
Design Considerations
Optical Contrast
Sample Preparation
Sample Containment
Resolution and Field of View
Optical Sectioning
- Assayag O.
- Antoine M.
- Sigal-Zafrani B.
- Riben M.
- Harms F.
- Burcheri A.
- Grieve K.
- Dalimier E.
- Le Conte de Poly B.
- Boccara C.
Depth of Field
Imaging Speed and Throughput
Image Processing and Rendering
Imaging Modalities
- Ji M.
- Lewis S.
- Camelo-Piragua S.
- Ramkissoon S.H.
- Snuderl M.
- Venneti S.
- Fisher-Hubbard A.
- Garrard M.
- Fu D.
- Wang A.C.
- Heth J.A.
- Maher C.O.
- Sanai N.
- Johnson T.D.
- Freudiger C.W.
- Sagher O.
- Xie X.S.
- Orringer D.A.
- Orringer D.A.
- Pandian B.
- Niknafs Y.S.
- Hollon T.C.
- Boyle J.
- Lewis S.
- Garrard M.
- Hervey-Jumper S.L.
- Garton H.J.L.
- Maher C.O.
- Heth J.A.
- Sagher O.
- Wilkinson D.A.
- Snuderl M.
- Venneti S.
- Ramkissoon S.H.
- McFadden K.A.
- Fisher-Hubbard A.
- Lieberman A.P.
- Johnson T.D.
- Xie X.S.
- Trautman J.K.
- Freudiger C.W.
- Camelo-Piragua S.
- Glaser A.K.
- Reder N.P.
- Chen Y.
- Yin C.
- Wei L.
- Kang S.
- Barner L.A.
- Xie W.
- McCarty E.F.
- Mao C.
- Halpern A.R.
- Stoltzfus C.R.
- Daniels J.S.
- Gerner M.Y.
- Nicovich P.R.
- Vaughan J.C.
- True L.D.
- Liu J.T.C.
Imaging modality | Optical contrast mechanism | Light source | Detector | Sample format | Staining method | Optical-sectioning mechanism | Extended depth-of-field mechanism | Primary speed-limiting factor | Selected references |
---|---|---|---|---|---|---|---|---|---|
Bright-field microscopy/whole-slide scanners | Absorption | Incoherent white light | Camera | Microscope slide | Color dyes | N/A | N/A | Sample stage movement | 9 ,10 |
Confocal microscopy | Elastic scattering, fluorescence | CW laser | Point detectors (PD, PMT, APD) | Whole-mount surface, limited volume | Intrinsic light scattering, fluorescent dyes optional | Spatial filtering | Stacking | Scanner speed | 47 , 48 , 49 , 50 , 51 |
Nonlinear microscopy | 2P, 3P, SHG, THG, SRS, CARS | Ultrafast laser | Point detectors [PD, PMT, APD, lock-in amplifier (SRS)] | Whole-mount surface, limited volume | Intrinsic tissue property, dyes optional | Energy density threshold | Stacking | Scanner speed, low SNR | 23 ,52 , 53 , 54 ,
Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy. Sci Transl Med. 2015; 7: 1-11 55 , 56
Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy. Nat Biomed Eng. 2017; 1: 1-13 |
Structured illumination microscopy phase mask detection | Fluorescence | Incoherent visible light | Camera | Whole-mount surface | Fluorescent dyes | Structured illumination, computation | Stacking, computational methods | Sample stage movement | 57 , 58 , 59 |
MUSE | Fluorescence | UVC LED | Camera | Whole-mount surface | Fluorescent dyes | Shallow UV penetration | Stacking, computational method | Sample stage movement | 35 ,60 ,61 |
FIBI | Fluorescence absorption hybrid | 405 nm LED | Camera | Whole-mount surface | Color and fluorescent dyes | Surface staining | Stacking | Sample stage movement | F. Fereidouni, R.M. Levenson, unpublished data |
FFOCT | Elastic scattering | Low-coherent white light | Camera | Whole-mount volume | Intrinsic light scattering in tissue | Interferometry | Stacking | Sample stage movement | 62 , 63 , 64 |
Light-sheet microscopy | Fluorescence | CW laser | Camera | Whole-mount volume | Fluorescent dyes | Light-sheet illumination | Stacking | Camera speed, stage movement | 26 ,36 ,65
Multi-immersion open-top light-sheet microscope for high-throughput imaging of cleared tissues. Nat Commun. 2019; 10: 2781 |
Photoacoustic microscopy | Photo-induced sound wave | Nanosecond laser | Ultrasound transducer | Whole-mount surface, limited volume | Intrinsic light absorption in tissue | Energy density threshold | Stacking | Laser repetition rate | 66 ,67 |
Camera-Based Modalities
Exciting Tricks—Microscopy with UV Surface Excitation and Fluorescence Imitating Bright-Field Imaging
Hacking the Microscope—Structured Light and Wavefront Coding
- Rubinsztein-Dunlop H.
- Forbes A.
- Berry M.V.
- Dennis M.R.
- Andrews D.L.
- Mansuripur M.
- Denz C.
- Alpmann C.
- Banzer P.
- Bauer T.
- Karimi E.
- Marrucci L.
- Padgett M.
- Ritsch-Marte M.
- Litchinitser N.M.
- Bigelow N.P.
- Rosales-Guzmán C.
- Belmonte A.
- Torres J.P.
- Neely T.W.
- Baker M.
- Gordon R.
- Stilgoe A.B.
- Romero J.
- White A.G.
- Fickler R.
- Willner A.E.
- Xie G.
- McMorran B.
- Weiner A.M.
Seeing the Invisible—Light-Sheet Fluorescence Microscopy
- Glaser A.K.
- Reder N.P.
- Chen Y.
- Yin C.
- Wei L.
- Kang S.
- Barner L.A.
- Xie W.
- McCarty E.F.
- Mao C.
- Halpern A.R.
- Stoltzfus C.R.
- Daniels J.S.
- Gerner M.Y.
- Nicovich P.R.
- Vaughan J.C.
- True L.D.
- Liu J.T.C.
Deep, Vibrant Cells—Full-Field Optical Coherence Tomography
Scanning-Based Modalities
Old but Gold—Confocal Microscopy
Colorful, Label-Free—Nonlinear Microscopy
- Orringer D.A.
- Pandian B.
- Niknafs Y.S.
- Hollon T.C.
- Boyle J.
- Lewis S.
- Garrard M.
- Hervey-Jumper S.L.
- Garton H.J.L.
- Maher C.O.
- Heth J.A.
- Sagher O.
- Wilkinson D.A.
- Snuderl M.
- Venneti S.
- Ramkissoon S.H.
- McFadden K.A.
- Fisher-Hubbard A.
- Lieberman A.P.
- Johnson T.D.
- Xie X.S.
- Trautman J.K.
- Freudiger C.W.
- Camelo-Piragua S.
- Orringer D.A.
- Pandian B.
- Niknafs Y.S.
- Hollon T.C.
- Boyle J.
- Lewis S.
- Garrard M.
- Hervey-Jumper S.L.
- Garton H.J.L.
- Maher C.O.
- Heth J.A.
- Sagher O.
- Wilkinson D.A.
- Snuderl M.
- Venneti S.
- Ramkissoon S.H.
- McFadden K.A.
- Fisher-Hubbard A.
- Lieberman A.P.
- Johnson T.D.
- Xie X.S.
- Trautman J.K.
- Freudiger C.W.
- Camelo-Piragua S.
Listen to the Light—Photoacoustic Microscopy
Clinical Implementation
Clinical Workflow Integration
Integration of Other Technologies
Regulatory Concerns
- Evans A.J.
- Bauer T.W.
- Bui M.M.
- Cornish T.C.
- Duncan H.
- Glassy E.F.
- Hipp J.
- McGee R.S.
- Murphy D.
- Myers C.
- O'Neill D.G.
- Parwani A.V.
- Rampy B.A.
- Salama M.E.
- Pantanowitz L.
Premarket notification items | Detailed requirements |
---|---|
Indications for use | Specify the tissue specimen |
Component-level testing | Slide feeder, light source, imaging optics, mechanical scanner movement, digital imaging sensor, image processing software, image composition techniques, image file formats, image review manipulation software, computer environment, and display system |
System-level testing | Color reproducibility, spatial resolution, focusing, whole-slide tissue coverage, stitching error, and turnaround time |
Product-level performance demonstration | Precision variability, data reproducibility, clinical studies, and human factor engineering |
Economic Concerns
Summary
Author Contributions
References
- Surgical Pathology.ed 8. 1996: 1-37 (Mosby)
- A review of preanalytical factors affecting molecular, protein, and morphological analysis of formalin-fixed, paraffin-embedded (FFPE) tissue: how well do you know your FFPE specimen?.Arch Pathol Lab Med. 2014; 138: 1520-1530
- Sample prep.in: Lawlor D. Introduction to Light Microscopy: Tips and Tricks for Beginners. Springer International Publishing, New York, NY2019: 115-126
- Intra-operative frozen section consultation: concepts, applications and limitations.Malays J Med Sci. 2006; 13: 4-12
- Frozen section biopsy.JAMA. 2005; 294: 3200
- Frozen section analysis of margins for head and neck tumor resections: reduction of sampling errors with a third histologic level.Modern Pathol. 2011; 24: 665-670
- Introduction to Optical Microscopy.Cambridge University Press, Cambridge, UK2019: 185-204
- A short history of histopathology technique.J Histotechnol. 2006; 29: 99-110
- Digital pathology in clinical use: where are we now and what is holding us back?.Histopathology. 2017; 70: 134-145
- Review of the current state of whole slide imaging in pathology.J Pathol Inform. 2011; 2: 36
- Telepathology overview: from concept to implementation.Hum Pathol. 2001; 32: 1283-1299
- Telepathology impacts and implementation challenges: a scoping review.Arch Pathol Lab Med. 2015; 139: 1550-1557
- Digital pathology and artificial intelligence.Lancet Oncol. 2019; 20: e253-e261
- Workflow organization in pathology.Clin Lab Med. 2012; 32: 601-622
- What does one minute of operating room time cost?.J Clin Anesth. 2010; 22: 233-236
- Fast and slide-free imaging.Nat Biomed Eng. 2017; 1: 926-928
- Optical sectioning microscopy.Nat Methods. 2005; 2: 920-931
- The contrast formation in optical microscopy.in: Pawley J.B. Handbook of Biological Confocal Microscopy. Springer US, Boston, MA2006: 162-206
- Histology and Cell Biology: An Introduction to Pathology E-book.2015: 2-65 (Elsevier Health Sciences)
- Fluorescence microscopy.Nat Methods. 2005; 2: 910-919
- How do histological stains work.in: Bancroft J.D. Gamble M. Theory and Practice of Histological Techniques. Churchill Livingstone, London, UK2008: 105-119
- Optical coherence tomography today: speed, contrast, and multimodality.J Biomed Opt. 2014; 19: 071412
- Multimodal nonlinear optical microscopy.Laser Photon Rev. 2011; 5: 496-512
- Photoacoustic microscopy.Laser Photon Rev. 2013; 7: 758-778
- Pathologist's assistant (PathA) and his/her role in the surgical pathology department: a systematic review and a narrative synthesis.Virchows Arch. 2018; 472: 1041-1054
- Light sheet microscopy for histopathology applications.Biomed Eng Lett. 2019; 9: 279-291
- Harnessing non-destructive 3D pathology.Nat Biomed Eng. 2021; 5: 203-218
- CUBIC pathology: three-dimensional imaging for pathological diagnosis.Sci Rep. 2017; 7: 9269
- A fast and effective option for tissue flattening: optimizing time and efficacy in ex vivo confocal microscopy.J Am Acad Dermatol. 2020; 82: e157-e158
- The 'tissue press': a new device to flatten fresh tissue during ex vivo confocal microscopy examination.Skin Res Technol. 2017; 23: 121-124
Shaffer E, Pirolet JA, Schmitt F, Rachet B, Joss D, Horisberger AT, inventors; SamanTree Medical SA, assignee. 2021 Jan 5. Sample dishes for use in microscopy and methods of their use. United States patent US 20210124162A1
- Relationship between magnification and resolution in digital pathology systems.J Pathol Inform. 2013; 4: 21
- Optical microscopy.Encyclopedia of Imaging Science and Technology. 2. John Wiley & Sons, Inc., Hoboken, NJ2002: 120
- Large field, high resolution full-field optical coherence tomography: a pre-clinical study of human breast tissue and cancer assessment.Technol Cancer Res Treat. 2014; 13: 455-468
- Microscopy with UV surface excitation (MUSE) for slide-free histology and pathology imaging. Optical Biopsy XIII: Toward Real-Time Spectroscopic Imaging and Diagnosis.2015: 93180F (International Society for Optics and Photonics)
- Light-sheet microscopy for slide-free non-destructive pathology of large clinical specimens.Nat Biomed Eng. 2017; 1: 1-10
- Deep learning extended depth-of-field microscope for fast and slide-free histology.Proc Natl Acad Sci U S A. 2020; 117: 33051-33060
- Extended depth of field and aberration control for inexpensive digital microscope systems.Opt Express. 1999; 4: 467-474
- Extended depth of focus in optical microscopy: assessment of existing methods and a new proposal.Microsc Res Tech. 2012; 75: 1582-1592
- Real-time extended depth of field microscopy.Opt Express. 2008; 16: 21843-21848
- Extended depth of field through wave-front coding.Appl Opt. 1995; 34: 1859-1866
- Extended depth-of-focus microscopy via constrained deconvolution.J Biomed Opt. 2007; 12: 064026
- Faster fluorescence microscopy: advances in high speed biological imaging.Curr Opin Chem Biol. 2014; 20: 46-53
- A method for fast automated microscope image stitching.Micron. 2013; 48: 17-25
- Globally optimal stitching of tiled 3D microscopic image acquisitions.Bioinformatics. 2009; 25: 1463-1465
- The feasibility of digitally stained multimodal confocal mosaics to simulate histopathology.J Biomed Opt. 2009; 14: 034050
- Use of ex vivo confocal scanning laser microscopy during mohs surgery for nonmelanoma skin cancers.Dermatol Surg. 2004; 30: 1470-1478
- Confocal mosaicing microscopy in Mohs skin excisions: feasibility of rapid surgical pathology.J Biomed Opt. 2008; 13: 054001
- Confocal examination of nonmelanoma cancers in thick skin excisions to potentially guide Mohs micrographic surgery without frozen histopathology.J Invest Dermatol. 2001; 117: 1137-1143
- Rapid screening of cancer margins in tissue with multimodal confocal microscopy.J Surg Res. 2012; 178: 533-538
- Fluorescence confocal microscopy for pathologists.Mod Pathol. 2014; 27: 460-471
- Assessment of breast pathologies using nonlinear microscopy.Proc Natl Acad Sci U S A. 2014; 111: 15304-15309
- Rapid virtual hematoxylin and eosin histology of breast tissue specimens using a compact fluorescence nonlinear microscope.Lab Invest. 2018; 98: 150-160
- Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy.Sci Transl Med. 2015; 7: 1-11
- Multicolored stain-free histopathology with coherent Raman imaging.Lab Invest. 2012; 92: 1492-1502
- Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy.Nat Biomed Eng. 2017; 1: 1-13
- Optical sectioning microscopy with planar or structured illumination.Nat Methods. 2011; 8: 811-819
- Video-rate structured illumination microscopy for high-throughput imaging of large tissue areas.Biomed Opt Express. 2014; 5: 366-377
- High-resolution rapid diagnostic imaging of whole prostate biopsies using video-rate fluorescence structured illumination microscopy.Cancer Res. 2015; 75: 4032-4041
- Microscopy with ultraviolet surface excitation for rapid slide-free histology.Nat Biomed Eng. 2017; 1: 957-966
- Pocket MUSE: an affordable, versatile and high-performance fluorescence microscope using a smartphone.Commun Biol. 2021; 4: 1-14
- Full-field optical coherence tomography for the analysis of fresh unstained human lobectomy specimens.J Pathol Inform. 2013; 4: 26
- Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by interferometric signals temporal analysis.Biomed Opt Express. 2016; 7: 1511-1524
- Dynamic full-field optical coherence tomography: 3D live-imaging of retinal organoids.Light Sci Appl. 2020; 9: 140
- Multi-immersion open-top light-sheet microscope for high-throughput imaging of cleared tissues.Nat Commun. 2019; 10: 2781
- Optimal ultraviolet wavelength for in vivo photoacoustic imaging of cell nuclei.J Biomed Opt. 2012; 17: 056004
- High-resolution, high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy.Nat Photon. 2019; 13: 609-615
- Digital microscopy: past, present, and future.Arch Pathol Lab Med. 2010; 134: 1666-1670
- Rapid histopathological imaging of skin and breast cancer surgical specimens using immersion microscopy with ultraviolet surface excitation.Sci Rep. 2018; 8: 4476
- MUSE: microscopy via UV excitation for rapid histology.2016: 146-147 (2016 IEEE Photonics Conference (IPC))
- Roadmap on structured light.J Opt. 2016; 19: 013001
- A guide to super-resolution fluorescence microscopy.J Cell Biol. 2010; 190: 165-175
- Method of obtaining optical sectioning by using structured light in a conventional microscope.Opt Lett. 1997; 22: 1905-1907
- Enhancing the performance of the light field microscope using wavefront coding.Opt Express. 2014; 22: 24817-24839
- Toward routine use of 3D histopathology as a research tool.Am J Pathol. 2012; 180: 1835-1842
- In-vivo and ex-vivo optical clearing methods for biological tissues: review.Biomed Opt Express. 2019; 10: 5251-5267
- Light-sheet microscopy: a tutorial.Adv Opt Photon. 2018; 10: 111-179
- Guide to light-sheet microscopy for adventurous biologists.Nat Methods. 2015; 12: 30-34
- Diagnosing 12 prostate needle cores within an hour of biopsy via open-top light-sheet microscopy.J Biomed Opt. 2020; 25: 126502
- Ultrahigh-resolution full-field optical coherence tomography.Appl Opt. 2004; 43: 2874-2883
- Scanning laser microscope.Nature. 1969; 223: 831
- Fundamental limits in confocal microscopy. Handbook of Biological Confocal Microscopy.Springer, New York, NY2006: 20-42
- Evaluation of breast tissue with confocal strip-mosaicking microscopy: a test approach emulating pathology-like examination.J Biomed Opt. 2017; 22: 34002
- Feasibility of confocal fluorescence microscopy for real-time evaluation of neoplasia in fresh human breast tissue.J Biomed Opt. 2013; 18: 106016
- Nonlinear magic: multiphoton microscopy in the biosciences.Nat Biotechnol. 2003; 21: 1369-1377
- Slide-free imaging of hematoxylin-eosin stained whole-mount tissues using combined third-harmonic generation and three-photon fluorescence microscopy.J Biophotonics. 2019; 12: e201800341
- Exploring multiphoton microscopy as a novel tool to differentiate chromophobe renal cell carcinoma from oncocytoma in fixed tissue sections.Arch Pathol Lab Med. 2018; 142: 383-390
- Coherent anti-Stokes Raman scattering microscopy and its applications.Front Phys. 2020; 8: 515
- Biological imaging with coherent Raman scattering microscopy: a tutorial.J Biomed Opt. 2014; 19: 071407
- Rayleigh scattering and Raman effect, theory.in: Lindon J.C. Tranter G.E. Koppenaal D.W. Encyclopedia of Spectroscopy and Spectrometry (Third Edition). Academic Press, Oxford2017: 924-930
- Video-rate molecular imaging in vivo with stimulated Raman scattering.Science. 2010; 330: 1368-1370
- Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks.Nat Med. 2020; 26: 52-58
- Photoacoustic tomography: in vivo imaging from organelles to organs.Science. 2012; 335: 1458-1462
- Biomedical photoacoustic imaging.Interf Focus. 2011; 1: 602-631
- Three-dimensional virtual histology in unprocessed resected tissues with photoacoustic remote sensing (PARS) microscopy and optical coherence tomography (OCT).Sci Rep. 2021; 11: 13723
- Application of photoacoustic methods and confocal microscopy for monitoring of therapeutic response in plaque psoriasis.Skin Pharmacology and Physiology. 31. Karger, Basel, Switzerland2018: 308-315
- Artificial intelligence in digital pathology—new tools for diagnosis and precision oncology.Nat Rev Clin Oncol. 2019; 16: 703-715
- A survey on deep transfer learning.arXiv. 2018; ([Preprint] doi:1808.01974)
- US Food and Drug Administration approval of whole slide imaging for primary diagnosis: a key milestone is reached and new questions are raised.Arch Pathol Lab Med. 2018; 142: 1383-1387
Article info
Publication history
Footnotes
Supported by NIH grant R01EB028635 (R.M.L.).
Disclosures: Y.L. and M.W.J. are cofounders of OpsiClear LLC; R.M.L. is a cofounder of HistoliX Inc. and inventor of microscopy with UV surface excitation and fluorescence imitating bright-field imaging in patents.
Identification
Copyright
User license
Elsevier user license |
Permitted
For non-commercial purposes:
- Read, print & download
- Text & data mine
- Translate the article
Not Permitted
- Reuse portions or extracts from the article in other works
- Redistribute or republish the final article
- Sell or re-use for commercial purposes
Elsevier's open access license policy