Advertisement

Collapsin Response Mediator Protein 1 (CRMP1) Is Required for High-Frequency Hearing

  • Jinan Li
    Affiliations
    Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana
    Search for articles by this author
  • Chang Liu
    Affiliations
    Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana
    Search for articles by this author
  • Bo Zhao
    Correspondence
    Address correspondence to Bo Zhao, Ph.D., Department of Otolaryngology Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202.
    Affiliations
    Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana
    Search for articles by this author
Published:February 15, 2022DOI:https://doi.org/10.1016/j.ajpath.2022.01.011
      Collapsin response mediator protein 1 (CRMP1), also known as dihydropyrimidinase-related protein 1, participates in cytoskeleton remodeling during axonal guidance and neuronal migration. In cochlear hair cells, the assembly and maintenance of the cytoskeleton is of great interest because it is crucial for the morphogenesis and maintenance of hair cells. Previous RNA sequencing analysis found that Crmp1 is highly expressed in cochlear hair cells. However, the expression profile and functions of CRMP1 in the inner ear remain unknown. In this study, the expression and localization of CRMP1 in hair cells was investigated using immunostaining, and was shown to be highly expressed in both outer and inner hair cells. Next, the stereocilia morphology of Crmp1-deficient mice was characterized. Abolishing CRMP1 did not affect the morphogenesis of hair cells. Interestingly, scanning electron microscopy detected hair cell loss at the basal cochlear region, an area responsible for high-frequency auditory perception, in Crmp1-deficient mice. Correspondingly, an auditory brainstem response test showed that mice lacking CRMP1 had progressive hearing loss at high frequencies. In summary, these data suggest that CRMP1 is required for high-frequency auditory perception.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of Pathology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • McGrath J.
        • Roy P.
        • Perrin B.J.
        Stereocilia morphogenesis and maintenance through regulation of actin stability.
        Semin Cell Dev Biol. 2017; 65: 88-95
        • Beurg M.
        • Fettiplace R.
        • Nam J.H.
        • Ricci A.J.
        Localization of inner hair cell mechanotransducer channels using high-speed calcium imaging.
        Nat Neurosci. 2009; 12: 553-558
        • Shin J.B.
        • Krey J.F.
        • Hassan A.
        • Metlagel Z.
        • Tauscher A.N.
        • Pagana J.M.
        • Sherman N.E.
        • Jeffery E.D.
        • Spinelli K.J.
        • Zhao H.
        • Wilmarth P.A.
        • Choi D.
        • David L.L.
        • Auer M.
        • Barr-Gillespie P.G.
        Molecular architecture of the chick vestibular hair bundle.
        Nat Neurosci. 2013; 16: 365-374
        • Cohen-Salmon M.
        • Crozet F.
        • Rebillard G.
        • Petit C.
        Cloning and characterization of the mouse collapsin response mediator protein-1, Crmp1.
        Mamm Genome. 1997; 8: 349-351
        • Matern M.
        • Vijayakumar S.
        • Margulies Z.
        • Milon B.
        • Song Y.
        • Elkon R.
        • Zhang X.
        • Jones S.M.
        • Hertzano R.
        Gfi1(Cre) mice have early onset progressive hearing loss and induce recombination in numerous inner ear non-hair cells.
        Sci Rep. 2017; 7: 42079
        • Higurashi M.
        • Iketani M.
        • Takei K.
        • Yamashita N.
        • Aoki R.
        • Kawahara N.
        • Goshima Y.
        Localized role of CRMP1 and CRMP2 in neurite outgrowth and growth cone steering.
        Dev Neurobiol. 2012; 72: 1528-1540
        • Cai G.
        • Wu D.
        • Wang Z.
        • Xu Z.
        • Wong K.B.
        • Ng C.F.
        • Chan F.L.
        • Yu S.
        Collapsin response mediator protein-1 (CRMP1) acts as an invasion and metastasis suppressor of prostate cancer via its suppression of epithelial-mesenchymal transition and remodeling of actin cytoskeleton organization.
        Oncogene. 2017; 36: 546-558
        • Sloane J.A.
        • Vartanian T.K.
        WAVE1 and regulation of actin nucleation in myelination.
        Neuroscientist. 2007; 13: 486-491
        • Higgs H.N.
        Actin nucleation: nucleation-promoting factors are not all equal.
        Curr Biol. 2001; 11: R1009-R1012
        • Liu C.
        • Luo N.
        • Tung C.Y.
        • Perrin B.J.
        • Zhao B.
        GRXCR2 regulates taperin localization critical for stereocilia morphology and hearing.
        Cell Rep. 2018; 25: 1268-1280.e4
        • Zhao B.
        • Wu Z.
        • Muller U.
        Murine Fam65b forms ring-like structures at the base of stereocilia critical for mechanosensory hair cell function.
        Elife. 2016; 5: e14222
        • Li J.
        • Liu C.
        • Zhao B.
        N-terminus of GRXCR2 interacts with CLIC5 and is essential for auditory perception.
        Front Cell Dev Biol. 2021; 9: 671364
        • Fang Q.J.
        • Wu F.
        • Chai R.
        • Sha S.H.
        Cochlear surface preparation in the adult mouse.
        J Vis Exp. 2019; 153: 60299
        • Montgomery S.C.
        • Cox B.C.
        Whole mount dissection and immunofluorescence of the adult mouse cochlea.
        J Vis Exp. 2016; 107: 53561
        • Liu C.
        • Zhao B.
        Murine GRXCR1 has a different function than GRXCR2 in the morphogenesis of stereocilia.
        Front Cell Neurosci. 2021; 15: 714070
        • McGrath J.
        • Tung C.Y.
        • Liao X.
        • Belyantseva I.A.
        • Roy P.
        • Chakraborty O.
        • Li J.
        • Berbari N.F.
        • Faaborg-Andersen C.C.
        • Barzik M.
        • Bird J.E.
        • Zhao B.
        • Balakrishnan L.
        • Friedman T.B.
        • Perrin B.J.
        Actin at stereocilia tips is regulated by mechanotransduction and ADF/cofilin.
        Curr Biol. 2021; 31: 1141-1153.e7
        • Yamashita N.
        • Uchida Y.
        • Ohshima T.
        • Hirai S.
        • Nakamura F.
        • Taniguchi M.
        • Mikoshiba K.
        • Honnorat J.
        • Kolattukudy P.
        • Thomasset N.
        • Takei K.
        • Takahashi T.
        • Goshima Y.
        Collapsin response mediator protein 1 mediates reelin signaling in cortical neuronal migration.
        J Neurosci. 2006; 26: 13357-13362
        • Salles F.T.
        • Merritt Jr., R.C.
        • Manor U.
        • Dougherty G.W.
        • Sousa A.D.
        • Moore J.E.
        • Yengo C.M.
        • Dose A.C.
        • Kachar B.
        Myosin IIIa boosts elongation of stereocilia by transporting espin 1 to the plus ends of actin filaments.
        Nat Cell Biol. 2009; 11: 443-450
        • Merritt R.C.
        • Manor U.
        • Salles F.T.
        • Grati M.
        • Dose A.C.
        • Unrath W.C.
        • Quintero O.A.
        • Yengo C.M.
        • Kachar B.
        Myosin IIIB uses an actin-binding motif in its espin-1 cargo to reach the tips of actin protrusions.
        Curr Biol. 2012; 22: 320-325
        • Ebrahim S.
        • Avenarius M.R.
        • Grati M.
        • Krey J.F.
        • Windsor A.M.
        • Sousa A.D.
        • Ballesteros A.
        • Cui R.
        • Millis B.A.
        • Salles F.T.
        • Baird M.A.
        • Davidson M.W.
        • Jones S.M.
        • Choi D.
        • Dong L.
        • Raval M.H.
        • Yengo C.M.
        • Barr-Gillespie P.G.
        • Kachar B.
        Stereocilia-staircase spacing is influenced by myosin III motors and their cargos espin-1 and espin-like.
        Nat Commun. 2016; 7: 10833
        • Rehman A.U.
        • Morell R.J.
        • Belyantseva I.A.
        • Khan S.Y.
        • Boger E.T.
        • Shahzad M.
        • Ahmed Z.M.
        • Riazuddin S.
        • Khan S.N.
        • Riazuddin S.
        • Friedman T.B.
        Targeted capture and next-generation sequencing identifies C9orf75, encoding taperin, as the mutated gene in nonsyndromic deafness DFNB79.
        Am J Hum Genet. 2010; 86: 378-388
        • Gale J.E.
        • Meyers J.R.
        • Periasamy A.
        • Corwin J.T.
        Survival of bundleless hair cells and subsequent bundle replacement in the bullfrog's saccule.
        J Neurobiol. 2002; 50: 81-92
        • Fettiplace R.
        Diverse mechanisms of sound frequency discrimination in the vertebrate cochlea.
        Trends Neurosci. 2020; 43: 88-102
        • Orvis J.
        • Gottfried B.
        • Kancherla J.
        • Adkins R.S.
        • Song Y.
        • Dror A.A.
        • Olley D.
        • Rose K.
        • Chrysostomou E.
        • Kelly M.C.
        • Milon B.
        • Matern M.S.
        • Azaiez H.
        • Herb B.
        • Colantuoni C.
        • Carter R.L.
        • Ament S.A.
        • Kelley M.W.
        • White O.
        • Bravo H.C.
        • Mahurkar A.
        • Hertzano R.
        gEAR: gene expression analysis resource portal for community-driven, multi-omic data exploration.
        Nat Methods. 2021; 18: 843-844
        • Scheffer D.I.
        • Shen J.
        • Corey D.P.
        • Chen Z.Y.
        Gene expression by mouse inner ear hair cells during development.
        J Neurosci. 2015; 35: 6366-6380
        • Narayanan P.
        • Chatterton P.
        • Ikeda A.
        • Ikeda S.
        • Corey D.P.
        • Ervasti J.M.
        • Perrin B.J.
        Length regulation of mechanosensitive stereocilia depends on very slow actin dynamics and filament-severing proteins.
        Nat Commun. 2015; 6: 6855
        • Han Y.
        • Wang X.
        • Chen J.
        • Sha S.H.
        Noise-induced cochlear F-actin depolymerization is mediated via ROCK2/p-ERM signaling.
        J Neurochem. 2015; 133: 617-628
        • Kurnellas M.P.
        • Li H.
        • Jain M.R.
        • Giraud S.N.
        • Nicot A.B.
        • Ratnayake A.
        • Heary R.F.
        • Elkabes S.
        Reduced expression of plasma membrane calcium ATPase 2 and collapsin response mediator protein 1 promotes death of spinal cord neurons.
        Cell Death Differ. 2010; 17: 1501-1510
        • Chen Q.
        • Mahendrasingam S.
        • Tickle J.A.
        • Hackney C.M.
        • Furness D.N.
        • Fettiplace R.
        The development, distribution and density of the plasma membrane calcium ATPase 2 calcium pump in rat cochlear hair cells.
        Eur J Neurosci. 2012; 36: 2302-2310
        • Kozel P.J.
        • Friedman R.A.
        • Erway L.C.
        • Yamoah E.N.
        • Liu L.H.
        • Riddle T.
        • Duffy J.J.
        • Doetschman T.
        • Miller M.L.
        • Cardell E.L.
        • Shull G.E.
        Balance and hearing deficits in mice with a null mutation in the gene encoding plasma membrane Ca2+-ATPase isoform 2.
        J Biol Chem. 1998; 273: 18693-18696
        • Watson C.J.
        • Tempel B.L.
        A new Atp2b2 deafwaddler allele, dfw(i5), interacts strongly with Cdh23 and other auditory modifiers.
        Hear Res. 2013; 304: 41-48
        • Noben-Trauth K.
        • Zheng Q.Y.
        • Johnson K.R.
        Association of cadherin 23 with polygenic inheritance and genetic modification of sensorineural hearing loss.
        Nat Genet. 2003; 35: 21-23
        • Johnson K.R.
        • Erway L.C.
        • Cook S.A.
        • Willott J.F.
        • Zheng Q.Y.
        A major gene affecting age-related hearing loss in C57BL/6J mice.
        Hear Res. 1997; 114: 83-92

      Linked Article

      • This Month in AJP
        The American Journal of PathologyVol. 192Issue 5
        • Preview
          Macrophage phenotype, which is regulated by peroxisome proliferator-activated receptor-γ (PPARγ), contributes to fibrosis following vocal fold injury. Using a rat model, Kaba et al (Am J Pathol 2022, 771–782) studied the effect of the PPARγ agonist pioglitazone on vocal cord fibrosis in response to injury. Administration of pioglitazone inhibited accumulation of inflammatory macrophages and improved tissue repair. Targeting inflammatory macrophages and PPARγ activation may help manage vocal fold fibrosis.
        • Full-Text
        • PDF