Advertisement

Molecular Signature of Antibody-Mediated Chronic Vasculopathy in Heart Allografts in a Novel Mouse Model

      Cardiac allograft vasculopathy (CAV) limits the long-term success of heart transplants. Generation of donor-specific antibodies (DSAs) is associated with increased incidence of CAV clinically, but mechanisms underlying development of this pathology remain poorly understood. Major histocompatibility complex–mismatched A/J cardiac allografts in B6.CCR5−/− recipients have been reported to undergo acute rejection with little T-cell infiltration, but intense deposition of C4d in large vessels and capillaries of the graft accompanied by high titers of DSA. This model was modified to investigate mechanisms of antibody-mediated CAV by transplanting A/J hearts to B6.CCR5−/− CD8−/− mice that were treated with low doses of anti-CD4 monoclonal antibody to decrease T-cell–mediated graft injury and promote antibody-mediated injury. Although the mild inhibition of CD4 T cells extended allograft survival, the grafts developed CAV with intense C4d deposition and macrophage infiltration by 14 days after transplantation. Development of CAV correlated with recipient DSA titers. Transcriptomic analysis of microdissected allograft arteries identified the Notch ligand Dll4 as the most elevated transcript in CAV, associated with high versus low titers of DSA. More importantly, these analyses revealed a differential expression of transcripts in the CAV lesions compared with the matched apical tissue that lacks large arteries. In conclusion, these findings report a novel model of antibody-mediated CAV with the potential to facilitate further understanding of the molecular mechanisms promoting development of CAV.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of Pathology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Chih S.
        • Chong A.Y.
        • Mielniczuk L.M.
        • Bhatt D.L.
        • Beanlands R.S.
        Allograft vasculopathy: the Achilles' heel of heart transplantation.
        J Am Coll Cardiol. 2016; 68: 80-91
        • Loupy A.
        • Coutance G.
        • Bonnet G.
        • Van Keer J.
        • Raynaud M.
        • Aubert O.
        • Bories M.C.
        • Racape M.
        • Yoo D.
        • Duong Van Huyen J.P.
        • Bruneval P.
        • Taupin J.L.
        • Lefaucheur C.
        • Varnous S.
        • Leprince P.
        • Guillemain R.
        • Empana J.P.
        • Levine R.
        • Naesens M.
        • Patel J.K.
        • Jouven X.
        • Kobashigawa J.
        Identification and characterization of trajectories of cardiac allograft vasculopathy after heart transplantation: a population-based study.
        Circulation. 2020; 141: 1954-1967
        • Lund L.H.
        • Edwards L.B.
        • Dipchand A.I.
        • Goldfarb S.
        • Kucheryavaya A.Y.
        • Levvey B.J.
        • Meiser B.
        • Rossano J.W.
        • Yusen R.D.
        • Stehlik J.
        • International Society for Heart and Lung Transplantation
        The Registry of the International Society for Heart and Lung Transplantation: thirty-third adult heart transplantation report-2016; focus theme: primary diagnostic indications for transplant.
        J Heart Lung Transplant. 2016; 35: 1158-1169
        • Jansen M.A.
        • Otten H.G.
        • de Weger R.A.
        • Huibers M.M.
        Immunological and fibrotic mechanisms in cardiac allograft vasculopathy.
        Transplantation. 2015; 99: 2467-2475
        • Lee F.
        • Nair V.
        • Chih S.
        Cardiac allograft vasculopathy: insights on pathogenesis and therapy.
        Clin Transplant. 2020; 34: e13794
        • Frank R.
        • Molina M.R.
        • Goldberg L.R.
        • Wald J.W.
        • Kamoun M.
        • Lal P.
        Circulating donor-specific anti-human leukocyte antigen antibodies and complement C4d deposition are associated with the development of cardiac allograft vasculopathy.
        Am J Clin Pathol. 2014; 142: 809-815
        • Loupy A.
        • Toquet C.
        • Rouvier P.
        • Beuscart T.
        • Bories M.C.
        • Varnous S.
        • Guillemain R.
        • Pattier S.
        • Suberbielle C.
        • Leprince P.
        • Lefaucheur C.
        • Jouven X.
        • Bruneval P.
        • Duong Van Huyen J.P.
        Late failing heart allografts: pathology of cardiac allograft vasculopathy and association with antibody-mediated rejection.
        Am J Transplant. 2016; 16: 111-120
        • Ticehurst E.H.
        • Molina M.R.
        • Frank R.
        • Kearns J.
        • Lal P.
        • Goldberg L.R.
        • Tsai D.
        • Wald J.
        • Kamoun M.
        Antibody-mediated rejection in heart transplant patients: long-term follow up of patients with high levels of donor-directed anti-DQ antibodies.
        Clin Transpl. 2011; 43: 409-414
        • Valenzuela N.M.
        • Reed E.F.
        Antibody-mediated rejection across solid organ transplants: manifestations, mechanisms, and therapies.
        J Clin Invest. 2017; 127: 2492-2504
        • Wehner J.R.
        • Fox-Talbot K.
        • Halushka M.K.
        • Ellis C.
        • Zachary A.A.
        • Baldwin 3rd, W.M.
        B cells and plasma cells in coronaries of chronically rejected cardiac transplants.
        Transplantation. 2010; 89: 1141-1148
        • Jin Y.P.
        • Valenzuela N.M.
        • Zhang X.
        • Rozengurt E.
        • Reed E.F.
        HLA class II-triggered signaling cascades cause endothelial cell proliferation and migration: relevance to antibody-mediated transplant rejection.
        J Immunol. 2018; 200: 2372-2390
        • Jindra P.T.
        • Hsueh A.
        • Hong L.
        • Gjertson D.
        • Shen X.D.
        • Gao F.
        • Dang J.
        • Mischel P.S.
        • Baldwin 3rd, W.M.
        • Fishbein M.C.
        • Kupiec-Weglinski J.W.
        • Reed E.F.
        Anti-MHC class I antibody activation of proliferation and survival signaling in murine cardiac allografts.
        J Immunol. 2008; 180: 2214-2224
        • Michaels P.J.
        • Espejo M.L.
        • Kobashigawa J.
        • Alejos J.C.
        • Burch C.
        • Takemoto S.
        • Reed E.F.
        • Fishbein M.C.
        Humoral rejection in cardiac transplantation: risk factors, hemodynamic consequences and relationship to transplant coronary artery disease.
        J Heart Lung Transplant. 2003; 22: 58-69
        • Salehi S.
        • Sosa R.A.
        • Jin Y.P.
        • Kageyama S.
        • Fishbein M.C.
        • Rozengurt E.
        • Kupiec-Weglinski J.W.
        • Reed E.F.
        Outside-in HLA class I signaling regulates ICAM-1 clustering and endothelial cell-monocyte interactions via mTOR in transplant antibody-mediated rejection.
        Am J Transplant. 2018; 18: 1096-1109
        • Valenzuela N.M.
        • Mulder A.
        • Reed E.F.
        HLA class I antibodies trigger increased adherence of monocytes to endothelial cells by eliciting an increase in endothelial P-selectin and, depending on subclass, by engaging FcgammaRs.
        J Immunol. 2013; 190: 6635-6650
        • Wehner J.
        • Morrell C.N.
        • Reynolds T.
        • Rodriguez E.R.
        • Baldwin 3rd, W.M.
        Antibody and complement in transplant vasculopathy.
        Circ Res. 2007; 100: 191-203
        • Wei X.
        • Valenzuela N.M.
        • Rossetti M.
        • Sosa R.A.
        • Nevarez-Mejia J.
        • Fishbein G.A.
        • Mulder A.
        • Dhar J.
        • Keslar K.S.
        • Baldwin 3rd, W.M.
        • Fairchild R.L.
        • Hou J.
        • Reed E.F.
        Antibody-induced vascular inflammation skews infiltrating macrophages to a novel remodeling phenotype in a model of transplant rejection.
        Am J Transplant. 2020; 20: 2686-2702
        • Zhang X.
        • Rozengurt E.
        • Reed E.F.
        HLA class I molecules partner with integrin beta4 to stimulate endothelial cell proliferation and migration.
        Sci Signal. 2010; 3: ra85
        • Sayegh M.H.
        • Wu Z.
        • Hancock W.W.
        • Langmuir P.B.
        • Mata M.
        • Sandner S.
        • Kishimoto K.
        • Sho M.
        • Palmer E.
        • Mitchell R.N.
        • Turka L.A.
        Allograft rejection in a new allospecific CD4+ TCR transgenic mouse.
        Am J Transplant. 2003; 3: 381-389
        • Swirski F.K.
        • Wildgruber M.
        • Ueno T.
        • Figueiredo J.L.
        • Panizzi P.
        • Iwamoto Y.
        • Zhang E.
        • Stone J.R.
        • Rodriguez E.
        • Chen J.W.
        • Pittet M.J.
        • Weissleder R.
        • Nahrendorf M.
        Myeloperoxidase-rich Ly-6C+ myeloid cells infiltrate allografts and contribute to an imaging signature of organ rejection in mice.
        J Clin Invest. 2010; 120: 2627-2634
        • Kaul A.M.
        • Goparaju S.
        • Dvorina N.
        • Iida S.
        • Keslar K.S.
        • de la Motte C.A.
        • Valujskikh A.
        • Fairchild R.L.
        • Baldwin 3rd, W.M.
        Acute and chronic rejection: compartmentalization and kinetics of counterbalancing signals in cardiac transplants.
        Am J Transplant. 2015; 15: 333-345
        • Millrain M.
        • Scott D.
        • Addey C.
        • Dewchand H.
        • Ellis P.
        • Ehrmann I.
        • Mitchell M.
        • Burgoyne P.
        • Simpson E.
        • Dyson J.
        Identification of the immunodominant HY H2-D(k) epitope and evaluation of the role of direct and indirect antigen presentation in HY responses.
        J Immunol. 2005; 175: 7209-7217
        • Hirohashi T.
        • Uehara S.
        • Chase C.M.
        • DellaPelle P.
        • Madsen J.C.
        • Russell P.S.
        • Colvin R.B.
        Complement independent antibody-mediated endarteritis and transplant arteriopathy in mice.
        Am J Transplant. 2010; 10: 510-517
        • Lin C.M.
        • Gill R.G.
        • Mehrad B.
        The natural killer cell activating receptor, NKG2D, is critical to antibody-dependent chronic rejection in heart transplantation.
        Am J Transplant. 2021; 21: 3550-3560
        • Abe T.
        • Su C.A.
        • Iida S.
        • Baldwin 3rd, W.M.
        • Nonomura N.
        • Takahara S.
        • Fairchild R.L.
        Graft-derived CCL2 increases graft injury during antibody-mediated rejection of cardiac allografts.
        Am J Transplant. 2014; 14: 1753-1764
        • Nozaki T.
        • Amano H.
        • Bickerstaff A.
        • Orosz C.G.
        • Novick A.C.
        • Tanabe K.
        • Fairchild R.L.
        Antibody-mediated rejection of cardiac allografts in CCR5-deficient recipients.
        J Immunol. 2007; 179: 5238-5245
        • Gorbacheva V.
        • Fan R.
        • Beavers A.
        • Fairchild R.L.
        • Baldwin 3rd, W.M.
        • Valujskikh A.
        Anti-donor MHC class II alloantibody induces glomerular injury in mouse renal allografts subjected to prolonged cold ischemia.
        J Am Soc Nephrol. 2019; 30: 2413-2425
        • Murata K.
        • Fox-Talbot K.
        • Qian Z.
        • Takahashi K.
        • Stahl G.L.
        • Baldwin 3rd, W.M.
        • Wasowska B.A.
        Synergistic deposition of C4d by complement-activating and non-activating antibodies in cardiac transplants.
        Am J Transplant. 2007; 7: 2605-2614
        • Clausell N.
        • Butany J.
        • Gladstone P.
        • Lonn E.
        • Liu P.
        • Cardella C.
        • Feindel C.
        • Daly P.A.
        Myocardial vacuolization, a marker of ischemic injury, in surveillance cardiac biopsies posttransplant: correlations with morphologic vascular disease and endothelial dysfunction.
        Cardiovasc Pathol. 1996; 5: 29-37
        • Rider A.K.
        • Copeland J.G.
        • Hunt S.A.
        • Mason J.
        • Specter M.J.
        • Winkle R.A.
        • Bieber C.P.
        • Billingham M.E.
        • Dong Jr., E.
        • Griepp R.B.
        • Schroeder J.S.
        • Stinson E.B.
        • Harrison D.C.
        • Shumway N.E.
        The status of cardiac transplantation, 1975.
        Circulation. 1975; 52: 531-539
        • Lu W.H.
        • Palatnik K.
        • Fishbein G.A.
        • Lai C.
        • Levi D.S.
        • Perens G.
        • Alejos J.
        • Kobashigawa J.
        • Fishbein M.C.
        Diverse morphologic manifestations of cardiac allograft vasculopathy: a pathologic study of 64 allograft hearts.
        J Heart Lung Transplant. 2011; 30: 1044-1050
        • Tellides G.
        • Pober J.S.
        Inflammatory and immune responses in the arterial media.
        Circ Res. 2015; 116: 312-322
        • Olymbios M.
        • Kobashigawa J.A.
        Crossing low-level donor-specific antibodies in heart transplantation.
        Curr Opin Organ Transplant. 2019; 24: 227-232
        • Wang M.
        • Patel N.J.
        • Zhang X.
        • Kransdorf E.P.
        • Azarbal B.
        • Kittleson M.M.
        • Czer L.S.C.
        • Kobashigawa J.A.
        • Patel J.K.
        The effects of donor-specific antibody characteristics on cardiac allograft vasculopathy.
        Clin Transplant. 2021; 35: e14483
        • Das B.B.
        • Lacelle C.
        • Zhang S.
        • Gao A.
        • Fixler D.
        Complement (C1q) binding de novo donor-specific antibodies and cardiac-allograft vasculopathy in pediatric heart transplant recipients.
        Transplantation. 2018; 102: 502-509
        • Gloor J.M.
        • Winters J.L.
        • Cornell L.D.
        • Fix L.A.
        • DeGoey S.R.
        • Knauer R.M.
        • Cosio F.G.
        • Gandhi M.J.
        • Kremers W.
        • Stegall M.D.
        Baseline donor-specific antibody levels and outcomes in positive crossmatch kidney transplantation.
        Am J Transplant. 2010; 10: 582-589
        • Viglietti D.
        • Loupy A.
        • Vernerey D.
        • Bentlejewski C.
        • Gosset C.
        • Aubert O.
        • Duong van Huyen J.P.
        • Jouven X.
        • Legendre C.
        • Glotz D.
        • Zeevi A.
        • Lefaucheur C.
        Value of donor-specific anti-HLA antibody monitoring and characterization for risk stratification of kidney allograft loss.
        J Am Soc Nephrol. 2017; 28: 702-715
        • Jindra P.T.
        • Zhang X.
        • Mulder A.
        • Claas F.
        • Veale J.
        • Jin Y.P.
        • Reed E.F.
        Anti-HLA antibodies can induce endothelial cell survival or proliferation depending on their concentration.
        Transplantation. 2006; 82: S33-S35
        • Jin Y.P.
        • Fishbein M.C.
        • Said J.W.
        • Jindra P.T.
        • Rajalingam R.
        • Rozengurt E.
        • Reed E.F.
        Anti-HLA class I antibody-mediated activation of the PI3K/Akt signaling pathway and induction of Bcl-2 and Bcl-xL expression in endothelial cells.
        Hum Immunol. 2004; 65: 291-302
        • Shutter J.R.
        • Scully S.
        • Fan W.
        • Richards W.G.
        • Kitajewski J.
        • Deblandre G.A.
        • Kintner C.R.
        • Stark K.L.
        Dll4, a novel Notch ligand expressed in arterial endothelium.
        Genes Dev. 2000; 14: 1313-1318
        • Pabois A.
        • Pagie S.
        • Gerard N.
        • Laboisse C.
        • Pattier S.
        • Hulin P.
        • Nedellec S.
        • Toquet C.
        • Charreau B.
        Notch signaling mediates crosstalk between endothelial cells and macrophages via Dll4 and IL6 in cardiac microvascular inflammation.
        Biochem Pharmacol. 2016; 104: 95-107
        • Nakano T.
        • Fukuda D.
        • Koga J.
        • Aikawa M.
        Delta-like ligand 4-Notch signaling in macrophage activation.
        Arterioscler Thromb Vasc Biol. 2016; 36: 2038-2047
        • Bajpai G.
        • Schneider C.
        • Wong N.
        • Bredemeyer A.
        • Hulsmans M.
        • Nahrendorf M.
        • Epelman S.
        • Kreisel D.
        • Liu Y.
        • Itoh A.
        • Shankar T.S.
        • Selzman C.H.
        • Drakos S.G.
        • Lavine K.J.
        The human heart contains distinct macrophage subsets with divergent origins and functions.
        Nat Med. 2018; 24: 1234-1245
        • Halloran P.F.
        • Potena L.
        • Van Huyen J.D.
        • Bruneval P.
        • Leone O.
        • Kim D.H.
        • Jouven X.
        • Reeve J.
        • Loupy A.
        Building a tissue-based molecular diagnostic system in heart transplant rejection: the heart Molecular Microscope Diagnostic (MMDx) System.
        J Heart Lung Transplant. 2017; 36: 1192-1200
        • Loupy A.
        • Duong Van Huyen J.P.
        • Hidalgo L.
        • Reeve J.
        • Racape M.
        • Aubert O.
        • Venner J.M.
        • Falmuski K.
        • Bories M.C.
        • Beuscart T.
        • Guillemain R.
        • Francois A.
        • Pattier S.
        • Toquet C.
        • Gay A.
        • Rouvier P.
        • Varnous S.
        • Leprince P.
        • Empana J.P.
        • Lefaucheur C.
        • Bruneval P.
        • Jouven X.
        • Halloran P.F.
        Gene expression profiling for the identification and classification of antibody-mediated heart rejection.
        Circulation. 2017; 135: 917-935