Advertisement

Artificial Intelligence–Powered Hematoxylin and Eosin Analyzer Reveals Distinct Immunologic and Mutational Profiles among Immune Phenotypes in Non–Small-Cell Lung Cancer

Published:February 01, 2022DOI:https://doi.org/10.1016/j.ajpath.2022.01.006
      The tumor microenvironment can be classified into three immune phenotypes: inflamed, immune excluded, and immune-desert. Immunotherapy efficacy has been shown to vary by phenotype; yet, the mechanisms are poorly understood and demand further investigation. This study unveils the mechanisms using an artificial intelligence–powered software called Lunit SCOPE. Artificial intelligence was used to classify 965 samples of non–small-cell lung carcinoma from The Cancer Genome Atlas into the three immune phenotypes. The immune and mutational profiles that shape each phenotype using xCell, gene set enrichment analysis with RNA-sequencing data, and cBioportal were described. In the inflamed subtype, which showed higher cytolytic score, the enriched pathways were generally associated with immune response and immune-related cell types were highly expressed. In the immune excluded subtype, enriched glycolysis, fatty acid, and cholesterol metabolism pathways were observed. The KRAS mutation, BRAF mutation, and MET splicing variant were mostly observed in the inflamed subtype. The two prominent mutations found in the immune excluded subtype were EGFR and PIK3CA mutations. This study is the first to report the distinct immunologic and mutational landscapes of immune phenotypes, and demonstrates the biological relevance of the classification. In light of these findings, the study offers insights into potential treatment options tailored to each immune phenotype.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of Pathology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Garon E.B.
        • Rizvi N.A.
        • Hui R.
        • Leighl N.
        • Balmanoukian A.S.
        • Eder J.P.
        • Patnaik A.
        • Aggarwal C.
        • Gubens M.
        • Horn L.
        • Carcereny E.
        • Ahn M.J.
        • Felip E.
        • Lee J.S.
        • Hellmann M.D.
        • Hamid O.
        • Goldman J.W.
        • Soria J.C.
        • Dolled-Filhart M.
        • Rutledge R.Z.
        • Zhang J.
        • Lunceford J.K.
        • Rangwala R.
        • Lubiniecki G.M.
        • Roach C.
        • Emancipator K.
        • Gandhi L.
        • Investigators K-
        Pembrolizumab for the treatment of non-small-cell lung cancer.
        N Engl J Med. 2015; 372: 2018-2028
        • Binnewies M.
        • Roberts E.W.
        • Kersten K.
        • Chan V.
        • Fearon D.F.
        • Merad M.
        • Coussens L.M.
        • Gabrilovich D.I.
        • Ostrand-Rosenberg S.
        • Hedrick C.C.
        • Vonderheide R.H.
        • Pittet M.J.
        • Jain R.K.
        • Zou W.
        • Howcroft T.K.
        • Woodhouse E.C.
        • Weinberg R.A.
        • Krummel M.F.
        Understanding the tumor immune microenvironment (TIME) for effective therapy.
        Nat Med. 2018; 24: 541-550
        • Weinstein J.N.
        • Collisson E.A.
        • Mills G.B.
        • Shaw K.R.
        • Ozenberger B.A.
        • Ellrott K.
        • Shmulevich I.
        • Sander C.
        • Stuart J.M.
        • Cancer Genome Atlas Research N
        The Cancer Genome atlas pan-cancer analysis project.
        Nat Genet. 2013; 45: 1113-1120
        • Aberle D.R.
        • Berg C.D.
        • Black W.C.
        • Church T.R.
        • Fagerstrom R.M.
        • Galen B.
        • Gareen I.F.
        • Gatsonis C.
        • Goldin J.
        • Gohagan J.K.
        • Hillman B.
        • Jaffe C.
        • Kramer B.S.
        • Lynch D.
        • Marcus P.M.
        • Schnall M.
        • Sullivan D.C.
        • Sullivan D.
        • Zylak C.J.
        The National Lung Screening Trial: overview and study design.
        Radiology. 2011; 258: 243-253
        • Zhu C.S.
        • Pinsky P.F.
        • Kramer B.S.
        • Prorok P.C.
        • Purdue M.P.
        • Berg C.D.
        • Gohagan J.K.
        The prostate, lung, colorectal, and ovarian cancer screening trial and its associated research resource.
        J Natl Cancer Inst. 2013; 105: 1684-1693
        • Aran D.
        • Hu Z.
        • Butte A.J.
        xCell: digitally portraying the tissue cellular heterogeneity landscape.
        Genome Biol. 2017; 18: 220
        • Ritchie M.E.
        • Phipson B.
        • Wu D.
        • Hu Y.
        • Law C.W.
        • Shi W.
        • Smyth G.K.
        limma Powers differential expression analyses for RNA-sequencing and microarray studies.
        Nucleic Acids Res. 2015; 43: e47
        • Subramanian A.
        • Tamayo P.
        • Mootha V.K.
        • Mukherjee S.
        • Ebert B.L.
        • Gillette M.A.
        • Paulovich A.
        • Pomeroy S.L.
        • Golub T.R.
        • Lander E.S.
        • Mesirov J.P.
        Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.
        Proc Natl Acad Sci U S A. 2005; 102: 15545-15550
        • Gao J.
        • Aksoy B.A.
        • Dogrusoz U.
        • Dresdner G.
        • Gross B.
        • Sumer S.O.
        • Sun Y.
        • Jacobsen A.
        • Sinha R.
        • Larsson E.
        • Cerami E.
        • Sander C.
        • Schultz N.
        Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal.
        Sci Signal. 2013; 6: pl1
        • Tumeh P.C.
        • Harview C.L.
        • Yearley J.H.
        • Shintaku I.P.
        • Taylor E.J.
        • Robert L.
        • Chmielowski B.
        • Spasic M.
        • Henry G.
        • Ciobanu V.
        • West A.N.
        • Carmona M.
        • Kivork C.
        • Seja E.
        • Cherry G.
        • Gutierrez A.J.
        • Grogan T.R.
        • Mateus C.
        • Tomasic G.
        • Glaspy J.A.
        • Emerson R.O.
        • Robins H.
        • Pierce R.H.
        • Elashoff D.A.
        • Robert C.
        • Ribas A.
        PD-1 blockade induces responses by inhibiting adaptive immune resistance.
        Nature. 2014; 515: 568-571
        • Garris C.S.
        • Arlauckas S.P.
        • Kohler R.H.
        • Trefny M.P.
        • Garren S.
        • Piot C.
        • Engblom C.
        • Pfirschke C.
        • Siwicki M.
        • Gungabeesoon J.
        • Freeman G.J.
        • Warren S.E.
        • Ong S.
        • Browning E.
        • Twitty C.G.
        • Pierce R.H.
        • Le M.H.
        • Algazi A.P.
        • Daud A.I.
        • Pai S.I.
        • Zippelius A.
        • Weissleder R.
        • Pittet M.J.
        Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-gamma and IL-12.
        Immunity. 2018; 49: 1148-1161.e7
        • Dias Carvalho P.
        • Machado A.L.
        • Martins F.
        • Seruca R.
        • Velho S.
        Targeting the tumor microenvironment: an unexplored strategy for mutant KRAS tumors.
        Cancers (Basel). 2019; 11: 2010
        • Hong D.S.
        • Fakih M.G.
        • Strickler J.H.
        • Desai J.
        • Durm G.A.
        • Shapiro G.I.
        • Falchook G.S.
        • Price T.J.
        • Sacher A.
        • Denlinger C.S.
        • Bang Y.J.
        • Dy G.K.
        • Krauss J.C.
        • Kuboki Y.
        • Kuo J.C.
        • Coveler A.L.
        • Park K.
        • Kim T.W.
        • Barlesi F.
        • Munster P.N.
        • Ramalingam S.S.
        • Burns T.F.
        • Meric-Bernstam F.
        • Henary H.
        • Ngang J.
        • Ngarmchamnanrith G.
        • Kim J.
        • Houk B.E.
        • Canon J.
        • Lipford J.R.
        • Friberg G.
        • Lito P.
        • Govindan R.
        • Li B.T.
        KRAS(G12C) inhibition with sotorasib in advanced solid tumors.
        N Engl J Med. 2020; 383: 1207-1217
        • Reis E.S.
        • Mastellos D.C.
        • Ricklin D.
        • Mantovani A.
        • Lambris J.D.
        Complement in cancer: untangling an intricate relationship.
        Nat Rev Immunol. 2018; 18: 5-18
        • Zhang R.
        • Liu Q.
        • Li T.
        • Liao Q.
        • Zhao Y.
        Role of the complement system in the tumor microenvironment.
        Cancer Cell Int. 2019; 19: 300
        • Kolev M.
        • Markiewski M.M.
        Targeting complement-mediated immunoregulation for cancer immunotherapy.
        Semin Immunol. 2018; 37: 85-97
        • Ajona D.
        • Ortiz-Espinosa S.
        • Moreno H.
        • Lozano T.
        • Pajares M.J.
        • Agorreta J.
        • Bertolo C.
        • Lasarte J.J.
        • Vicent S.
        • Hoehlig K.
        • Vater A.
        • Lecanda F.
        • Montuenga L.M.
        • Pio R.
        A combined PD-1/C5a blockade synergistically protects against lung cancer growth and metastasis.
        Cancer Discov. 2017; 7: 694-703
        • van den Berg Y.W.
        • Osanto S.
        • Reitsma P.H.
        • Versteeg H.H.
        The relationship between tissue factor and cancer progression: insights from bench and bedside.
        Blood. 2012; 119: 924-932
        • Rao B.
        • Gao Y.
        • Huang J.
        • Gao X.
        • Fu X.
        • Huang M.
        • Yao J.
        • Wang J.
        • Li W.
        • Zhang J.
        • Liu H.
        • Wang L.
        • Wang J.
        Mutations of p53 and K-ras correlate TF expression in human colorectal carcinomas: TF downregulation as a marker of poor prognosis.
        Int J Colorectal Dis. 2011; 26: 593-601
        • Krisinger M.J.
        • Goebeler V.
        • Lu Z.
        • Meixner S.C.
        • Myles T.
        • Pryzdial E.L.
        • Conway E.M.
        Thrombin generates previously unidentified C5 products that support the terminal complement activation pathway.
        Blood. 2012; 120: 1717-1725
        • Metelli A.
        • Wu B.X.
        • Riesenberg B.
        • Guglietta S.
        • Huck J.D.
        • Mills C.
        • Li A.
        • Rachidi S.
        • Krieg C.
        • Rubinstein M.P.
        • Gewirth D.T.
        • Sun S.
        • Lilly M.B.
        • Wahlquist A.H.
        • Carbone D.P.
        • Yang Y.
        • Liu B.
        • Li Z.
        Thrombin contributes to cancer immune evasion via proteolysis of platelet-bound GARP to activate LTGF-beta.
        Sci Transl Med. 2020; 12: eaay4860
        • Graf C.
        • Wilgenbus P.
        • Pagel S.
        • Pott J.
        • Marini F.
        • Reyda S.
        • Kitano M.
        • Macher-Goppinger S.
        • Weiler H.
        • Ruf W.
        Myeloid cell-synthesized coagulation factor X dampens antitumor immunity.
        Sci Immunol. 2019; 4: eaaw8405
        • Conciatori F.
        • Bazzichetto C.
        • Falcone I.
        • Pilotto S.
        • Bria E.
        • Cognetti F.
        • Milella M.
        • Ciuffreda L.
        Role of mTOR signaling in tumor microenvironment: an overview.
        Int J Mol Sci. 2018; 19: 2453
        • Dobashi Y.
        • Suzuki S.
        • Matsubara H.
        • Kimura M.
        • Endo S.
        • Ooi A.
        Critical and diverse involvement of Akt/mammalian target of rapamycin signaling in human lung carcinomas.
        Cancer. 2009; 115: 107-118
        • Krock B.L.
        • Skuli N.
        • Simon M.C.
        Hypoxia-induced angiogenesis: good and evil.
        Genes Cancer. 2011; 2: 1117-1133
        • Hatfield S.M.
        • Kjaergaard J.
        • Lukashev D.
        • Schreiber T.H.
        • Belikoff B.
        • Abbott R.
        • Sethumadhavan S.
        • Philbrook P.
        • Ko K.
        • Cannici R.
        • Thayer M.
        • Rodig S.
        • Kutok J.L.
        • Jackson E.K.
        • Karger B.
        • Podack E.R.
        • Ohta A.
        • Sitkovsky M.V.
        Immunological mechanisms of the antitumor effects of supplemental oxygenation.
        Sci Transl Med. 2015; 7: 277ra30
        • DePeaux K.
        • Delgoffe G.M.
        Metabolic barriers to cancer immunotherapy.
        Nat Rev Immunol. 2021; 21: 785-797
        • Liberti M.V.
        • Locasale J.W.
        The Warburg effect: how does it benefit cancer cells?.
        Trends Biochem Sci. 2016; 41: 211-218
        • Estrella V.
        • Chen T.
        • Lloyd M.
        • Wojtkowiak J.
        • Cornnell H.H.
        • Ibrahim-Hashim A.
        • Bailey K.
        • Balagurunathan Y.
        • Rothberg J.M.
        • Sloane B.F.
        • Johnson J.
        • Gatenby R.A.
        • Gillies R.J.
        Acidity generated by the tumor microenvironment drives local invasion.
        Cancer Res. 2013; 73: 1524-1535
        • Colegio O.R.
        • Chu N.Q.
        • Szabo A.L.
        • Chu T.
        • Rhebergen A.M.
        • Jairam V.
        • Cyrus N.
        • Brokowski C.E.
        • Eisenbarth S.C.
        • Phillips G.M.
        • Cline G.W.
        • Phillips A.J.
        • Medzhitov R.
        Functional polarization of tumour-associated macrophages by tumour-derived lactic acid.
        Nature. 2014; 513: 559-563
        • Donnelly R.P.
        • Loftus R.M.
        • Keating S.E.
        • Liou K.T.
        • Biron C.A.
        • Gardiner C.M.
        • Finlay D.K.
        mTORC1-dependent metabolic reprogramming is a prerequisite for NK cell effector function.
        J Immunol. 2014; 193: 4477-4484
        • Kempkes R.W.M.
        • Joosten I.
        • Koenen H.
        • He X.
        Metabolic pathways involved in regulatory T cell functionality.
        Front Immunol. 2019; 10: 2839
        • Pacella I.
        • Procaccini C.
        • Focaccetti C.
        • Miacci S.
        • Timperi E.
        • Faicchia D.
        • Severa M.
        • Rizzo F.
        • Coccia E.M.
        • Bonacina F.
        • Mitro N.
        • Norata G.D.
        • Rossetti G.
        • Ranzani V.
        • Pagani M.
        • Giorda E.
        • Wei Y.
        • Matarese G.
        • Barnaba V.
        • Piconese S.
        Fatty acid metabolism complements glycolysis in the selective regulatory T cell expansion during tumor growth.
        Proc Natl Acad Sci U S A. 2018; 115: E6546-E6555
        • Bleve A.
        • Durante B.
        • Sica A.
        • Consonni F.M.
        Lipid metabolism and cancer immunotherapy: immunosuppressive myeloid cells at the crossroad.
        Int J Mol Sci. 2020; 21: 5845
        • Zhang H.
        • Zhao W.
        • Li X.
        • He Y.
        Cholesterol metabolism as a potential therapeutic target and a prognostic biomarker for cancer immunotherapy.
        Onco Targets Ther. 2021; 14: 3803-3812
        • Yang W.
        • Bai Y.
        • Xiong Y.
        • Zhang J.
        • Chen S.
        • Zheng X.
        • Meng X.
        • Li L.
        • Wang J.
        • Xu C.
        • Yan C.
        • Wang L.
        • Chang C.C.
        • Chang T.Y.
        • Zhang T.
        • Zhou P.
        • Song B.L.
        • Liu W.
        • Sun S.C.
        • Liu X.
        • Li B.L.
        • Xu C.
        Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism.
        Nature. 2016; 531: 651-655
        • Oh M.S.
        • Anker J.F.
        • Chae Y.K.
        High gene expression of estrogen and progesterone receptors is associated with decreased t cell infiltration in patients with NSCLC.
        Cancer Treat Res Commun. 2021; 27: 100317
        • Klinge C.M.
        Inhibition of non-small-cell lung cancer growth by combined fulvestrant and vandetanib.
        Future Oncol. 2012; 8: 529-533
        • Siegfried J.M.
        • Farooqui M.
        • Rothenberger N.J.
        • Dacic S.
        • Stabile L.P.
        Interaction between the estrogen receptor and fibroblast growth factor receptor pathways in non-small cell lung cancer.
        Oncotarget. 2017; 8: 24063-24076
        • Garon E.B.
        • Pietras R.J.
        • Finn R.S.
        • Kamranpour N.
        • Pitts S.
        • Marquez-Garban D.C.
        • Desai A.J.
        • Dering J.
        • Hosmer W.
        • von Euw E.M.
        • Dubinett S.M.
        • Slamon D.J.
        Antiestrogen fulvestrant enhances the antiproliferative effects of epidermal growth factor receptor inhibitors in human non-small-cell lung cancer.
        J Thorac Oncol. 2013; 8: 270-278
        • Casey S.C.
        • Tong L.
        • Li Y.
        • Do R.
        • Walz S.
        • Fitzgerald K.N.
        • Gouw A.M.
        • Baylot V.
        • Gutgemann I.
        • Eilers M.
        • Felsher D.W.
        MYC regulates the antitumor immune response through CD47 and PD-L1.
        Science. 2016; 352: 227-231
        • Schaub F.X.
        • Dhankani V.
        • Berger A.C.
        • Trivedi M.
        • Richardson A.B.
        • Shaw R.
        • Zhao W.
        • Zhang X.
        • Ventura A.
        • Liu Y.
        • Ayer D.E.
        • Hurlin P.J.
        • Cherniack A.D.
        • Eisenman R.N.
        • Bernard B.
        • Grandori C.
        • Cancer Genome Atlas N.
        Pan-cancer alterations of the MYC oncogene and its proximal network across the cancer genome atlas.
        Cell Syst. 2018; 6: 282-300.e2
        • Pello O.M.
        • Chevre R.
        • Laoui D.
        • De Juan A.
        • Lolo F.
        • Andres-Manzano M.J.
        • Serrano M.
        • Van Ginderachter J.A.
        • Andres V.
        In vivo inhibition of c-MYC in myeloid cells impairs tumor-associated macrophage maturation and pro-tumoral activities.
        PLoS One. 2012; 7: e45399
        • Pello O.M.
        • De Pizzol M.
        • Mirolo M.
        • Soucek L.
        • Zammataro L.
        • Amabile A.
        • Doni A.
        • Nebuloni M.
        • Swigart L.B.
        • Evan G.I.
        • Mantovani A.
        • Locati M.
        Role of c-MYC in alternative activation of human macrophages and tumor-associated macrophage biology.
        Blood. 2012; 119: 411-421
        • Han H.
        • Jain A.D.
        • Truica M.I.
        • Izquierdo-Ferrer J.
        • Anker J.F.
        • Lysy B.
        • Sagar V.
        • Luan Y.
        • Chalmers Z.R.
        • Unno K.
        • Mok H.
        • Vatapalli R.
        • Yoo Y.A.
        • Rodriguez Y.
        • Kandela I.
        • Parker J.B.
        • Chakravarti D.
        • Mishra R.K.
        • Schiltz G.E.
        • Abdulkadir S.A.
        Small-molecule MYC inhibitors suppress tumor growth and enhance immunotherapy.
        Cancer Cell. 2019; 36: 483-497.e15
        • Dong Z.Y.
        • Zhang J.T.
        • Liu S.Y.
        • Su J.
        • Zhang C.
        • Xie Z.
        • Zhou Q.
        • Tu H.Y.
        • Xu C.R.
        • Yan L.X.
        • Li Y.F.
        • Zhong W.Z.
        • Wu Y.L.
        EGFR mutation correlates with uninflamed phenotype and weak immunogenicity, causing impaired response to PD-1 blockade in non-small cell lung cancer.
        Oncoimmunology. 2017; 6: e1356145
        • Borghaei H.
        • Paz-Ares L.
        • Horn L.
        • Spigel D.R.
        • Steins M.
        • Ready N.E.
        • Chow L.Q.
        • Vokes E.E.
        • Felip E.
        • Holgado E.
        • Barlesi F.
        • Kohlhaufl M.
        • Arrieta O.
        • Burgio M.A.
        • Fayette J.
        • Lena H.
        • Poddubskaya E.
        • Gerber D.E.
        • Gettinger S.N.
        • Rudin C.M.
        • Rizvi N.
        • Crino L.
        • Blumenschein Jr., G.R.
        • Antonia S.J.
        • Dorange C.
        • Harbison C.T.
        • Graf Finckenstein F.
        • Brahmer J.R.
        Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer.
        N Engl J Med. 2015; 373: 1627-1639
        • Gainor J.F.
        • Shaw A.T.
        • Sequist L.V.
        • Fu X.
        • Azzoli C.G.
        • Piotrowska Z.
        • Huynh T.G.
        • Zhao L.
        • Fulton L.
        • Schultz K.R.
        • Howe E.
        • Farago A.F.
        • Sullivan R.J.
        • Stone J.R.
        • Digumarthy S.
        • Moran T.
        • Hata A.N.
        • Yagi Y.
        • Yeap B.Y.
        • Engelman J.A.
        • Mino-Kenudson M.
        EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-small cell lung cancer: a retrospective analysis.
        Clin Cancer Res. 2016; 22: 4585-4593
        • Lee C.K.
        • Man J.
        • Lord S.
        • Links M.
        • Gebski V.
        • Mok T.
        • Yang J.C.
        Checkpoint inhibitors in metastatic EGFR-mutated non-small cell lung cancer-a meta-analysis.
        J Thorac Oncol. 2017; 12: 403-407