Advertisement

The Role of Extracellular Vesicles in Liver Pathogenesis

  • Gang Liu
    Affiliations
    Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
    Search for articles by this author
  • Xiao-Ming Yin
    Correspondence
    Address correspondence to Xiao-Ming Yin, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112.
    Affiliations
    Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
    Search for articles by this author
      Extracellular vesicles (EVs) are generated by cells in the form of exosomes, microvesicles, and apoptotic bodies. They can be taken by neighboring cells, and their contents can have functional impact on cells that engulf them. As the mediators of intercellular communication, EVs can play important roles in both physiological and pathologic contexts. In addition, early detection of EVs in different body fluids may offer a sensitive diagnostic tool for certain diseases, such as cancer. Furthermore, targeting specific EVs may also become a promising therapeutic approach. This review summarizes the latest findings of EVs in the field of liver research, with a focus on the different contents of the EVs and their impact on liver function and on the development of inflammation, fibrosis, and tumor in the liver. The goal is to provide a succinct account of the various molecules that can mediate the function of EVs so the readers may apply this knowledge to their own research.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of Pathology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Raposo G.
        • Stoorvogel W.
        Extracellular vesicles: exosomes, microvesicles, and friends.
        J Cell Biol. 2013; 200: 373-383
        • Deng F.
        • Magee N.
        • Zhang Y.
        Decoding the role of extracellular vesicles in liver diseases.
        Liver Res. 2017; 1: 147-155
        • Hirsova P.
        • Ibrahim S.H.
        • Verma V.K.
        • Morton L.A.
        • Shah V.H.
        • LaRusso N.F.
        • Gores G.J.
        • Malhi H.
        Extracellular vesicles in liver pathobiology: small particles with big impact.
        Hepatology. 2016; 64: 2219-2233
        • Kowal J.
        • Tkach M.
        • Thery C.
        Biogenesis and secretion of exosomes.
        Curr Opin Cell Biol. 2014; 29: 116-125
        • Colombo M.
        • Raposo G.
        • Thery C.
        Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles.
        Annu Rev Cell Dev Biol. 2014; 30: 255-289
        • Thery C.
        • Witwer K.W.
        • Aikawa E.
        • Alcaraz M.J.
        • Anderson J.D.
        • Andriantsitohaina R.
        • et al.
        Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines.
        J Extracell Vesicles. 2018; 7: 1535750
        • Willms E.
        • Cabanas C.
        • Mager I.
        • Wood M.J.A.
        • Vader P.
        Extracellular vesicle heterogeneity: subpopulations, isolation techniques, and diverse functions in cancer progression.
        Front Immunol. 2018; 9: 738
        • Marin J.J.
        • Macias R.I.
        • Briz O.
        • Banales J.M.
        • Monte M.J.
        Bile acids in physiology, pathology and pharmacology.
        Curr Drug Metab. 2015; 17: 4-29
        • Grant D.M.
        Detoxification pathways in the liver.
        J Inherit Metab Dis. 1991; 14: 421-430
        • Reinke H.
        • Asher G.
        Circadian clock control of liver metabolic functions.
        Gastroenterology. 2016; 150: 574-580
        • Chen L.
        • Chen R.
        • Kemper S.
        • Brigstock D.R.
        Pathways of production and delivery of hepatocyte exosomes.
        J Cell Commun Signal. 2018; 12: 343-357
        • Nojima H.
        • Freeman C.M.
        • Schuster R.M.
        • Japtok L.
        • Kleuser B.
        • Edwards M.J.
        • Gulbins E.
        • Lentsch A.B.
        Hepatocyte exosomes mediate liver repair and regeneration via sphingosine-1-phosphate.
        J Hepatol. 2016; 64: 60-68
        • Hirsova P.
        • Ibrahim S.H.
        • Krishnan A.
        • Verma V.K.
        • Bronk S.F.
        • Werneburg N.W.
        • Charlton M.R.
        • Shah V.H.
        • Malhi H.
        • Gores G.J.
        Lipid-induced signaling causes release of inflammatory extracellular vesicles from hepatocytes.
        Gastroenterology. 2016; 150: 956-967
        • Lee Y.S.
        • Kim S.Y.
        • Ko E.
        • Lee J.H.
        • Yi H.S.
        • Yoo Y.J.
        • Je J.
        • Suh S.J.
        • Jung Y.K.
        • Kim J.H.
        • Seo Y.S.
        • Yim H.J.
        • Jeong W.I.
        • Yeon J.E.
        • Um S.H.
        • Byun K.S.
        Exosomes derived from palmitic acid-treated hepatocytes induce fibrotic activation of hepatic stellate cells.
        Sci Rep. 2017; 7: 3710
        • Kai O.L.
        • Bengtsson G.
        • Salaspuro M.
        • Väänänen H.
        Separation of Functionally Different Liver Cell Types.
        1986
        • Nishio T.
        • Hu R.
        • Koyama Y.
        • Liang S.
        • Rosenthal S.B.
        • Yamamoto G.
        • Karin D.
        • Baglieri J.
        • Ma H.Y.
        • Xu J.
        • Liu X.
        • Dhar D.
        • Iwaisako K.
        • Taura K.
        • Brenner D.A.
        • Kisseleva T.
        Activated hepatic stellate cells and portal fibroblasts contribute to cholestatic liver fibrosis in MDR2 knockout mice.
        J Hepatol. 2019; 71: 573-585
        • Guo Q.
        • Furuta K.
        • Lucien F.
        • Sanchez L.H.G.
        • Hirsova P.
        • Krishnan A.
        • Kabashima A.
        • Pavelko K.D.
        • Madden B.
        • Alhuwaish H.
        • Gao Y.
        • Revzin A.
        • Ibrahim S.H.
        Integrin beta1-enriched extracellular vesicles mediate monocyte adhesion and promote liver inflammation in murine NASH.
        J Hepatol. 2019; 71: 1193-1205
        • Greuter T.
        • Shah V.H.
        Hepatic sinusoids in liver injury, inflammation, and fibrosis: new pathophysiological insights.
        J Gastroenterol. 2016; 51: 511-519
        • Li X.
        • Liu R.
        • Huang Z.
        • Gurley E.C.
        • Wang X.
        • Wang J.
        • He H.
        • Yang H.
        • Lai G.
        • Zhang L.
        • Bajaj J.S.
        • White M.
        • Pandak W.M.
        • Hylemon P.B.
        • Zhou H.
        Cholangiocyte-derived exosomal long noncoding RNA H19 promotes cholestatic liver injury in mouse and humans.
        Hepatology. 2018; 68: 599-615
        • Liu X.L.
        • Pan Q.
        • Cao H.X.
        • Xin F.Z.
        • Zhao Z.H.
        • Yang R.X.
        • Zeng J.
        • Zhou H.
        • Fan J.G.
        Lipotoxic hepatocyte-derived exosomal microRNA 192-5p activates macrophages through Rictor/Akt/forkhead box transcription factor O1 signaling in nonalcoholic fatty liver disease.
        Hepatology. 2020; 72: 454-469
        • Ye Q.
        • Zhou Y.
        • Zhao C.
        • Xu L.
        • Ping J.
        Salidroside inhibits CCl4-induced liver fibrosis in mice by reducing activation and migration of HSC induced by liver sinusoidal endothelial cell-derived exosomal SphK1.
        Front Pharmacol. 2021; 12: 677810
        • Charrier A.
        • Chen R.
        • Chen L.
        • Kemper S.
        • Hattori T.
        • Takigawa M.
        • Brigstock D.R.
        Exosomes mediate intercellular transfer of pro-fibrogenic connective tissue growth factor (CCN2) between hepatic stellate cells, the principal fibrotic cells in the liver.
        Surgery. 2014; 156: 548-555
        • Conde-Vancells J.
        • Rodriguez-Suarez E.
        • Embade N.
        • Gil D.
        • Matthiesen R.
        • Valle M.
        • Elortza F.
        • Lu S.C.
        • Mato J.M.
        • Falcon-Perez J.M.
        Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes.
        J Proteome Res. 2008; 7: 5157-5166
        • Fonsato V.
        • Collino F.
        • Herrera M.B.
        • Cavallari C.
        • Deregibus M.C.
        • Cisterna B.
        • Bruno S.
        • Romagnoli R.
        • Salizzoni M.
        • Tetta C.
        • Camussi G.
        Human liver stem cell-derived microvesicles inhibit hepatoma growth in SCID mice by delivering antitumor microRNAs.
        Stem Cells. 2012; 30: 1985-1998
        • Valadi H.
        • Ekstrom K.
        • Bossios A.
        • Sjostrand M.
        • Lee J.J.
        • Lotvall J.O.
        Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.
        Nat Cell Biol. 2007; 9: 654-659
        • Johnstone R.M.
        • Adam M.
        • Hammond J.R.
        • Orr L.
        • Turbide C.
        Vesicle formation during reticulocyte maturation: association of plasma membrane activities with released vesicles (exosomes).
        J Biol Chem. 1987; 262: 9412-9420
        • Gerth K.
        • Kodidela S.
        • Mahon M.
        • Haque S.
        • Verma N.
        • Kumar S.
        Circulating extracellular vesicles containing xenobiotic metabolizing CYP enzymes and their potential roles in extrahepatic cells via cell-cell interactions.
        Int J Mol Sci. 2019; 20: 6178
        • Rowland A.
        • Ruanglertboon W.
        • van Dyk M.
        • Wijayakumara D.
        • Wood L.S.
        • Meech R.
        • Mackenzie P.I.
        • Rodrigues A.D.
        • Marshall J.C.
        • Sorich M.J.
        Plasma extracellular nanovesicle (exosome)-derived biomarkers for drug metabolism pathways: a novel approach to characterize variability in drug exposure.
        Br J Clin Pharmacol. 2019; 85: 216-226
        • Rowland A.
        • Miners J.O.
        • Mackenzie P.I.
        The UDP-glucuronosyltransferases: their role in drug metabolism and detoxification.
        Int J Biochem Cell Biol. 2013; 45: 1121-1132
        • Herrera M.B.
        • Fonsato V.
        • Gatti S.
        • Deregibus M.C.
        • Sordi A.
        • Cantarella D.
        • Calogero R.
        • Bussolati B.
        • Tetta C.
        • Camussi G.
        Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized rats.
        J Cell Mol Med. 2010; 14: 1605-1618
        • Balaphas A.
        • Meyer J.
        • Sadoul R.
        • Morel P.
        • Gonelle-Gispert C.
        • Buhler L.H.
        Extracellular vesicles: future diagnostic and therapeutic tools for liver disease and regeneration.
        Liver Int. 2019; 39: 1801-1817
        • Masyuk A.I.
        • Huang B.Q.
        • Ward C.J.
        • Gradilone S.A.
        • Banales J.M.
        • Masyuk T.V.
        • Radtke B.
        • Splinter P.L.
        • LaRusso N.F.
        Biliary exosomes influence cholangiocyte regulatory mechanisms and proliferation through interaction with primary cilia.
        Am J Physiol Gastrointest Liver Physiol. 2010; 299: G990-G999
        • Johnstone R.M.
        • Bianchini A.
        • Teng K.
        Reticulocyte maturation and exosome release - transferrin receptor containing exosomes shows multiple plasma-membrane functions.
        Blood. 1989; 74: 1844-1851
        • Nebert D.W.
        • Russell D.W.
        Clinical importance of the cytochromes P450.
        Lancet. 2002; 360: 1155-1162
        • Wortzel I.
        • Seger R.
        The ERK cascade: distinct functions within various subcellular organelles.
        Genes Cancer. 2011; 2: 195-209
        • Hernandez A.
        • Arab J.P.
        • Reyes D.
        • Lapitz A.
        • Moshage H.
        • Banales J.M.
        • Arrese M.
        Extracellular vesicles in NAFLD/ALD: from pathobiology to therapy.
        Cells. 2020; 9: 817
        • Momen-Heravi F.
        • Bala S.
        • Kodys K.
        • Szabo G.
        Exosomes derived from alcohol-treated hepatocytes horizontally transfer liver specific miRNA-122 and sensitize monocytes to LPS.
        Sci Rep. 2015; 5: 9991
        • Verma V.K.
        • Li H.Y.
        • Wang R.S.
        • Hirsova P.
        • Mushref M.
        • Liu Y.M.
        • Cao S.
        • Contreras P.C.
        • Malhi H.
        • Kamath P.S.
        • Gores G.J.
        • Shah V.H.
        Alcohol stimulates macrophage activation through caspase-dependent hepatocyte derived release of CD40L containing extracellular vesicles.
        J Hepatol. 2016; 64: 651-660
        • Saha B.
        • Momen-Heravi F.
        • Furi I.
        • Kodys K.
        • Catalano D.
        • Gangopadhyay A.
        • Haraszti R.
        • Satishchandran A.
        • Iracheta-Vellve A.
        • Adejumo A.
        • Shaffer S.A.
        • Szabo G.
        Extracellular vesicles from mice with alcoholic liver disease carry a distinct protein cargo and induce macrophage activation through heat shock protein 90.
        Hepatology. 2018; 67: 1986-2000
        • Saha B.
        • Momen-Heravi F.
        • Kodys K.
        • Szabo G.
        MicroRNA cargo of extracellular vesicles from alcohol-exposed monocytes signals naive monocytes to differentiate into M2 macrophages.
        J Biol Chem. 2016; 291: 149-159
        • Ibrahim S.H.
        • Hirsova P.
        • Tomita K.
        • Bronk S.F.
        • Werneburg N.W.
        • Harrison S.A.
        • Goodfellow V.S.
        • Malhi H.
        • Gores G.J.
        Mixed lineage kinase 3 mediates release of C-X-C motif ligand 10-bearing chemotactic extracellular vesicles from lipotoxic hepatocytes.
        Hepatology. 2016; 63: 731-744
        • Liao C.Y.
        • Song M.J.
        • Gao Y.
        • Mauer A.S.
        • Revzin A.
        • Malhi H.
        Hepatocyte-derived lipotoxic extracellular vesicle sphingosine 1-phosphate induces macrophage chemotaxis.
        Front Immunol. 2018; 9: 2980
        • Wu J.
        • Dong T.
        • Chen T.
        • Sun J.
        • Luo J.
        • He J.
        • Wei L.
        • Zeng B.
        • Zhang H.
        • Li W.
        • Liu J.
        • Chen X.
        • Su M.
        • Ni Y.
        • Jiang Q.
        • Zhang Y.
        • Xi Q.
        Hepatic exosome-derived miR-130a-3p attenuates glucose intolerance via suppressing PHLPP2 gene in adipocyte.
        Metabolism. 2020; 103: 154006
        • Dasgupta D.
        • Nakao Y.
        • Mauer A.S.
        • Thompson J.M.
        • Sehrawat T.S.
        • Liao C.Y.
        • Krishnan A.
        • Lucien F.
        • Guo Q.Q.
        • Liu M.F.
        • Xue F.
        • Fukushima M.
        • Katsumi T.
        • Bansal A.
        • Pandey M.K.
        • Maiers J.L.
        • DeGrado T.
        • Ibrahim S.H.
        • Revzin A.
        • Pavelko K.D.
        • Barry M.A.
        • Kaufman R.J.
        • Malhi H.
        IRE1A stimulates hepatocyte-derived extracellular vesicles that promote inflammation in mice with steatohepatitis.
        Gastroenterology. 2020; 159: 1487-1503.e17
        • Povero D.
        • Panera N.
        • Eguchi A.
        • Johnson C.D.
        • Papouchado B.G.
        • de Araujo Horcel L.
        • Pinatel E.M.
        • Alisi A.
        • Nobili V.
        • Feldstein A.E.
        Lipid-induced hepatocyte-derived extracellular vesicles regulate hepatic stellate cell via microRNAs targeting PPAR-gamma.
        Cell Mol Gastroenterol Hepatol. 2015; 1: 646-663.e4
        • Seo W.
        • Eun H.S.
        • Kim S.Y.
        • Yi H.S.
        • Lee Y.S.
        • Park S.H.
        • Jang M.J.
        • Jo E.
        • Kim S.C.
        • Han Y.M.
        • Park K.G.
        • Jeong W.I.
        Exosome-mediated activation of toll-like receptor 3 in stellate cells stimulates interleukin-17 production by gammadelta T cells in liver fibrosis.
        Hepatology. 2016; 64: 616-631
        • Wang R.
        • Ding Q.
        • Yaqoob U.
        • de Assuncao T.M.
        • Verma V.K.
        • Hirsova P.
        • Cao S.
        • Mukhopadhyay D.
        • Huebert R.C.
        • Shah V.H.
        Exosome adherence and internalization by hepatic stellate cells triggers sphingosine 1-phosphate-dependent migration.
        J Biol Chem. 2015; 290: 30684-30696
        • Kim D.K.
        • Cho Y.E.
        • Komarow H.D.
        • Bandara G.
        • Song B.J.
        • Olivera A.
        • Metcalfe D.D.
        Mastocytosis-derived extracellular vesicles exhibit a mast cell signature, transfer KIT to stellate cells, and promote their activation.
        Proc Natl Acad Sci U S A. 2018; 115: E10692-E10701
        • Hernandez A.
        • Geng Y.
        • Sepulveda R.
        • Solis N.
        • Torres J.
        • Arab J.P.
        • Barrera F.
        • Cabrera D.
        • Moshage H.
        • Arrese M.
        Chemical hypoxia induces pro-inflammatory signals in fat-laden hepatocytes and contributes to cellular crosstalk with Kupffer cells through extracellular vesicles.
        Biochim Biophys Acta Mol Basis Dis. 2020; 1866: 165753
        • Deng Z.B.
        • Poliakov A.
        • Hardy R.W.
        • Clements R.
        • Liu C.
        • Liu Y.
        • Wang J.
        • Xiang X.
        • Zhang S.
        • Zhuang X.
        • Shah S.V.
        • Sun D.
        • Michalek S.
        • Grizzle W.E.
        • Garvey T.
        • Mobley J.
        • Zhang H.G.
        Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance.
        Diabetes. 2009; 58: 2498-2505
        • Lin L.
        • Lin H.
        • Wang L.
        • Wang B.
        • Hao X.
        • Shi Y.
        miR-130a regulates macrophage polarization and is associated with non-small cell lung cancer.
        Oncol Rep. 2015; 34: 3088-3096
        • Bataller R.
        • Brenner D.A.
        Liver fibrosis.
        J Clin Invest. 2005; 115: 209-218
        • Hernandez A.
        • Reyes D.
        • Geng Y.
        • Arab J.P.
        • Cabrera D.
        • Sepulveda R.
        • Solis N.
        • Buist-Homan M.
        • Arrese M.
        • Moshage H.
        Extracellular vesicles derived from fat-laden hepatocytes undergoing chemical hypoxia promote a pro-fibrotic phenotype in hepatic stellate cells.
        Biochim Biophys Acta Mol Basis Dis. 2020; 1866: 165857
        • Huang G.
        • Brigstock D.R.
        Regulation of hepatic stellate cells by connective tissue growth factor.
        Front Biosci (Landmark Ed). 2012; 17: 2495-2507
        • Zhou Y.
        • Ren H.
        • Dai B.
        • Li J.
        • Shang L.
        • Huang J.
        • Shi X.
        Hepatocellular carcinoma-derived exosomal miRNA-21 contributes to tumor progression by converting hepatocyte stellate cells to cancer-associated fibroblasts.
        J Exp Clin Cancer Res. 2018; 37: 324
        • Llovet J.M.
        • Zucman-Rossi J.
        • Pikarsky E.
        • Sangro B.
        • Schwartz M.
        • Sherman M.
        • Gores G.
        Hepatocellular carcinoma.
        Nat Rev Dis Primers. 2016; 2: 16018
        • Qu Z.
        • Feng J.W.
        • Pan H.
        • Jiang Y.
        • Duan Y.F.
        • Fa Z.Z.
        Exosomes derived from HCC cells with different invasion characteristics mediated EMT through TGF-beta/Smad signaling pathway.
        Oncotargets Ther. 2019; 12: 6897-6905
        • Qu Z.
        • Wu J.H.
        • Wu J.Y.
        • Luo D.J.
        • Jiang C.P.
        • Ding Y.T.
        Exosomes derived from HCC cells induce sorafenib resistance in hepatocellular carcinoma both in vivo and in vitro.
        J Exp Clin Cancer Res. 2016; 35: 159
        • Xie J.Y.
        • Wei J.X.
        • Lv L.H.
        • Han Q.F.
        • Yang W.B.
        • Li G.L.
        • Wang P.X.
        • Wu S.B.
        • Duan J.X.
        • Zhuo W.F.
        • Liu P.Q.
        • Min J.
        Angiopoietin-2 induces angiogenesis via exosomes in human hepatocellular carcinoma.
        Cell Commun Signal. 2020; 18: 46
        • Huang A.
        • Dong J.
        • Li S.
        • Wang C.
        • Ding H.
        • Li H.
        • Su X.
        • Ge X.
        • Sun L.
        • Bai C.
        • Shen X.
        • Fang T.
        • Li J.
        • Shao N.
        Exosomal transfer of vasorin expressed in hepatocellular carcinoma cells promotes migration of human umbilical vein endothelial cells.
        Int J Biol Sci. 2015; 11: 961-969
        • Matsuura Y.
        • Wada H.
        • Eguchi H.
        • Gotoh K.
        • Kobayashi S.
        • Kinoshita M.
        • Kubo M.
        • Hayashi K.
        • Iwagami Y.
        • Yamada D.
        • Asaoka T.
        • Noda T.
        • Kawamoto K.
        • Takeda Y.
        • Tanemura M.
        • Umeshita K.
        • Doki Y.
        • Mori M.
        Exosomal miR-155 derived from hepatocellular carcinoma cells under hypoxia promotes angiogenesis in endothelial cells.
        Dig Dis Sci. 2019; 64: 792-802
        • Lin X.J.
        • Fang J.H.
        • Yang X.J.
        • Zhang C.
        • Yuan Y.
        • Zheng L.
        • Zhuang S.M.
        Hepatocellular carcinoma cell-secreted exosomal microRNA-210 promotes angiogenesis in vitro and in vivo.
        Mol Ther Nucleic Acids. 2018; 11: 243-252
        • Xu Y.
        • Leng K.
        • Yao Y.
        • Kang P.
        • Liao G.
        • Han Y.
        • Shi G.
        • Ji D.
        • Huang P.
        • Zheng W.
        • Li Z.
        • Li J.
        • Huang L.
        • Yu L.
        • Zhou Y.
        • Jiang X.
        • Wang H.
        • Li C.
        • Su Z.
        • Tai S.
        • Zhong X.
        • Wang Z.
        • Cui Y.
        A circular RNA, cholangiocarcinoma-associated circular RNA 1, contributes to cholangiocarcinoma progression, induces angiogenesis, and disrupts vascular endothelial barriers.
        Hepatology. 2021; 73: 1419-1435
        • Conigliaro A.
        • Costa V.
        • Lo Dico A.
        • Saieva L.
        • Buccheri S.
        • Dieli F.
        • Manno M.
        • Raccosta S.
        • Mancone C.
        • Tripodi M.
        • De Leo G.
        • Alessandro R.
        CD90+liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA.
        Mol Cancer. 2015; 14: 155
        • Huang X.Y.
        • Huang Z.L.
        • Huang J.
        • Xu B.
        • Huang X.Y.
        • Xu Y.H.
        • Zhou J.
        • Tang Z.Y.
        Exosomal circRNA-100338 promotes hepatocellular carcinoma metastasis via enhancing invasiveness and angiogenesis.
        J Exp Clin Cancer Res. 2020; 39: 20
        • Wei H.M.
        • Wang J.C.
        • Xu Z.M.
        • Li W.C.
        • Wu X.J.
        • Zhuo C.Y.
        • Lu Y.
        • Long X.D.
        • Tang Q.L.
        • Pu J.
        Hepatoma cell-derived extracellular vesicles promote liver cancer metastasis by inducing the differentiation of bone marrow stem cells through microRNA-181d-5p and the FAK/Src pathway.
        Front Cell Dev Biol. 2021; 9: 607001
        • Kogure T.
        • Yan I.K.
        • Lin W.L.
        • Patel T.
        Extracellular vesicle-mediated transfer of a novel long noncoding RNA TUC339: a mechanism of intercellular signaling in human hepatocellular cancer.
        Genes Cancer. 2013; 4: 261-272
        • Yang N.
        • Li S.
        • Li G.
        • Zhang S.
        • Tang X.
        • Ni S.
        • Jian X.
        • Xu C.
        • Zhu J.
        • Lu M.
        The role of extracellular vesicles in mediating progression, metastasis and potential treatment of hepatocellular carcinoma.
        Oncotarget. 2017; 8: 3683-3695
        • Li B.G.
        • Mao R.
        • Liu C.F.
        • Zhang W.H.
        • Tang Y.
        • Guo Z.
        LncRNA FAL1 promotes cell proliferation and migration by acting as a CeRNA of miR-1236 in hepatocellular carcinoma cells.
        Life Sci. 2018; 197: 122-129
        • Ban J.J.
        • Lee M.
        • Im W.
        • Kim M.
        Low pH increases the yield of exosome isolation.
        Biochem Biophys Res Commun. 2015; 461: 76-79
        • Tian X.P.
        • Wang C.Y.
        • Jin X.H.
        • Li M.
        • Wang F.W.
        • Huang W.J.
        • Yun J.P.
        • Xu R.H.
        • Cai Q.Q.
        • Xie D.
        Acidic microenvironment up-regulates exosomal miR-21 and miR-10b in early-stage hepatocellular carcinoma to promote cancer cell proliferation and metastasis.
        Theranostics. 2019; 9: 1965-1979
        • Fang J.H.
        • Zhang Z.J.
        • Shang L.R.
        • Luo Y.W.
        • Lin Y.F.
        • Yuan Y.
        • Zhuang S.M.
        Hepatoma cell-secreted exosomal microRNA-103 increases vascular permeability and promotes metastasis by targeting junction proteins.
        Hepatology. 2018; 68: 1459-1475
        • Takahashi K.
        • Yan I.K.
        • Haga H.
        • Patel T.
        Modulation of hypoxia-signaling pathways by extracellular linc-RoR.
        J Cell Sci. 2014; 127: 1585-1594
        • Lamouille S.
        • Xu J.
        • Derynck R.
        Molecular mechanisms of epithelial-mesenchymal transition.
        Nat Rev Mol Cell Biol. 2014; 15: 178-196
        • Chen L.
        • Guo P.
        • He Y.
        • Chen Z.
        • Chen L.
        • Luo Y.
        • Qi L.
        • Liu Y.
        • Wu Q.
        • Cui Y.
        • Fang F.
        • Zhang X.
        • Song T.
        • Guo H.
        HCC-derived exosomes elicit HCC progression and recurrence by epithelial-mesenchymal transition through MAPK/ERK signalling pathway.
        Cell Death Dis. 2018; 9: 513
        • Dutta S.
        • Reamtong O.
        • Panvongsa W.
        • Kitdumrongthum S.
        • Janpipatkul K.
        • Sangvanich P.
        • Piyachaturawat P.
        • Chairoungdua A.
        Proteomics profiling of cholangiocarcinoma exosomes: a potential role of oncogenic protein transferring in cancer progression.
        Biochim Biophys Acta. 2015; 1852: 1989-1999
        • He M.
        • Qin H.
        • Poon T.C.W.
        • Sze S.C.
        • Ding X.F.
        • Co N.N.
        • Ngai S.M.
        • Chan T.F.
        • Wong N.
        Hepatocellular carcinoma-derived exosomes promote motility of immortalized hepatocyte through transfer of oncogenic proteins and RNAs.
        Carcinogenesis. 2015; 36: 1008-1018
        • Haga H.
        • Yan I.K.
        • Takahashi K.
        • Wood J.
        • Zubair A.
        • Patel T.
        Tumour cell-derived extracellular vesicles interact with mesenchymal stem cells to modulate the microenvironment and enhance cholangiocarcinoma growth.
        J Extracell Vesicles. 2015; 4: 24900
        • Wang S.
        • Xu M.
        • Li X.
        • Su X.
        • Xiao X.
        • Keating A.
        • Zhao R.C.
        Exosomes released by hepatocarcinoma cells endow adipocytes with tumor-promoting properties.
        J Hematol Oncol. 2018; 11: 82
        • Takahashi K.
        • Yan I.K.
        • Kogure T.
        • Haga H.
        • Patel T.
        Extracellular vesicle-mediated transfer of long non-coding RNA ROR modulates chemosensitivity in human hepatocellular cancer.
        FEBS Open Bio. 2014; 4: 458-467
        • Meng X.D.
        • Pan J.C.
        • Sun S.F.
        • Gong Z.H.
        Circulating exosomes and their cargos in blood as novel biomarkers for cancer.
        Transl Cancer Res. 2018; 7: S226-S242
        • Fu Q.
        • Zhang Q.
        • Lou Y.
        • Yang J.
        • Nie G.
        • Chen Q.
        • Chen Y.
        • Zhang J.
        • Wang J.
        • Wei T.
        • Qin H.
        • Dang X.
        • Bai X.
        • Liang T.
        Primary tumor-derived exosomes facilitate metastasis by regulating adhesion of circulating tumor cells via SMAD3 in liver cancer.
        Oncogene. 2018; 37: 6105-6118
        • Wang S.
        • Chen G.
        • Lin X.
        • Xing X.
        • Cai Z.
        • Liu X.
        • Liu J.
        Role of exosomes in hepatocellular carcinoma cell mobility alteration.
        Oncol Lett. 2017; 14: 8122-8131
        • Cui Y.
        • Xu H.F.
        • Liu M.Y.
        • Xu Y.J.
        • He J.C.
        • Zhou Y.
        • Cang S.D.
        Mechanism of exosomal microRNA-224 in development of hepatocellular carcinoma and its diagnostic and prognostic value.
        World J Gastroenterol. 2019; 25: 1890-1898
        • Xue X.
        • Wang X.
        • Zhao Y.
        • Hu R.
        • Qin L.
        Exosomal miR-93 promotes proliferation and invasion in hepatocellular carcinoma by directly inhibiting TIMP2/TP53INP1/CDKN1A.
        Biochem Biophys Res Commun. 2018; 502: 515-521
        • Ghosh S.
        • Bhowmik S.
        • Majumdar S.
        • Goswami A.
        • Chakraborty J.
        • Gupta S.
        • Aggarwal S.
        • Ray S.
        • Chatterjee R.
        • Bhattacharyya S.
        • Dutta M.
        • Datta S.
        • Chowdhury A.
        • Dhali G.K.
        • Banerjee S.
        The exosome encapsulated microRNAs as circulating diagnostic marker for hepatocellular carcinoma with low alpha-fetoprotein.
        Int J Cancer. 2020; 147: 2934-2947
        • Liu W.F.
        • Hu J.
        • Zhou K.Q.
        • Chen F.Y.
        • Wang Z.
        • Liao B.Y.
        • Dai Z.
        • Cao Y.
        • Fan J.
        • Zhou J.
        Serum exosomal miR-125b is a novel prognostic marker for hepatocellular carcinoma.
        Oncotargets Ther. 2017; 10: 3843-3851
        • Sohn W.
        • Kim J.
        • Kang S.H.
        • Yang S.R.
        • Cho J.Y.
        • Cho H.C.
        • Shim S.G.
        • Paik Y.H.
        Serum exosomal microRNAs as novel biomarkers for hepatocellular carcinoma.
        Exp Mol Med. 2015; 47: e184
        • Takahashi K.
        • Yan I.K.
        • Wood J.
        • Haga H.
        • Patel T.
        Involvement of extracellular vesicle long noncoding RNA (linc-VLDLR) in tumor cell responses to chemotherapy.
        Mol Cancer Res. 2014; 12: 1377-1387
        • Sun L.
        • Su Y.Y.
        • Liu X.X.
        • Xu M.
        • Chen X.X.
        • Zhu Y.F.
        • Guo Z.R.
        • Bai T.T.
        • Dong L.
        • Wei C.C.
        • Cai X.X.
        • He B.S.
        • Pan Y.Q.
        • Sun H.L.
        • Wang S.K.
        Serum and exosome long non coding RNAs as potential biomarkers for hepatocellular carcinoma.
        J Cancer. 2018; 9: 2631-2639
        • Choi J.
        • Kim G.A.
        • Han S.
        • Lee W.
        • Chun S.
        • Lim Y.S.
        Longitudinal assessment of three serum biomarkers to detect very early-stage hepatocellular carcinoma.
        Hepatology. 2019; 69: 1983-1994
        • Galle P.R.
        • Foerster F.
        • Kudo M.
        • Chan S.L.
        • Llovet J.M.
        • Qin S.
        • Schelman W.R.
        • Chintharlapalli S.
        • Abada P.B.
        • Sherman M.
        • Zhu A.X.
        Biology and significance of alpha-fetoprotein in hepatocellular carcinoma.
        Liver Int. 2019; 39: 2214-2229
        • Abudoureyimu M.
        • Zhou H.
        • Zhi Y.
        • Wang T.
        • Feng B.
        • Wang R.
        • Chu X.
        Recent progress in the emerging role of exosome in hepatocellular carcinoma.
        Cell Prolif. 2019; 52: e12541
        • Li L.M.
        • Liu Z.X.
        • Cheng Q.Y.
        Exosome plays an important role in the development of hepatocellular carcinoma.
        Pathol Res Pract. 2019; 215: 152468
        • Gezer U.
        • Ozgur E.
        • Cetinkaya M.
        • Isin M.
        • Dalay N.
        Long non-coding RNAs with low expression levels in cells are enriched in secreted exosomes.
        Cell Biol Int. 2014; 38: 1076-1079