italia L.J.
- Ford A.L.
- Griendling K.
- Gurley S.B.
- Kasner S.E.
- Murray J.A.
- Nath K.A.
- Pfeffer M.A.
- Rangaswami J.
- Taylor W.R.
- Garovic V.D.
- Bourgonje A.R.
- Abdulle A.E.
- Timens W.
- Hillebrands J.L.
- Navis G.J.
- Gordijn S.J.
- Bolling M.C.
- Dijkstra G.
- Voors A.A.
- Osterhaus A.D.M.E.
- van der Voort P.H.J.
- Mulder D.J.
- van Goor H.
- Sparks M.A.
- South A.M.
- Badley A.D.
- Baker-Smith C.M.
- Batlle D.
- Bozkurt B.
- Cattaneo R.
- Crowley S.D.
- Dell’Italia L.J.
- Ford A.L.
- Griendling K.
- Gurley S.B.
- Kasner S.E.
- Murray J.A.
- Nath K.A.
- Pfeffer M.A.
- Rangaswami J.
- Taylor W.R.
- Garovic V.D.
Conclusions
Acknowledgments
Author Contributions
References
- Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention.JAMA. 2020; 323: 1239-1242
- Immunopathology of hyperinflammation in COVID-19.Am J Pathol. 2021; 191: 4-17
- Unexpected receptor functional mimicry elucidates activation of coronavirus fusion.Cell. 2019; 176: 1026-1039
- SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues.Cell. 2020; 181: 1016-1035.e19
- COVID-19: ACE2centric infective disease?.Hypertension. 2020; 76: 294-299
- Intoxication with endogenous angiotensin II: a COVID-19 hypothesis.Front Immunol. 2020; 11: 1472
- TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein.J Virol. 2014; 88: 1293-1307
- The reproductive number of COVID-19 is higher compared to SARS coronavirus.J Travel Med. 2020; 27: taaa021
- A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase.J Biol Chem. 2000; 275: 33238-33243
- A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9.Circ Res. 2000; 87: E1-E9
- The role of ACE2 in cardiovascular physiology.Trends Cardiovasc Med. 2003; 13: 93-101
- Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2.Circ Res. 2020; 126: 1456-1474
- Tissue renin-angiotensin system and end-organ damage.J Mol Med. 2002; 80: 325-326
- A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury.Nat Med. 2005; 11: 875-879
- COVID-19 cytokine storm: the anger of inflammation.Cytokine. 2020; 133: e155151
- Vasculopathy and coagulopathy associated with SARS-CoV-2 infection.Cells. 2020; 9: 1583
- COVID-19 usurps host regulatory networks.Front Pharmacol. 2020; 11: 1278
- Thrombosis as an intravascular effector of innate immunity.Nat Rev Immunol. 2013; 13: 34-45
- Coagulation and innate immune responses: can we view them separately?.Blood. 2009; 114: 2367-2374
- Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases.Nat Med. 2010; 16: 887-896
- Neutrophil extracellular traps infiltrate the lung airway, interstitial, and vascular compartments in severe COVID-19.J Exp Med. 2020; 217: e20201012
- Microvascular thrombosis: experimental and clinical implications.Transl Res. 2020; 225: 105-130
- Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms.Blood. 2019; 133: 906-918
- Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19.N Engl J Med. 2020; 383: 120-128
- The emerging threat of (micro)thrombosis in COVID-19 and its therapeutic implications.Circ Res. 2020; 127: 571-587
- The pathogenesis and treatment of the “cytokine storm’ in COVID-19.J Infect. 2020; 80: 607-613
- The trinity of COVID-19: immunity, inflammation and intervention.Nat Rev Immunol. 2020; 20: 363-374
- Targeting potential drivers of COVID-19: neutrophil extracellular traps.J Exp Med. 2020; 217: e20200652
- Is COVID-19 associated thrombosis caused by overactivation of the complement cascade? A literature review.Thromb Res. 2020; 194: 36-41
- Phylogenetic analysis and structural modeling of SARS-CoV-2 spike protein reveals an evolutionary distinct and proteolytically sensitive activation loop.J Mol Biol. 2020; 432: 3309-3325
- COVID-19-associated coagulopathy: an exacerbated immunothrombosis response.Clin Appl Thromb Hemost. 2020; 26 (1076029620943293)
- SARS-CoV-2 triggered neutrophil extracellular traps mediate COVID-19 pathology.J Exp Med. 2020; 217: e20201129
- Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China.Intensive Care Med. 2020; 46: 846-848
- Vascular occlusion by neutrophil extracellular traps in COVID-19.EBioMedicine. 2020; 58: 102925
- Coagulopathy of coronavirus disease 2019.Crit Care Med. 2020; 48: 1358-1364
- Clinical, laboratory and imaging features of COVID-19: a systematic review and meta-analysis.Travel Med Infect Dis. 2020; 34: 101623
- Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: an updated analysis.Thromb Res. 2020; 191: 148-150
- Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study.Ann Intern Med. 2020; 173: 268-277
- Pulmonary arterial thrombosis in COVID-19 with fatal outcome: results from a prospective, single-center, clinicopathologic case series.Ann Intern Med. 2020; 173: 350-361
- Coagulation and anticoagulation in COVID-19.Blood Rev. 2020; 47: e100761
- Outbreak of SARS-CoV2: pathogenesis of Infection and Cardiovascular Involvement.Hellenic J Cardiol. 2021; 62: 13-23
- COVID-19 and stroke: a review.Brain Hemorrhages. 2020; 14: 337-339
- Abdominal imaging findings in COVID-19: preliminary observations.Radiology. 2020; 297: E207-E215
- Acro-ischaemia and COVID-19 infection: clinical and histopathological features.J Eur Acad Dermatol Venereol. 2020; 34: e653-e754
- Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study.Lancet. 2020; 395: 1054-1062
- COVID-19 does not lead to a “typical” acute respiratory distress syndrome.Am J Respir Crit Care Med. 2020; 201: 1299-1300
- Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases.Transl Res. 2020; 220: 1-13
- Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis.Crit Care Resusc. 2020; 22: 95-97
- Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans.Lancet Respir Med. 2020; 8: 681-686
- Pathological evidence of pulmonary thrombotic phenomena in severe COVID-19.J Thromb Haemost. 2020; 18: 1517-1519
- Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study.Lancet Infect Dis. 2020; 20: 1135-1140
- The emerging spectrum of cardiopulmonary pathology of the coronavirus disease 2019 (COVID-19): report of 3 autopsies from Houston, Texas, and review of autopsy findings from other United States cities.Cardiovasc Pathol. 2020; 48: 107233
- SARS-CoV-2 endothelial infection causes COVID-19 chilblains: histopathological, immunohistochemical and ultrastructural study of seven paediatric cases.Br J Dermatol. 2020; 183: 729-737
- Kidney disease is associated with in-hospital death of patients with COVID-19.Kidney Int. 2020; 97: 829-838
- Endothelial cell infection and endotheliitis in COVID-19.Lancet. 2020; 395: 1417-1418
- In vivo demonstration of microvascular thrombosis in severe COVID-19.J Thromb Thrombolysis. 2020; 50: 790-794
- COVID-19—a vascular disease.Trends Cardiovasc Med. 2021; 31: 1-5
- Severe acute respiratory syndrome coronavirus 2, COVID-19, and the renin-angiotensin system: pressing needs and best research practices.Hypertension. 2020; 76: 1350-1367
- Disequilibrium between the classic renin-angiotensin system and its opposing arm in SARS-CoV-2-related lung injury.Am J Physiol Lung Cell Mol Physiol. 2020; 319: L325-L336
- Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues.Infect Dis Poverty. 2020; 9: 45
- The emerging role of ACE2 in physiology and disease.J Pathol. 2007; 212: 1-11
- SARS-CoV-2 receptor is co-expressed with elements of the kinin–kallikrein, renin–angiotensin and coagulation systems in alveolar cells.Sci Rep. 2020; 10: 19522
- Kinins and chymase: the forgotten components of the renin angiotensin system and their implications in COVID-19 disease.Am J Physiol Cell Mol Physiol. 2021; 320: L422-L429
- Angiotensin II induced proteolytic cleavage of myocardial ACE2 is mediated by TACE/ADAM-17: a positive feedback mechanism in the RAS.J Mol Cell Cardiol. 2014; 66: 167-176
- Proinflammatory actions of angiotensins.Curr Opin Nephrol Hypertens. 2001; 10: 321-329
- Angiotensin II induces nuclear factor (NF)-kappaB1 isoforms to bind the angiotensinogen gene acute-phase response element: a stimulus-specific pathway for NF-kappaB activation.Mol Endocrinol. 2000; 14: 99-113
- Angiotensin II stimulates the release of interleukin-6 and interleukin-8 from cultured human adipocytes by activation of NF-kappaB.Arterioscler Thromb Vasc Biol. 2004; 24: 1199-1203
- Interleukin-6 family of cytokines mediate angiotensin II-induced cardiac hypertrophy in rodent cardiomyocytes.J Biol Chem. 2000; 275: 29717-29723
- Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system.Am J Physiol Cell Physiol. 2007; 292: C82-C97
- MAP kinases in the immune response.Annu Rev Immunol. 2002; 20: 55-72
- Mitogen-activated protein kinases in innate immunity.Nat Rev Immunol. 2013; 13: 679-692
- Letter to the editor: angiotensin-converting enzyme 2: an ally or a Trojan horse? Implications to SARS-CoV-2-related cardiovascular complications.Am J Physiol Heart Circ Physiol. 2020; 318: H1080-H1083
- The kinin B1 receptor mediates alloknesis in a murine model of inflammation.Neurosci Lett. 2014; 560: 31-35
- Severe hypertension with renal thrombotic microangiopathy: what happened to the usual suspect?.Kidney Int. 2017; 91: 1271-1274
- Angiotensin-(1-9) enhances stasis-induced venous thrombosis in the rat because of the impairment of fibrinolysis.J Renin Angiotensin Aldosterone Syst. 2014; 15: 13-21
- Plasma kallikrein cleaves and inactivates apelin-17: palmitoyl- and PEG-extended apelin-17 analogs as metabolically stable blood pressure-lowering agents.Eur J Med Chem. 2019; 166: 119-124
- Elevation of plasma angiotensin II level is a potential pathogenesis for the critically ill COVID-19 patients.Crit Care. 2020; 24: 290
- Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury.Sci China Life Sci. 2020; 63: 364-374
- Angiotensin-converting enzyme 2 protects from severe acute lung failure.Nature. 2005; 436: 112-116
- Heart block, ventricular tachycardia, and sudden death in ACE2 transgenic mice with downregulated connexins.J Mol Cell Cardiol. 2003; 35: 1043-1053
- Combination therapy with ACE inhibitors and angiotensin II receptor blockers to halt progression of chronic renal disease: pathophysiology and indications.Kidney Int. 2005; 67: 799-812
- Mechanisms of Disease: An Introduction to Pathology.ed 2. Year Book Medical Publishers, Inc., Chicago, IL:1985: 16-19
- Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19).J Pathol. 2020; 251: 228-248
- Clinical characteristics of coronavirus disease 2019 in China.N Engl J Med. 2020; 382: 1708-1720
- Angiotensin-converting enzyme gene polymorphism and severe lung injury in patients with coronavirus disease 2019.Am J Pathol. 2020; 190: 2013-2017
- The case fatality rate in COVID-19 patients with cardiovascular disease: global health challenge and paradigm in the current pandemic.Curr Pharmacol Rep. 2020; 6: 315-324
- Endothelial activation and dysfunction in COVID-19: from basic mechanisms to potential therapeutic approaches.Signal Transduct Target Ther. 2020; 5: 293
- Spatial and temporal dynamics of the endothelium.J Thromb Haemost. 2005; 3: 1392-1406
- Endothelial dysfunction in COVID-19 calls for immediate attention: the emerging roles of the endothelium in inflammation caused by SARS-CoV-2.Front Med. 2021; (, [Epub ahead of print]. doi:10.1007/s11684-021-0831-z)
- The interactions between inflammation and coagulation.Br J Haematol. 2005; 131: 417-430
- Dynamics of leukocyte-platelet adhesion in whole blood.Blood. 1991; 78: 1730-1737
- Endothelium infection and dysregulation by SARS-CoV-2: evidence and caveats in COVID-19.Viruses. 2020; 13: 29
- Sepsis and thrombosis.Semin Thromb Hemost. 2013; 39: 559-566
- The role of leukocytes in thrombosis.Blood. 2016; 128: 753-762
- Blood coagulation in immunothrombosis—at the frontline of intravascular immunity.Semin Immunol. 2016; 28: 561-569
- Manipulation of ACE2 expression in COVID-19.Open Heart. 2020; 7: e001424
Article Info
Publication History
Footnotes
Supported by grants from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/Brazil) [no. 88882.378587/2019-01 ]; the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP/SP/Brazil) [no. 2012/23649-0 ]; and the Fundação de Apoio ao Ensino, Pesquisa e Assistência do HCFMRP-USP (FAEPA/Brazil) [ no. 269/2021 ; no. 272/2021 ].
Disclosures: None declared.
Identification
Copyright
User License
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy