Identification and Characterization of Senescence Phenotype in Lung Adenocarcinoma with High Drug Sensitivity

  • Seema Khadirnaikar
    Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, India

    Department of Electrical Engineering, Indian Institute of Technology Dharwad, Dharwad, India
    Search for articles by this author
  • Annesha Chatterjee
    Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, India
    Search for articles by this author
  • Sudhanshu Shukla
    Address correspondence to Sudhanshu Shukla, Ph.D., Department of Biosciences and Bioengineering, Indian Institute of Technology–Dharwad, Dharwad, Karnataka 580011, India.
    Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, India
    Search for articles by this author
      Lung adenocarcinoma (LUAD) is a major health problem and has poor prognosis. Heterogeneity is a central determinant of the treatment outcome, requiring identification of new subclasses of LUAD. Senescence has emerged as a crucial regulator of metastasis and drug response. Ionizing radiation– and doxorubicin-induced senescence-associated genes in lung fibroblasts were used in K-means clustering to identify high- and low-senescence (HS and LS) classes among The Cancer Genome Atlas- LUAD (TCGA-LUAD) patients. The LS group showed significantly poorer survival (P = 0.01) and greater activation of proliferative signaling pathways, proliferation, wound healing, and genetic aberrations (P < 0.05). The TP53 mutation rate was significantly greater in the HS group (P < 0.0001), explaining the phenotype. Also, genome-wide hypomethylation was significantly greater in the LS group than in the HS group. Interestingly, pathway analysis identified silencing of Wnt signaling in the HS group. The machine learning–based recursive feature elimination technique was used to identify a 20-gene senescence signature in TCGA-LUAD samples. The presence of a senescence phenotype with poor survival was validated in an independent patient cohort and a cell-line cohort using unsupervised clustering of samples based on a 20-gene signature. On further analysis, HS cells were more resistant to drugs, particularly histone deacetylase inhibitors. Taken together, this study identified a novel subtype of LUAD with reduced Wnt signaling and high drug resistance.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to The American Journal of Pathology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Bade B.C.
        • Cruz C.S.D.
        Lung cancer 2020 epidemiology, etiology, and prevention.
        Clin Chest Med. 2020; 41: 1-24
        • Duma N.
        • Santana-Davila R.
        • Molina J.R.
        Non–small cell lung cancer: epidemiology, screening, diagnosis, and treatment.
        Mayo Clin Proc. 2019; 94: 1623-1640
        • Kim Y.H.
        • Choi Y.W.
        • Lee J.
        • Soh E.Y.
        • Kim J.-H.
        • Park T.J.
        Senescent tumor cells lead the collective invasion in thyroid cancer.
        Nat Commun. 2017; 8: 15208
        • He S.
        • Sharpless N.E.
        Senescence in health and disease.
        Cell. 2017; 169: 1000-1011
        • Wang B.
        • Kohli J.
        • Demaria M.
        Senescent cells in cancer therapy: friends or foes?.
        Trends Cancer. 2020; 6: 838-857
        • Casella G.
        • Munk R.
        • Kim K.M.
        • Piao Y.
        • De S.
        • Abdelmohsen K.
        • Gorospe M.
        Transcriptome signature of cellular senescence.
        Nucleic Acids Res. 2019; 47: 7294-7305
        • Shukla S.
        • Evans J.R.
        • Malik R.
        • Feng F.Y.
        • Dhanasekaran S.M.
        • Cao X.
        • Chen G.
        • Beer D.G.
        • Jiang H.
        • Chinnaiyan A.M.
        Development of a RNA-seq based prognostic signature in lung adenocarcinoma.
        J Natl Cancer Inst. 2017; 109: djw200
        • Dhanasekaran S.M.
        • Balbin O.A.
        • Chen G.
        • Nadal E.
        • Kalyana-Sundaram S.
        • Pan J.
        • Veeneman B.
        • Cao X.
        • Malik R.
        • Vats P.
        • Wang R.
        • Huang S.
        • Zhong J.
        • Jing X.
        • Iyer M.
        • Wu Y.-M.
        • Harms P.W.
        • Lin J.
        • Reddy R.
        • Brennan C.
        • Palanisamy N.
        • Chang A.C.
        • Truini A.
        • Truini M.
        • Robinson D.R.
        • Beer D.G.
        • Chinnaiyan A.M.
        Transcriptome meta-analysis of lung cancer reveals recurrent aberrations in NRG1 and Hippo pathway genes.
        Nat Commun. 2014; 5: 5893
        • Chen J.
        • Yang H.
        • Teo A.S.M.
        • Amer L.B.
        • Sherbaf F.G.
        • Tan C.Q.
        • et al.
        Genomic landscape of lung adenocarcinoma in East Asians.
        Nat Genet. 2020; 52: 177-186
        • Maros M.E.
        • Capper D.
        • Jones D.T.W.
        • Hovestadt V.
        • Deimling Avon
        • Pfister S.M.
        • Benner A.
        • Zucknick M.
        • Sill M.
        Machine learning workflows to estimate class probabilities for precision cancer diagnostics on DNA methylation microarray data.
        Nat Protoc. 2020; 15: 479-512
        • Ritchie M.E.
        • Phipson B.
        • Wu D.
        • Hu Y.
        • Law C.W.
        • Shi W.
        • Smyth G.K.
        limma powers differential expression analyses for RNA-sequencing and microarray studies.
        Nucleic Acids Res. 2015; 43: e47
        • Zhang B.
        • Fu D.
        • Xu Q.
        • Cong X.
        • Wu C.
        • Zhong X.
        • Ma Y.
        • Lv Z.
        • Chen F.
        • Han L.
        • Qian M.
        • Chin Y.E.
        • Lam E.W.-F.
        • Chiao P.
        • Sun Y.
        The senescence-associated secretory phenotype is potentiated by feedforward regulatory mechanisms involving Zscan4 and TAK1.
        Nat Commun. 2018; 9: 1723
        • Coppé J.-P.
        • Desprez P.-Y.
        • Krtolica A.
        • Campisi J.
        The senescence-associated secretory phenotype: the dark side of tumor suppression.
        Pathol Mech Dis. 2010; 5: 99-118
        • Thorsson V.
        • Gibbs D.L.
        • Brown S.D.
        • Wolf D.
        • Bortone D.S.
        • Yang T.-H.O.
        • et al.
        The immune landscape of cancer.
        Immunity. 2018; 48: 812-830.e14
        • Jjingo D.
        • Conley A.B.
        • Yi S.V.
        • Lunyak V.V.
        • Jordan I.K.
        On the presence and role of human gene-body DNA methylation.
        Oncotarget. 2012; 3: 462-474
        • Arechederra M.
        • Daian F.
        • Yim A.
        • Bazai S.K.
        • Richelme S.
        • Dono R.
        • Saurin A.J.
        • Habermann B.H.
        • Maina F.
        Hypermethylation of gene body CpG islands predicts high dosage of functional oncogenes in liver cancer.
        Nat Commun. 2018; 9: 3164
        • Xie W.
        • Kagiampakis I.
        • Pan L.
        • Zhang Y.W.
        • Murphy L.
        • Tao Y.
        • Kong X.
        • Kang B.
        • Xia L.
        • Carvalho F.L.F.
        • Sen S.
        • Yen R.-W.C.
        • Zahnow C.A.
        • Ahuja N.
        • Baylin S.B.
        • Easwaran H.
        DNA methylation patterns separate senescence from transformation potential and indicate cancer risk.
        Cancer Cell. 2018; 33: 309-321.e5
        • Cruickshanks H.A.
        • McBryan T.
        • Nelson D.M.
        • VanderKraats N.D.
        • Shah P.P.
        • van Tuyn J.
        • Rai T.S.
        • Brock C.
        • Donahue G.
        • Dunican D.S.
        • Drotar M.E.
        • Meehan R.R.
        • Edwards J.R.
        • Berger S.L.
        • Adams P.D.
        Senescent cells harbour features of the cancer epigenome.
        Nat Cell Biol. 2013; 15: 1495-1506
        • Adams P.D.
        • Enders G.H.
        Wnt signaling and senescence: a tug of war in early neoplasia?.
        Cancer Biol Ther. 2008; 7: 1706-1711
        • Jeoung J.Y.
        • Nam H.Y.
        • Kwak J.
        • Jin H.J.
        • Lee H.J.
        • Lee B.W.
        • Baek J.H.
        • Eom J.S.
        • Chang E.-J.
        • Shin D.-M.
        • Choi S.J.
        • Kim S.W.
        A decline in Wnt3a signaling is necessary for mesenchymal stem cells to proceed to replicative senescence.
        Stem Cells Dev. 2015; 24: 973-982
        • Ye X.
        • Zerlanko B.
        • Kennedy A.
        • Banumathy G.
        • Zhang R.
        • Adams P.D.
        Downregulation of Wnt signaling is a trigger for formation of facultative heterochromatin and onset of cell senescence in primary human cells.
        Mol Cell. 2007; 27: 183-196