Advertisement

Pharmacologic Manipulation of Late SV40 Factor Suppresses Wnt Signaling and Inhibits Growth of Allogeneic and Syngeneic Colon Cancer Xenografts

      Aberrant hyperactivation of Wnt signaling, driven by nuclear β-catenin in the colonic epithelium, represents the seminal event in the initiation and progression of colorectal cancer (CRC). Despite its established role in CRC tumorigenesis, clinical translation of Wnt inhibitors remains unsuccessful. Late SV40 factor (LSF; encoded by TFCP2) is a transcription factor and a potent oncogene. We identified a chemotype, named factor quinolinone inhibitors (FQIs), that specifically inhibits LSF DNA-binding, partner protein-binding, and transactivation activities. We examined the role of LSF and FQIs in CRC tumor growth. Herein, we show that LSF and β-catenin interacted in several CRC cell lines irrespective of their mutational profile, which was disrupted by FQI2-34. FQI2-34 suppressed Wnt activity in CRC cells in a dose-dependent manner. Leveraging both allogeneic and syngeneic xenograft models, we show that FQI2-34 suppressed CRC tumor growth, significantly reduced nuclear β-catenin, and down-regulated Wnt targets, such as AXIN-2 and SRY-box transcription factor 9, in the xenograft cells. FQI2-34 suppressed the proliferation of xenograft cells. Adenocarcinomas from a series of stage IV CRC patients revealed a positive correlation between LSF expression and Wnt targets (AXIN-2 and SRY-box transcription factor 9) within the CRC cells. Collectively, this study uncovers the Wnt inhibitory and CRC growth-suppressive effects of these LSF inhibitors in CRC cells, revealing a novel target in CRC therapeutics.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of Pathology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Siegel R.L.
        • Miller K.D.
        • Jemal A.
        Cancer statistics, 2020.
        CA Cancer J Clin. 2020; 70: 7-30
        • Sung H.
        • Ferlay J.
        • Siegel R.L.
        • Laversanne M.
        • Soerjomataram I.
        • Jemal A.
        • Bray F.
        Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
        CA Cancer J Clin. 2021; 71: 209-249
        • Lynch H.T.
        • de la Chapelle A.
        Hereditary colorectal cancer.
        N Engl J Med. 2003; 348: 919-932
        • Vogelstein B.
        • Fearon E.R.
        • Hamilton S.R.
        • Kern S.E.
        • Preisinger A.C.
        • Leppert M.
        • Nakamura Y.
        • White R.
        • Smits A.M.
        • Bos J.L.
        Genetic alterations during colorectal-tumor development.
        N Engl J Med. 1988; 319: 525-532
        • Nusse R.
        • Clevers H.
        Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities.
        Cell. 2017; 169: 985-999
        • Ghosh N.
        • Hossain U.
        • Mandal A.
        • Sil P.C.
        The Wnt signaling pathway: a potential therapeutic target against cancer.
        Ann N Y Acad Sci. 2019; 1443: 54-74
        • Jung Y.S.
        • Park J.I.
        Wnt signaling in cancer: therapeutic targeting of Wnt signaling beyond beta-catenin and the destruction complex.
        Exp Mol Med. 2020; 52: 183-191
        • Kahn M.
        Can we safely target the WNT pathway?.
        Nat Rev Drug Discov. 2014; 13: 513-532
        • Krishnamurthy N.
        • Kurzrock R.
        Targeting the Wnt/beta-catenin pathway in cancer: update on effectors and inhibitors.
        Cancer Treat Rev. 2018; 62: 50-60
        • Kim M.J.
        • Huang Y.
        • Park J.I.
        Targeting Wnt signaling for gastrointestinal cancer therapy: present and evolving views.
        Cancers (Basel). 2020; 12: 3638
        • Grant T.J.
        • Bishop J.A.
        • Christadore L.M.
        • Barot G.
        • Chin H.G.
        • Woodson S.
        • Kavouris J.
        • Siddiq A.
        • Gredler R.
        • Shen X.N.
        • Sherman J.
        • Meehan T.
        • Fitzgerald K.
        • Pradhan S.
        • Briggs L.A.
        • Andrews W.H.
        • Sarkar D.
        • Schaus S.E.
        • Hansen U.
        Antiproliferative small-molecule inhibitors of transcription factor LSF reveal oncogene addiction to LSF in hepatocellular carcinoma.
        Proc Natl Acad Sci U S A. 2012; 109: 4503-4508
        • Santhekadur P.K.
        • Rajasekaran D.
        • Siddiq A.
        • Gredler R.
        • Chen D.
        • Schaus S.E.
        • Hansen U.
        • Fisher P.B.
        • Sarkar D.
        The transcription factor LSF: a novel oncogene for hepatocellular carcinoma.
        Am J Cancer Res. 2012; 2: 269-285
        • Rajasekaran D.
        • Siddiq A.
        • Willoughby J.L.
        • Biagi J.M.
        • Christadore L.M.
        • Yunes S.A.
        • Gredler R.
        • Jariwala N.
        • Robertson C.L.
        • Akiel M.A.
        • Shen X.N.
        • Subler M.A.
        • Windle J.J.
        • Schaus S.E.
        • Fisher P.B.
        • Hansen U.
        • Sarkar D.
        Small molecule inhibitors of late SV40 factor (LSF) abrogate hepatocellular carcinoma (HCC): evaluation using an endogenous HCC model.
        Oncotarget. 2015; 6: 26266-26277
        • Chin H.G.
        • Ponnaluri V.K.
        • Zhang G.
        • Esteve P.O.
        • Schaus S.E.
        • Hansen U.
        • Pradhan S.
        Transcription factor LSF-DNMT1 complex dissociation by FQI1 leads to aberrant DNA methylation and gene expression.
        Oncotarget. 2016; 7: 83627-83640
        • Willoughby J.L.S.
        • George K.
        • Roberto M.P.
        • Chin H.G.
        • Stoiber P.
        • Shin H.
        • Pedamallu C.S.
        • Schaus S.E.
        • Fitzgerald K.
        • Shah J.
        • Hansen U.
        Targeting the oncogene LSF with either the small molecule inhibitor FQI1 or siRNA causes mitotic delays with unaligned chromosomes, resulting in cell death or senescence.
        BMC Cancer. 2020; 20: 552
        • Zhang X.
        • Sun F.
        • Qiao Y.
        • Zheng W.
        • Liu Y.
        • Chen Y.
        • Wu Q.
        • Liu X.
        • Zhu G.
        • Chen Y.
        • Yu Y.
        • Pan Q.
        • Wang J.
        TFCP2 is required for YAP-dependent transcription to stimulate liver malignancy.
        Cell Rep. 2017; 21: 1227-1239
        • Jiang H.
        • Du J.
        • Jin J.
        • Qi X.
        • Pu Y.
        • Fei B.
        LSF expression and its prognostic implication in colorectal cancer.
        Int J Clin Exp Pathol. 2014; 7: 6024-6031
        • Yoo B.K.
        • Emdad L.
        • Gredler R.
        • Fuller C.
        • Dumur C.I.
        • Jones K.H.
        • Jackson-Cook C.
        • Su Z.Z.
        • Chen D.
        • Saxena U.H.
        • Hansen U.
        • Fisher P.B.
        • Sarkar D.
        Transcription factor late SV40 factor (LSF) functions as an oncogene in hepatocellular carcinoma.
        Proc Natl Acad Sci U S A. 2010; 107: 8357-8362
        • Broniarczyk J.K.
        • Warowicka A.
        • Kwasniewska A.
        • Wohun-Cholewa M.
        • Kwasniewski W.
        • Gozdzicka-Jozefiak A.
        Expression of TSG101 protein and LSF transcription factor in HPV-positive cervical cancer cells.
        Oncol Lett. 2014; 7: 1409-1413
        • Yuedi D.
        • Yuankun C.
        • Jiaying Z.
        • Han L.
        • Yueqi W.
        • Houbao L.
        • Dexiang Z.
        TFCP2 activates beta-catenin/TCF signaling in the progression of pancreatic cancer.
        Oncotarget. 2017; 8: 70538-70549
        • Kotarba G.
        • Krzywinska E.
        • Grabowska A.I.
        • Taracha A.
        • Wilanowski T.
        TFCP2/TFCP2L1/UBP1 transcription factors in cancer.
        Cancer Lett. 2018; 420: 72-79
        • Veljkovic J.
        • Hansen U.
        Lineage-specific and ubiquitous biological roles of the mammalian transcription factor LSF.
        Gene. 2004; 343: 23-40
        • Zhan T.
        • Rindtorff N.
        • Boutros M.
        Wnt signaling in cancer.
        Oncogene. 2017; 36: 1461-1473
        • Shashar M.
        • Siwak J.
        • Tapan U.
        • Lee S.Y.
        • Meyer R.D.
        • Parrack P.
        • Tan J.
        • Khatami F.
        • Francis J.
        • Zhao Q.
        • Hartshorn K.
        • Kolachalama V.B.
        • Rahimi N.
        • Chitalia V.
        c-Cbl mediates the degradation of tumorigenic nuclear beta-catenin contributing to the heterogeneity in Wnt activity in colorectal tumors.
        Oncotarget. 2016; 7: 71136-71150
        • Lyle C.
        • Richards S.
        • Yasuda K.
        • Napoleon M.A.
        • Walker J.
        • Arinze N.
        • Belghasem M.
        • Vellard I.
        • Yin W.
        • Ravid J.D.
        • Zavaro E.
        • Amraei R.
        • Francis J.
        • Phatak U.
        • Rifkin I.R.
        • Rahimi N.
        • Chitalia V.C.
        c-Cbl targets PD-1 in immune cells for proteasomal degradation and modulates colorectal tumor growth.
        Sci Rep. 2019; 9: 20257
        • Kumaradevan S.
        • Lee S.Y.
        • Richards S.
        • Lyle C.
        • Zhao Q.
        • Tapan U.
        • Jiangliu Y.
        • Ghumman S.
        • Walker J.
        • Belghasem M.
        • Arinze N.
        • Kuhnen A.
        • Weinberg J.
        • Francis J.
        • Hartshorn K.
        • Kolachalama V.B.
        • Cifuentes D.
        • Rahimi N.
        • Chitalia V.C.
        c-Cbl expression correlates with human colorectal cancer survival and its Wnt/beta-catenin suppressor function is regulated by Tyr371 phosphorylation.
        Am J Pathol. 2018; 188: 1921-1933
        • Chitalia V.C.
        • Foy R.L.
        • Bachschmid M.M.
        • Zeng L.
        • Panchenko M.V.
        • Zhou M.I.
        • Bharti A.
        • Seldin D.C.
        • Lecker S.H.
        • Dominguez I.
        • Cohen H.T.
        Jade-1 inhibits Wnt signalling by ubiquitylating beta-catenin and mediates Wnt pathway inhibition by pVHL.
        Nat Cell Biol. 2008; 10: 1208-1216
        • Chitalia V.
        • Shivanna S.
        • Martorell J.
        • Meyer R.
        • Edelman E.
        • Rahimi N.
        c-Cbl, a ubiquitin E3 ligase that targets active β-catenin: a novel layer of Wnt signaling regulation.
        J Biol Chem. 2013; 288: 23505-23517
        • Shashar M.
        • Belghasem M.E.
        • Matsuura S.
        • Walker J.
        • Richards S.
        • Alousi F.
        • Rijal K.
        • Kolachalama V.B.
        • Balcells M.
        • Odagi M.
        • Nagasawa K.
        • Henderson J.M.
        • Gautam A.
        • Rushmore R.
        • Francis J.
        • Kirchhofer D.
        • Kolandaivelu K.
        • Sherr D.H.
        • Edelman E.R.
        • Ravid K.
        • Chitalia V.C.
        Targeting STUB1-tissue factor axis normalizes hyperthrombotic uremic phenotype without increasing bleeding risk.
        Sci Transl Med. 2017; 9: 1-11
        • Belghasem M.
        • Roth D.
        • Richards S.
        • Napolene M.A.
        • Walker J.
        • Yin W.
        • Arinze N.
        • Lyle C.
        • Spencer C.
        • Francis J.M.
        • Thompson C.
        • Andry C.
        • Whelan S.A.
        • Lee N.
        • Ravid K.
        • Chitalia V.C.
        Metabolites in a mouse cancer model enhance venous thrombogenicity through the aryl hydrocarbon receptor-tissue factor axis.
        Blood. 2019; 134: 2399-2413
        • Nusse R.
        Wnt signaling in disease and in development.
        Cell Res. 2005; 15: 28-32
        • Herbst A.
        • Jurinovic V.
        • Krebs S.
        • Thieme S.E.
        • Blum H.
        • Goke B.
        • Kolligs F.T.
        Comprehensive analysis of beta-catenin target genes in colorectal carcinoma cell lines with deregulated Wnt/beta-catenin signaling.
        BMC Genomics. 2014; 15: 74
        • Huang S.M.
        • Mishina Y.M.
        • Liu S.
        • Cheung A.
        • Stegmeier F.
        • Michaud G.A.
        • et al.
        Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling.
        Nature. 2009; 461: 614-620
        • Blache P.
        • van de Wetering M.
        • Duluc I.
        • Domon C.
        • Berta P.
        • Freund J.N.
        • Clevers H.
        • Jay P.
        SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes.
        J Cell Biol. 2004; 166: 37-47
        • Chin H.G.
        • Esteve P.O.
        • Ruse C.
        • Lee J.
        • Schaus S.E.
        • Pradhan S.
        • Hansen U.
        The microtubule-associated histone methyltransferase SET8, facilitated by transcription factor LSF, methylates alpha-tubulin.
        J Biol Chem. 2020; 295: 4748-4759
        • Valenta T.
        • Hausmann G.
        • Basler K.
        The many faces and functions of beta-catenin.
        EMBO J. 2012; 31: 2714-2736
        • Sarkar A.
        • Hochedlinger K.
        The sox family of transcription factors: versatile regulators of stem and progenitor cell fate.
        Cell Stem Cell. 2013; 12: 15-30