- Winkler F.
- Kozin S.V.
- Tong R.T.
- Chae S.S.
- Booth M.F.
- Garkavtsev I.
- Xu L.
- Hicklin D.J.
- Fukumura D.
- di Tomaso E.
- Munn L.L.
- Jain R.K.
- Foersch S.
- Sperka T.
- Lindner C.
- Taut A.
- Rudolph K.L.
- Breier G.
- Boxberger F.
- Rau T.T.
- Hartmann A.
- Stürzl M.
- Wittkopf N.
- Haep L.
- Wirtz S.
- Neurath M.F.
- Waldner M.J.
- Beck B.
- Driessens G.
- Goossens S.
- Youssef K.K.
- Kuchnio A.
- Caauwe A.
- Sotiropoulou P.A.
- Loges S.
- Lapouge G.
- Candi A.
- Mascre G.
- Drogat B.
- Dekoninck S.
- Haigh J.J.
- Carmeliet P.
- Blanpain C.
- Voron T.
- Colussi O.
- Marcheteau E.
- Pernot S.
- Nizard M.
- Pointet A.L.
- Latreche S.
- Bergaya S.
- Benhamouda N.
- Tanchot C.
- Stockmann C.
- Combe P.
- Berger A.
- Zinzindohoue F.
- Yagita H.
- Tartour E.
- Taieb J.
- Terme M.
- Jung K.
- Heishi T.
- Khan O.F.
- Kowalski P.S.
- Incio J.
- Rahbari N.N.
- Chung E.
- Clark J.W.
- Willett C.G.
- Luster A.D.
- Yun S.H.
- Langer R.
- Anderson D.G.
- Padera T.P.
- Jain R.K.
- Fukumura D.
Materials and Methods
Mice
- Hooper A.T.
- Butler J.M.
- Nolan D.J.
- Kranz A.
- Iida K.
- Kobayashi M.
- Kopp H.G.
- Shido K.
- Petit I.
- Yanger K.
- James D.
- Witte L.
- Zhu Z.
- Wu Y.
- Pytowski B.
- Rosenwaks Z.
- Mittal V.
- Sato T.N.
- Rafii S.
Tumor Models
Preparation of Tissue Sections and Whole-Mount Samples
Immunostaining
Confocal Microscopy
X-Gal Staining of Tissue Sections
Quantitative RT-PCR Analysis
Statistical Analysis
Results
Tumor and Normal ECs Show Opposite Expression Patterns of Vegfr1 and Vegfr2
- Voron T.
- Colussi O.
- Marcheteau E.
- Pernot S.
- Nizard M.
- Pointet A.L.
- Latreche S.
- Bergaya S.
- Benhamouda N.
- Tanchot C.
- Stockmann C.
- Combe P.
- Berger A.
- Zinzindohoue F.
- Yagita H.
- Tartour E.
- Taieb J.
- Terme M.

Intermittent Endothelial Vegfr2 Deletion Destroys Tumor Vessels and Increases Hypoxia

Endothelial Vegfr2 Deletion Reduces Infiltration of CD8+ T Cells into Tumors

Deletion of Endothelial Vegfr2 Causes Regression of Normal Capillaries in Intestinal Villi

The Initial Event Resulting from Cessation of Endothelial Vegfr2 Signaling Is Vascular Truncation Rather than Maturation


Discussion
- Winkler F.
- Kozin S.V.
- Tong R.T.
- Chae S.S.
- Booth M.F.
- Garkavtsev I.
- Xu L.
- Hicklin D.J.
- Fukumura D.
- di Tomaso E.
- Munn L.L.
- Jain R.K.
Author Contributions
References
- Basic and therapeutic aspects of angiogenesis.Cell. 2011; 146: 873-887
- VEGF in signaling and disease: beyond discovery and development.Cell. 2019; 176: 1248-1264
- Principles and mechanisms of vessel normalization for cancer and other angiogenic disease.Nat Rev Drug Discov. 2011; 10: 417-427
- Ten years of anti-vascular endothelial growth factor therapy.Nat Rev Drug Discov. 2016; 15: 385-403
- Genentech discloses safety concerns over avastin.Nat Biotechnol. 2004; 22: 1198
- Mechanisms of adverse effects of anti-VEGF therapy for cancer.Br J Cancer. 2007; 96: 1788-1795
- Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer.N Engl J Med. 2004; 350: 2335-2342
- Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal.J Clin Invest. 1999; 103: 159-165
- Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors.Cancer Res. 2004; 64: 3731-3736
- Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases.Cancer Cell. 2004; 6: 553-563
- VEGFR2 signaling prevents colorectal cancer cell senescence to promote tumorigenesis in mice with colitis.Gastroenterology. 2015; 149: 177-189.e10
- A vascular niche and a VEGF-Nrp1 loop regulate the initiation and stemness of skin tumours.Nature. 2011; 478: 399-403
- Autocrine VEGF-VEGFR2-neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth.J Exp Med. 2012; 209: 507-520
- VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors.J Exp Med. 2015; 212: 139-148
- Ly6Clo monocytes drive immunosuppression and confer resistance to anti-VEGFR2 cancer therapy.J Clin Invest. 2017; 127: 3039-3051
- A novel reporter mouse strain that expresses enhanced green fluorescent protein upon Cre-mediated recombination.FEBS Lett. 2000; 470: 263-268
- Flk1-GFP BAC Tg mice: an animal model for the study of blood vessel development.Exp Anim. 2011; 59: 615-622
- Neurons limit angiogenesis by titrating VEGF in retina.Cell. 2014; 159: 584-596
- A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis.Cell. 1997; 89: 981-990
- Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells.Cell Stem Cell. 2009; 4: 263-274
- Isolation and function of mouse tissue resident vascular precursors marked by myelin protein zero.J Exp Med. 2011; 208: 949-960
- The Cdh5-CreERT2 transgene causes conditional Shb gene deletion in hematopoietic cells with consequences for immune cell responses to tumors.Sci Rep. 2019; 9: 7548
- Consensus guidelines for the use and interpretation of angiogenesis assays.Angiogenesis. 2018; 21: 425-532
- Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade.Sci Transl Med. 2017; 9: eaak9670
- An in vivo model allowing continuous observation of human vascular formation in the same animal over time.Sci Rep. 2021; 11: 745
- Early actions of anti-vascular endothelial growth factor/vascular endothelial growth factor receptor drugs on angiogenic blood vessels.Am J Pathol. 2017; 187: 2337-2347
- Sunitinib and bevacizumab for first-line treatment of metastatic renal cell carcinoma: a systematic review and indirect comparison of clinical effectiveness.Br J Cancer. 2009; 101: 238-243
- Ramucirumab, a fully human mAb to the transmembrane signaling tyrosine kinase VEGFR-2 for the potential treatment of cancer.Curr Opin Investig Drugs. 2009; 10: 597-605
Article info
Publication history
Footnotes
Supported by Grants-in-Aid for Specially Promoted Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan 18H05042, 18K19553, and 19H03397 (Y.Ku.); by Japan Agency for Medical Research and Development-PRIME JP20gm6210017h0002 and 21gm6210017h0003 (Y.Ku.); by Japan Science and Technology Agency (MoonshotR&D) JPMJMS 2024 (Y.Ku.); and by research grants from Inamori Foundation, Kao Foundation for Arts and Culture, Takeda Science Foundation, Mochida Memorial Foundation, Mitsubishi Foundation, Cell Science Research Foundation, SENSHIN Medical Research Foundation, Sumitomo Foundation, Daiichi Sankyo Foundation of Life Science, Naito Foundation, Uehara Memorial Foundation, and Toray Science Foundation (Y.Ku.).
Disclosures: None declared.
Identification
Copyright
User license
Elsevier user license |
Permitted
For non-commercial purposes:
- Read, print & download
- Text & data mine
- Translate the article
Not Permitted
- Reuse portions or extracts from the article in other works
- Redistribute or republish the final article
- Sell or re-use for commercial purposes
Elsevier's open access license policy