Advertisement

mTOR Inhibition Increases Transcription Factor E3 (TFE3) Activity and Modulates Programmed Death-Ligand 1 (PD-L1) Expression in Translocation Renal Cell Carcinoma

      The efficacy of programmed death ligand (PD-L)-1/PD-1 checkpoint blockade in renal cell carcinoma (RCC) remains unknown. The effects of mTOR inhibitors are uncertain, and patients may develop resistance to them. The limited understanding of cancer cell–intrinsic mTOR-mediated pathways remains a challenge in developing effective treatments. Whether transcription factor (TF)-E3 regulates PD-L1 expression and the tumor microenvironment was investigated, and the effects of an mammalian target of rapamycin (mTOR) inhibitor on translocation RCC were explored. TFE3 was overexpressed in clear cell RCC cell lines, and PD-L1 expression was analyzed by Western blot analysis. PD-L1 activity in translocation RCC was analyzed in relation to TFE3 expression via TFE3 knockdown and treatment with an mTOR inhibitor. The results were correlated with the gene expression profile, evaluated using digital multiplex analysis. TFE3 and PD-L1 expression were positively correlated in RCC cells. TFE3 overexpression was associated with the expression of PD-L1 in RCC. Furthermore, mTOR inhibition was associated with enhanced PD-L1 expression via TFE3 activation in translocation RCC. These data support the feasibility of combination therapy based on mTOR inhibition and PD-L1 blockade as a novel strategy for the treatment of patients with translocation RCC.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of Pathology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Argani P.
        • Olgac S.
        • Tickoo S.K.
        • Goldfischer M.
        • Moch H.
        • Chan D.Y.
        • Eble J.N.
        • Bonsib S.M.
        • Jimeno M.
        • Lloreta J.
        • Billis A.
        • Hicks J.
        • De Marzo A.M.
        • Reuter V.E.
        • Ladanyi M.
        Xp11 translocational renal cell carcinoma in adults: expanded clinical, pathological and genetic spectrum.
        Am J Surg Pathol. 2007; 31: 1149-1160
        • Kakoki K.
        • Miyata Y.
        • Mochizuki Y.
        • Iwata T.
        • Obatake M.
        • Abe K.
        • Nagayasu T.
        • Sakai H.
        Long-term treatment with sequential molecular targeted therapy for Xp11.2 tranloscation renal cell carcinoma: a case report and review of the literature.
        Clin Genitourin Cancer. 2017; 15: e503-e506
        • Motzer R.J.
        • Escudier B.
        • McDermott D.F.
        • George S.
        • Hammers H.J.
        • Srinivas S.
        • Tykodi S.S.
        • Sosman J.A.
        • Procopio G.
        • Plimack E.R.
        • Castellano D.
        • Choueiri T.K.
        • Gurney H.
        • Donskov F.
        • Bono P.
        • Wagstaff J.
        • Gauler T.C.
        • Ueda T.
        • Tomita Y.
        • Schutz F.A.
        • Kollmannsberger C.
        • Larkin J.
        • Ravaud A.
        • Simon J.S.
        • Xu L.A.
        • Waxman I.M.
        • Sharma P.
        • CheckMate 025 Investigators
        Nivolumab versus everolimus in advanced renal-cell carcinoma.
        N Engl J Med. 2015; 373: 1803-1813
        • Motzer R.J.
        • Tannir N.M.
        • McDermott D.F.
        • Arén Frontera O.
        • Melichar B.
        • Choueiri T.K.
        • Plimack E.R.
        • Barthélémy P.
        • Porta C.
        • George S.
        • Powles T.
        • Donskov F.
        • Neiman V.
        • Kollmannsberger C.K.
        • Salman P.
        • Gurney H.
        • Hawkins R.
        • Ravaud A.
        • Grimm M.O.
        • Bracarda S.
        • Barrios C.H.
        • Tomita Y.
        • Castellano D.
        • Rini B.I.
        • Chen A.C.
        • Mekan S.
        • McHenry M.B.
        • Wind-Rotolo M.
        • Doan J.
        • Sharma P.
        • Hammers H.J.
        • Escudier B.
        • CheckMate 214 Investigators
        Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma.
        N Engl J Med. 2018; 378: 1277-1290
        • Martina J.A.
        • Diab H.I.
        • Lishu L.
        • Jeong-A L.
        • Patange S.
        • Raben N.
        • Puertollano R.
        The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris.
        Sci Signal. 2014; 7: ra9
        • Raben N.
        • Puertollano R.
        TFEB and TFE3: linking lysosomes to cellular adaptation to stress.
        Annu Rev Cell Dev Biol. 2016; 32: 255-278
        • Steingrimsson E.
        • Copeland N.G.
        • Jenkins N.A.
        Melanocytes and the microphthalmia transcription factor network.
        Annu Rev Genet. 2004; 38: 365-411
        • La Spina M.
        • Contreras P.S.
        • Rissone A.
        • Meena N.K.
        • Jeong E.
        • Martina J.A.
        MiT/TFE family of transcription factors: an evolutionary perspective.
        Front Cell Dev Biol. 2021; 8: 609683
        • Kauffman E.C.
        • Ricketts C.J.
        • Rais-Bahrami S.
        • Yang Y.
        • Merino M.J.
        • Bottaro D.P.
        • Srinivasan R.
        • Linehan W.M.
        Molecular genetics and cellular features of TFE3 and TFEB fusion kidney cancers.
        Nat Rev Urol. 2014; 11: 465-475
        • Mellman I.
        • Coukos G.
        • Dranoff G.
        Cancer immunotherapy comes of age.
        Nature. 2011; 480: 480-489
        • Postow M.A.
        • Callahan M.K.
        • Wolchok J.D.
        Immune checkpoint blockade in cancer therapy.
        J Clin Oncol. 2015; 33: 1974-1982
        • Wellenstein M.D.
        • de Visser K.E.
        Cancer-cell-intrinsic mechanisms shaping the tumor immune landscape.
        Immunity. 2018; 48: 399-416
        • Battelli C.
        • Cho D.C.
        mTOR inhibitors in renal cell carcinoma.
        Therapy. 2011; 8: 359-367
        • Duran I.
        • Lambea J.
        • Maroto P.
        • González-Larriba J.L.
        • Flores L.
        • Granados-Principal S.
        • Graupera M.
        • Sáez B.
        • Vivancos A.
        • Casanovas O.
        Resistance to targeted therapies in renal cancer: the importance of changing the mechanism of action.
        Target Oncol. 2017; 12: 19-35
        • Rini B.I.
        • Atkins M.B.
        Resistance to targeted therapy in renal cell carcinoma.
        Lancet Oncol. 2009; 10: 992-1000
        • Lee H.J.
        • Shin D.H.
        • Noh G.Y.
        • Kim Y.K.
        • Kim A.
        • Shin N.
        • Lee J.H.
        • Choi K.U.
        • Kim J.Y.
        • Lee C.H.
        • Sol M.Y.
        • Rha S.H.
        • Park S.W.
        Combination of immunohistochemistry, FISH and RT-PCR shows high incidence of Xp11 translocation RCC: comparison of three different diagnostic methods.
        Oncotarget. 2017; 8: 30756-30765
        • Valente M.J.
        • Henrique R.
        • Costa V.L.
        • Jeronimo C.
        • Carvalho F.
        • Bastos M.L.
        • de Pinho P.G.
        • Carvalho M.
        A rapid and simple procedure for the establishment of human normal and cancer renal primary cell cultures from surgical specimens.
        PLoS One. 2011; 6: e19337
        • Lee H.J.
        • Shin D.H.
        • Lee Y.J.
        • Lee S.J.
        • Hwang C.S.
        • Kim A.
        • Park W.Y.
        • Lee J.H.
        • Choi K.U.
        • Kim J.Y.
        • Lee C.H.
        • Sol M.Y.
        • Park S.W.
        PD-L1 expression and infiltration by CD4+ and FoxP3+ T cells are increased in Xp11 translocation renal cell carcinoma and indicate poor prognosis.
        Histopathology. 2020; 76: 714-721
        • D'Angelo A.
        • Sobhani N.
        • Roviello G.
        • Bagby S.
        • Bonazza D.
        • Bottin C.
        • Giudici F.
        • Zanconati F.
        • De Manzini N.
        • Guglielmi A.
        • Generali D.
        Tumour infiltrating lymphocytes and immune-related genes as predictors of outcome in pancreatic adenocarcinoma.
        PLoS One. 2019; 14: e0219566
        • Martin J.W.
        • Chilton-MacNeill S.
        • Koti M.
        • van Wijnen A.J.
        • Squire J.A.
        • Zielenska M.
        Digital expression profiling identifies RUNX2, CDC5L, MDM2, RECQL4, and CDK4 as potential predictive biomarkers for neo-adjuvant chemotherapy response in paediatric osteosarcoma.
        PLoS One. 2014; 9: e95843
        • Yang M.
        • Liu E.
        • Tang L.
        • Lei Y.
        • Sun X.
        • Hu J.
        • Dong H.
        • Yang S.M.
        • Gao M.
        • Tang B.
        Emerging roles and regulation of MiT/TFE transcriptional factors.
        Cell Commun Signal. 2018; 16: 31
        • Chen D.S.
        • Mellman I.
        Oncology meets immunology: the cancer-immunity cycle.
        Immunity. 2013; 39: 1-10
        • Wakabayashi G.
        • Lee Y.C.
        • Luh F.
        • Kuo C.N.
        • Chang W.C.
        • Yen Y.
        Development and clinical applications of cancer immunotherapy against PD-1 signaling pathway.
        J Biomed Sci. 2019; 26: 96
        • Gettinger S.N.
        • Horn L.
        • Gandhi L.
        • Spigel D.R.
        • Antonia S.J.
        • Rizvi N.A.
        • Powderly J.D.
        • Heist R.S.
        • Carvajal R.D.
        • Jackman D.M.
        • Sequist L.V.
        • Smith D.C.
        • Leming P.
        • Carbone D.P.
        • Pinder-Schenck M.C.
        • Topalian S.L.
        • Hodi F.S.
        • Sosman J.A.
        • Sznol M.
        • McDermott D.F.
        • Pardoll D.M.
        • Sankar V.
        • Ahlers C.M.
        • Salvati M.
        • Wigginton J.M.
        • Hellmann M.D.
        • Kollia G.D.
        • Gupta A.K.
        • Brahmer J.R.
        Overall survival and long-term safety of nivolumab (anti-programmed death 1 antibody, BMS-936558,ONO-4538) in patients with previously treated advanced non-small-cell lung cancer.
        J Clin Oncol. 2015; 33: 2004-2012
        • Koyama S.
        • Akbay E.A.
        • Li Y.Y.
        • Herter-Sprie G.S.
        • Buczkowski K.A.
        • Richards W.G.
        • Gandhi L.
        • Redig A.J.
        • Rodig S.J.
        • Asahina H.
        • Jones R.E.
        • Kulkarni M.M.
        • Kuraguchi M.
        • Palakurthi S.
        • Fecci P.E.
        • Johnson B.E.
        • Janne P.A.
        • Engelman J.A.
        • Gangadharan S.P.
        • Costa D.B.
        • Freeman G.J.
        • Bueno R.
        • Hodi F.S.
        • Dranoff G.
        • Wong K.K.
        • Hammerman P.S.
        Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints.
        Nat Commun. 2016; 7: 10501
        • Hofmann L.
        • Forschner A.
        • Loquai C.
        • Goldinger S.M.
        • Zimmer L.
        • Ugurel S.
        • Schmidgen M.I.
        • Gutzmer R.
        • Utikal J.S.
        • Göppner D.
        • Hassel J.C.
        • Meier F.
        • Tietze J.K.
        • Thomas I.
        • Weishaupt C.
        • Leverkus M.
        • Wahl R.
        • Dietrich U.
        • Garbe C.
        • Kirchberger M.C.
        • Eigentler T.
        • Berking C.
        • Gesierich A.
        • Krackhardt A.M.
        • Schadendorf D.
        • Schuler G.
        • Dummer R.
        • Heinzerling L.M.
        Cutaneous gastrointestinal, hepatic, endocrine, and renal side-effects of anti-PD-1 therapy.
        Eur J Cancer. 2016; 60: 190-209
        • Maleki Vareki S.
        • Garrigos C.
        • Duran I.
        Biomarkers of response to PD-1/PD-L1 inhibition.
        Crit Rev Oncol Hematol. 2017; 116: 116-124
        • Huan C.
        • Kelly M.L.
        • Steele R.
        • Shapira I.
        • Gottesman S.R.
        • Roman C.A.
        Transcription factors TFE3 and TFEB are critical for CD40 ligand expression and thymus-dependent humoral immunity.
        Nat Immunol. 2006; 7: 1082-1091
        • Walter B.
        • Gil S.
        • Naizhen X.
        • Kruhlak M.J.
        • Linehan W.M.
        • Srinivasan R.
        • Merino M.J.
        Determination of the expression of PD-L1 in the morphologic spectrum of renal cell carcinoma.
        J Cancer. 2020; 11: 3596-3603
        • Choueiri T.K.
        • Fay A.P.
        • Gray K.P.
        • Callea M.
        • Ho T.H.
        • Albiges L.
        • Bellmunt J.
        • Song J.
        • Carvo I.
        • Lampron M.
        • Stanton M.L.
        • Hodi F.S.
        • McDermott D.F.
        • Atkins M.B.
        • Freeman G.J.
        • Hirsch M.S.
        • Signoretti S.
        PD-L1 expression in nonclear-cell renal cell carcinoma.
        Ann Oncol. 2014; 25: 2178-2184
        • Jiang N.
        • Dai Q.
        • Su X.
        • Fu J.
        • Feng X.
        • Peng J.
        Role of PI3K/AKT pathway in cancer: the framework of malignant behaviour.
        Mol Biol Rep. 2020; 47: 4587-4629
        • O'Reilly K.E.
        • Rojo F.
        • She Q.B.
        • Solit D.
        • Mills G.B.
        • Smith D.
        • Lane H.
        • Hofmann F.
        • Hicklin D.J.
        • Ludwig D.L.
        • Baselga J.
        • Rosen N.
        mTOR inhibition induces upstream receptor tyrosin kinase signaling and activates Akt.
        Cancer Res. 2006; 66: 1500-1508
        • Voss M.H.
        • Molina A.M.
        • Motzer R.J.
        mTOR inhibitors in advanced renal cell carcinoma.
        Hematol Oncol Clin North Am. 2011; 25: 835-852
        • Xie J.
        • Wang X.
        • Proud C.G.
        mTOR inhibitors in cancer therapy.
        F1000Res. 2016; 5: F1000
        • Parikh J.
        • Colman T.
        • Nidia M.
        • Brown J.M.
        Temsirolimus in the treatment of renal cell carcinoma associated with Xp11.2 translocation/TFE gene fusion proteins: a case report and review of literature.
        Rare Tumors. 2009; 1: e53
        • Moumen A.
        • Patance S.
        • Porras A.
        • Dono R.
        • Maina F.
        Met acts on Mdm2 via mTOR to signal cell survival during development.
        Development. 2007; 134: 1443-1451
        • Pinto K.
        • Chetty R.
        Gene of the month: TFE3.
        J Clin Pathol. 2020; 73: 691-694
        • Argani P.
        • Hicks J.
        • De Marzo A.M.
        • Albadine R.
        • Illei P.B.
        • Ladanyi M.
        • Reuter V.E.
        • Netto G.J.
        Xp11 translocation renal cell carcinoma (RCC): extended immunohistochemical profile emphasizing novel RCC markers.
        Am J Surg Pathol. 2010; 34: 1295-1303
        • Pantuck A.J.
        • Seligson D.B.
        • Klatte T.
        • Yu H.
        • Leppert J.T.
        • Moore L.
        • O'Toole T.
        • Gibbons J.
        • Belldegrun A.S.
        • Figlin R.A.
        Prognostic relevance of the mTOR pathway in renal cell carcinoma: implications for molecular patient selection for targeted therapy.
        Cancer. 2007; 109: 2257-2276

      Linked Article

      • This Month in AJP
        The American Journal of PathologyVol. 191Issue 11
        • Preview
          The role of the aquaporin AQP5 in corneal epithelial wound healing and nerve regeneration is unclear. Using CRISPR/Cas9 technology, Liu et al (Am J Pathol 2021, 1974–1985) generated transgenic Aqp5 knockout mice to study this role. The transgenic mice showed impaired corneal epithelial wound healing due to decreased cell proliferation and a significant delay in both corneal epithelial and nerve regeneration. Inducing AQP5 may help accelerate corneal epithelial regeneration and promote the regeneration of corneal epithelial nerve fibers in corneal defects.
        • Full-Text
        • PDF