Advertisement

Platelet Endothelial Cell Adhesion Molecule (PECAM/CD31) Blockade Modulates Neutrophil Recruitment Patterns and Reduces Infarct Size in Experimental Ischemic Stroke

      The infiltration of polymorphonuclear leukocytes (PMNs) in ischemia-reperfusion injury (I/RI) has been implicated as a critical component of inflammatory damage following ischemic stroke. However, successful blockade of PMN transendothelial migration (TEM) in preclinical studies has not translated to meaningful clinical outcomes. To investigate this further, leukocyte infiltration patterns were quantified, and these patterns were modulated by blocking platelet endothelial cell adhesion molecule-1 (PECAM), a key regulator of TEM. LysM-eGFP mice and microscopy were used to visualize all myeloid leukocyte recruitment following ischemia/reperfusion. Visual examination showed heterogeneous leukocyte distribution across the infarct at both 24 and 72 hours after I/RI. A semiautomated process was designed to precisely map PMN position across brain sections. Treatment with PECAM function-blocking antibodies did not significantly affect total leukocyte recruitment but did alter their distribution, with more observed at the cortex at both early and later time points (24 hours: 89% PECAM blocked vs. 72% control; 72 hours: 69% PECAM blocked vs. 51% control). This correlated with a decrease in infarct volume. These findings suggest that TEM, in the setting of I/RI in the cerebrovascular, occurs primarily at the cortical surface. The reduction of stroke size with PECAM blockade suggests that infiltrating PMNs may exacerbate I/RI and indicate the potential therapeutic benefit of regulating the timing and pattern of leukocyte infiltration after stroke.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of Pathology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Johnston S.C.
        • Mendis S.
        • Mathers C.D.
        Global variation in stroke burden and mortality: estimates from monitoring, surveillance, and modelling.
        Lancet Neurol. 2009; 8: 345-354
        • Albers G.W.
        • Marks M.P.
        • Kemp S.
        • Christensen S.
        • Tsai J.P.
        • Ortega-Gutierrez S.
        • McTaggart R.A.
        • Torbey M.T.
        • Kim-Tenser M.
        • Leslie-Mazwi T.
        • Sarraj A.
        • Kasner S.E.
        • Ansari S.A.
        • Yeatts S.D.
        • Hamilton S.
        • Mlynash M.
        • Heit J.J.
        • Zaharchuk G.
        • Kim S.
        • Carrozzella J.
        • Palesch Y.Y.
        • Demchuk A.M.
        • Bammer R.
        • Lavori P.W.
        • Broderick J.P.
        • Lansberg M.G.
        Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging.
        N Engl J Med. 2018; 378: 708-718
        • Nogueira R.G.
        • Jadhav A.P.
        • Haussen D.C.
        • Bonafe A.
        • Budzik R.F.
        • Bhuva P.
        • et al.
        Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct.
        N Engl J Med. 2018; 378: 11-21
        • Goyal M.
        • Menon B.K.
        • van Zwam W.H.
        • Dippel D.W.
        • Mitchell P.J.
        • Demchuk A.M.
        • Davalos A.
        • Majoie C.B.
        • van der Lugt A.
        • de Miquel M.A.
        • Donnan G.A.
        • Roos Y.B.
        • Bonafe A.
        • Jahan R.
        • Diener H.C.
        • van den Berg L.A.
        • Levy E.I.
        • Berkhemer O.A.
        • Pereira V.M.
        • Rempel J.
        • Millan M.
        • Davis S.M.
        • Roy D.
        • Thornton J.
        • Roman L.S.
        • Ribo M.
        • Beumer D.
        • Stouch B.
        • Brown S.
        • Campbell B.C.
        • van Oostenbrugge R.J.
        • Saver J.L.
        • Hill M.D.
        • Jovin T.G.
        Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials.
        Lancet. 2016; 387: 1723-1731
        • Wollenweber F.A.
        • Tiedt S.
        • Alegiani A.
        • Alber B.
        • Bangard C.
        • Berrouschot J.
        • et al.
        Functional outcome following stroke thrombectomy in clinical practice.
        Stroke. 2019; 50: 2500-2506
        • Lee J.M.
        • Grabb M.C.
        • Zipfel G.J.
        • Choi D.W.
        Brain tissue responses to ischemia.
        J Clin Invest. 2000; 106: 723-731
        • Nour M.
        • Scalzo F.
        • Liebeskind D.S.
        Ischemia-reperfusion injury in stroke.
        Interv Neurol. 2013; 1: 185-199
        • Buck B.H.
        • Liebeskind D.S.
        • Saver J.L.
        • Bang O.Y.
        • Yun S.W.
        • Starkman S.
        • Ali L.K.
        • Kim D.
        • Villablanca J.P.
        • Salamon N.
        • Razinia T.
        • Ovbiagele B.
        Early neutrophilia is associated with volume of ischemic tissue in acute stroke.
        Stroke. 2008; 39: 355-360
        • Emsley H.C.
        • Smith C.J.
        • Gavin C.M.
        • Georgiou R.F.
        • Vail A.
        • Barberan E.M.
        • Hallenbeck J.M.
        • del Zoppo G.J.
        • Rothwell N.J.
        • Tyrrell P.J.
        • Hopkins S.J.
        An early and sustained peripheral inflammatory response in acute ischaemic stroke: relationships with infection and atherosclerosis.
        J Neuroimmunol. 2003; 139: 93-101
        • Jin R.
        • Yang G.
        • Li G.
        Inflammatory mechanisms in ischemic stroke: role of inflammatory cells.
        J Leukoc Biol. 2010; 87: 779-789
        • Wang Q.
        • Tang X.N.
        • Yenari M.A.
        The inflammatory response in stroke.
        J Neuroimmunol. 2007; 184: 53-68
        • Ley K.
        • Laudanna C.
        • Cybulsky M.I.
        • Nourshargh S.
        Getting to the site of inflammation: the leukocyte adhesion cascade updated.
        Nat Rev Immunol. 2007; 7: 678-689
        • Muller W.A.
        Mechanisms of transendothelial migration of leukocytes.
        Circ Res. 2009; 105: 223-230
        • Butcher E.C.
        Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity.
        Cell. 1991; 67: 1033-1036
        • Springer T.A.
        Adhesion receptors of the immune system.
        Nature (London). 1990; 346: 425-434
        • Muller W.A.
        Leukocyte-endothelial cell adhesion molecules in transendothelial migration.
        in: Gallin J.I. Snyderman R. Inflammation: Basic Principles and Clinical Correlates. Lippincott Williams & Wilkins, Philadelphia1999: 585-592
        • Ruhnau J.
        • Schulze J.
        • Dressel A.
        • Vogelgesang A.
        Thrombosis, neuroinflammation, and poststroke infection: the multifaceted role of neutrophils in stroke.
        J Immunol Res. 2017; 2017: 5140679
        • Manda-Handzlik A.
        • Demkow U.
        The brain entangled: the contribution of neutrophil extracellular traps to the diseases of the central nervous system.
        Cells. 2019; 8: 1477
        • Enzmann G.
        • Mysiorek C.
        • Gorina R.
        • Cheng Y.J.
        • Ghavampour S.
        • Hannocks M.J.
        • Prinz V.
        • Dirnagl U.
        • Endres M.
        • Prinz M.
        • Beschorner R.
        • Harter P.N.
        • Mittelbronn M.
        • Engelhardt B.
        • Sorokin L.
        The neurovascular unit as a selective barrier to polymorphonuclear granulocyte (PMN) infiltration into the brain after ischemic injury.
        Acta Neuropathol. 2013; 125: 395-412
        • Otxoa-de-Amezaga A.
        • Gallizioli M.
        • Pedragosa J.
        • Justicia C.
        • Miro-Mur F.
        • Salas-Perdomo A.
        • Diaz-Marugan L.
        • Gunzer M.
        • Planas A.M.
        Location of neutrophils in different compartments of the damaged mouse brain after severe ischemia/reperfusion.
        Stroke. 2019; 50: 1548-1557
        • Shichita T.
        • Ago T.
        • Kamouchi M.
        • Kitazono T.
        • Yoshimura A.
        • Ooboshi H.
        Novel therapeutic strategies targeting innate immune responses and early inflammation after stroke.
        J Neurochem. 2012; 123: 29-38
        • Neumann J.
        • Henneberg S.
        • von Kenne S.
        • Nolte N.
        • Muller A.J.
        • Schraven B.
        • Gortler M.W.
        • Reymann K.G.
        • Gunzer M.
        • Riek-Burchardt M.
        Beware the intruder: real time observation of infiltrated neutrophils and neutrophil-Microglia interaction during stroke in vivo.
        PLoS One. 2018; 13: e0193970
        • Enzmann G.
        • Kargaran S.
        • Engelhardt B.
        Ischemia-reperfusion injury in stroke: impact of the brain barriers and brain immune privilege on neutrophil function.
        Ther Adv Neurol Disord. 2018; 11 (1756286418794184)
        • Norling L.V.
        • Spite M.
        • Yang R.
        • Flower R.J.
        • Perretti M.
        • Serhan C.N.
        Cutting edge: humanized nano-proresolving medicines mimic inflammation-resolution and enhance wound healing.
        J Immunol. 2011; 186: 5543-5547
        • Dalli J.
        • Serhan C.N.
        Specific lipid mediator signatures of human phagocytes: microparticles stimulate macrophage efferocytosis and pro-resolving mediators.
        Blood. 2012; 120: e60-e72
        • Serhan C.N.
        • Levy B.D.
        Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators.
        J Clin Invest. 2018; 128: 2657-2669
        • Kochanek P.M.
        • Hallenbeck J.M.
        Polymorphonuclear leukocytes and monocytes/macrophages in the pathogenesis of cerebral ischemia and stroke.
        Stroke. 1992; 23: 1367-1379
        • Connolly Jr., E.S.
        • Winfree C.J.
        • Springer T.A.
        • Naka Y.
        • Liao H.
        • Yan S.D.
        • Stern D.M.
        • Solomon R.A.
        • Gutierrez-Ramos J.C.
        • Pinsky D.J.
        Cerebral protection in homozygous null ICAM-1 mice after middle cerebral artery occlusion. Role of neutrophil adhesion in the pathogenesis of stroke.
        J Clin Invest. 1996; 97: 209-216
        • Harris A.K.
        • Ergul A.
        • Kozak A.
        • Machado L.S.
        • Johnson M.H.
        • Fagan S.C.
        Effect of neutrophil depletion on gelatinase expression, edema formation and hemorrhagic transformation after focal ischemic stroke.
        BMC Neurosci. 2005; 6: 49
        • Enlimomab Acute Stroke Trial Investigators
        Use of anti-ICAM-1 therapy in ischemic stroke: results of the Enlimomab Acute Stroke Trial.
        Neurology. 2001; 57: 1428-1434
        • Fu Y.
        • Zhang N.
        • Ren L.
        • Yan Y.
        • Sun N.
        • Li Y.J.
        • Han W.
        • Xue R.
        • Liu Q.
        • Hao J.
        • Yu C.
        • Shi F.D.
        Impact of an immune modulator fingolimod on acute ischemic stroke.
        Proc Natl Acad Sci U S A. 2014; 111: 18315-18320
        • Elkins J.
        • Veltkamp R.
        • Montaner J.
        • Johnston S.C.
        • Singhal A.B.
        • Becker K.
        • Lansberg M.G.
        • Tang W.
        • Chang I.
        • Muralidharan K.
        • Gheuens S.
        • Mehta L.
        • Elkind M.S.V.
        Safety and efficacy of natalizumab in patients with acute ischaemic stroke (ACTION): a randomised, placebo-controlled, double-blind phase 2 trial.
        Lancet Neurol. 2017; 16: 217-226
        • Muller W.A.
        • Ratti C.M.
        • McDonnell S.L.
        • Cohn Z.A.
        A human endothelial cell-restricted, externally disposed plasmalemmal protein enriched in intercellular junctions.
        J Exp Med. 1989; 170: 399-414
        • Mamdouh Z.
        • Chen X.
        • Pierini L.M.
        • Maxfield F.R.
        • Muller W.A.
        Targeted recycling of PECAM from endothelial cell surface-connected compartments during diapedesis.
        Nature. 2003; 421: 748-753
        • Muller W.A.
        • Weigl S.A.
        • Deng X.
        • Phillips D.M.
        PECAM-1 is required for transendothelial migration of leukocytes.
        J Exp Med. 1993; 178: 449-460
        • Muller W.A.
        PECAM: regulating the start of diapedesis.
        in: Ley K. Adhesion Molecules: Function and Inhibition. Birkhauser Verlag AG, Basel2007: 201-220
        • Wimmer I.
        • Tietz S.
        • Nishihara H.
        • Deutsch U.
        • Sallusto F.
        • Gosselet F.
        • Lyck R.
        • Muller W.A.
        • Lassmann H.
        • Engelhardt B.
        PECAM-1 stabilizes blood-brain barrier integrity and favors paracellular T-cell diapedesis across the blood-brain barrier during neuroinflammation.
        Front Immunol. 2019; 10: 711
        • Dasgupta B.
        • Chew T.
        • deRoche A.
        • Muller W.A.
        Blocking platelet/endothelial cell adhesion molecule 1 (PECAM) inhibits disease progression and prevents joint erosion in established collagen antibody-induced arthritis.
        Exp Mol Pathol. 2010; 88: 210-215
        • Sullivan D.P.
        • Watson R.L.
        • Muller W.A.
        4D intravital microscopy uncovers critical strain differences for the roles of PECAM and CD99 in leukocyte diapedesis.
        Am J Physiol Heart Circ Physiol. 2016; 311: H621-H632
        • Dalal P.J.
        • Sullivan D.P.
        • Weber E.W.
        • Sacks D.B.
        • Gunzer M.
        • Grumbach I.M.
        • Heller Brown J.
        • Muller W.A.
        Spatiotemporal restriction of endothelial cell calcium signaling is required during leukocyte transmigration.
        J Exp Med. 2021; 218: e20192378
        • Hasenberg A.
        • Hasenberg M.
        • Mann L.
        • Neumann F.
        • Borkenstein L.
        • Stecher M.
        • Kraus A.
        • Engel D.R.
        • Klingberg A.
        • Seddigh P.
        • Abdullah Z.
        • Klebow S.
        • Engelmann S.
        • Reinhold A.
        • Brandau S.
        • Seeling M.
        • Waisman A.
        • Schraven B.
        • Gothert J.R.
        • Nimmerjahn F.
        • Gunzer M.
        Catchup: a mouse model for imaging-based tracking and modulation of neutrophil granulocytes.
        Nat Methods. 2015; 12: 445-452
        • Engel O.
        • Kolodziej S.
        • Dirnagl U.
        • Prinz V.
        Modeling stroke in mice - middle cerebral artery occlusion with the filament model.
        J Vis Exp. 2011; : 2423
        • Sommer C.J.
        Ischemic stroke: experimental models and reality.
        Acta Neuropathol. 2017; 133: 245-261
        • Bertrand L.
        • Dygert L.
        • Toborek M.
        Induction of ischemic stroke and ischemia-reperfusion in mice using the middle artery occlusion technique and visualization of infarct area.
        J Vis Exp. 2017; : 54805
        • Bogen S.
        • Pak J.
        • Garifallou M.
        • Deng X.
        • Muller W.A.
        Monoclonal antibody to murine PECAM-1 [CD31] blocks acute inflammation in vivo.
        J Exp Med. 1994; 179: 1059-1064
        • Woodfin A.
        • Voisin M.B.
        • Beyrau M.
        • Colom B.
        • Caille D.
        • Diapouli F.M.
        • Nash G.B.
        • Chavakis T.
        • Albelda S.M.
        • Rainger G.E.
        • Meda P.
        • Imhof B.A.
        • Nourshargh S.
        The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo.
        Nat Immunol. 2011; 12: 761-769
        • Schneider C.A.
        • Rasband W.S.
        • Eliceiri K.W.
        NIH Image to ImageJ: 25 years of image analysis.
        Nat Methods. 2012; 9: 671-675
        • van der Walt S.
        • Schonberger J.L.
        • Nunez-Iglesias J.
        • Boulogne F.
        • Warner J.D.
        • Yager N.
        • Gouillart E.
        • Yu T.
        • c scikit-image contributors
        scikit-image: image processing in Python.
        PeerJ. 2014; 2: e453
        • Russell R.A.
        • Adams N.M.
        • Stephens D.A.
        • Batty E.
        • Jensen K.
        • Freemont P.S.
        Segmentation of fluorescence microscopy images for quantitative analysis of cell nuclear architecture.
        Biophys J. 2009; 96: 3379-3389
        • Parvati K.
        • Rao B.S.P.
        • Mariya Das M.
        Image segmentation using gray-scale morphology and marker-controlled watershed transformation.
        Discrete Dyn Nat Soc. 2008; 2008 (Article ID 384346)
        • Kong H.
        • Akakin H.C.
        • Sarma S.E.
        A generalized Laplacian of Gaussian filter for blob detection and its applications.
        IEEE Trans Cybern. 2013; 43: 1719-1733
        • Abdolhoseini M.
        • Kluge M.G.
        • Walker F.R.
        • Johnson S.J.
        Segmentation of heavily clustered nuclei from histopathological images.
        Sci Rep. 2019; 9: 4551
        • Neubeck A.
        • Van Gool L.
        Efficient non-maximum suppression.
        IEEE Computer Society, Los Alamitos, CA2006: 850-855 (18th International Conference on Pattern Recognition (ICPR'06))
        • Paglieroni D.W.
        Distance transforms: properties and machine vision applications.
        CVGIP Graph Models Image Process. 1992; 54: 56-74
        • Sharma S.
        • Ifergan I.
        • Kurz J.E.
        • Linsenmeier R.A.
        • Xu D.
        • Cooper J.G.
        • Miller S.D.
        • Kessler J.A.
        Intravenous immunomodulatory nanoparticle treatment for traumatic brain injury.
        Ann Neurol. 2020; 87: 442-455
        • Seidman M.A.
        • Chew T.W.
        • Schenkel A.R.
        • Muller W.A.
        PECAM-independent thioglycollate peritonitis is associated with a locus on murine chromosome 2.
        PLoS One. 2009; 4: e4316
        • Schenkel A.R.
        • Chew T.W.
        • Chlipala E.
        • Harbord M.W.
        • Muller W.A.
        Different susceptibilities of PECAM-deficient mouse strains to spontaneous idiopathic pneumonitis.
        Exp Mol Pathol. 2006; 81: 23-30
        • Molina C.A.
        • Saver J.L.
        Extending reperfusion therapy for acute ischemic stroke: emerging pharmacological, mechanical, and imaging strategies.
        Stroke. 2005; 36: 2311-2320
        • Aly M.
        • Abdalla R.N.
        • Batra A.
        • Shaibani A.
        • Hurley M.C.
        • Jahromi B.S.
        • Potts M.B.
        • Ansari S.A.
        Follow-up neutrophil-lymphocyte ratio after stroke thrombectomy is an independent biomarker of clinical outcome.
        J Neurointerv Surg. 2021; 13: 609-613
        • Beckmann L.
        • Zhang X.
        • Nadkarni N.A.
        • Cai Z.
        • Batra A.
        • Sullivan D.P.
        • Muller W.A.
        • Sun C.
        • Kuranov R.
        • Zhang H.F.
        Longitudinal deep-brain imaging in mouse using visible-light optical coherence tomography through chronic microprism cranial window.
        Biomed Opt Express. 2019; 10: 5235-5250
        • He W.
        • Ruan Y.
        • Yuan C.
        • Cheng Q.
        • Cheng H.
        • Zeng Y.
        • Chen Y.
        • Huang G.
        • Chen H.
        • He J.
        High neutrophil-to-platelet ratio is associated with hemorrhagic transformation in patients with acute ischemic stroke.
        Front Neurol. 2019; 10: 1310
        • Ross A.M.
        • Hurn P.
        • Perrin N.
        • Wood L.
        • Carlini W.
        • Potempa K.
        Evidence of the peripheral inflammatory response in patients with transient ischemic attack.
        J Stroke Cerebrovasc Dis. 2007; 16: 203-207
        • Kim J.
        • Song T.J.
        • Park J.H.
        • Lee H.S.
        • Nam C.M.
        • Nam H.S.
        • Kim Y.D.
        • Heo J.H.
        Different prognostic value of white blood cell subtypes in patients with acute cerebral infarction.
        Atherosclerosis. 2012; 222: 464-467
        • Kumar A.D.
        • Boehme A.K.
        • Siegler J.E.
        • Gillette M.
        • Albright K.C.
        • Martin-Schild S.
        Leukocytosis in patients with neurologic deterioration after acute ischemic stroke is associated with poor outcomes.
        J Stroke Cerebrovasc Dis. 2013; 22: e111-e117
        • Winneberger J.
        • Schols S.
        • Lessmann K.
        • Randez-Garbayo J.
        • Bauer A.T.
        • Mohamud Yusuf A.
        • Hermann D.M.
        • Gunzer M.
        • Schneider S.W.
        • Fiehler J.
        • Gerloff C.
        • Gelderblom M.
        • Ludewig P.
        • Magnus T.
        Platelet endothelial cell adhesion molecule-1 is a gatekeeper of neutrophil transendothelial migration in ischemic stroke.
        Brain Behav Immun. 2021; 93: 277-287
        • Hughes P.M.
        • Allegrini P.R.
        • Rudin M.
        • Perry V.H.
        • Mir A.K.
        • Wiessner C.
        Monocyte chemoattractant protein-1 deficiency is protective in a murine stroke model.
        J Cereb Blood Flow Metab. 2002; 22: 308-317
        • Denes A.
        • Ferenczi S.
        • Halasz J.
        • Kornyei Z.
        • Kovacs K.J.
        Role of CX3CR1 (fractalkine receptor) in brain damage and inflammation induced by focal cerebral ischemia in mouse.
        J Cereb Blood Flow Metab. 2008; 28: 1707-1721
        • Yrjanheikki J.
        • Tikka T.
        • Keinanen R.
        • Goldsteins G.
        • Chan P.H.
        • Koistinaho J.
        A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window.
        Proc Natl Acad Sci U S A. 1999; 96: 13496-13500
        • Liao F.
        • Ali J.
        • Greene T.
        • Muller W.A.
        Soluble domain 1 of platelet-endothelial cell adhesion molecule (PECAM) is sufficient to block transendothelial migration in vitro and in vivo.
        J Exp Med. 1997; 185: 1349-1357
        • Lindsberg P.J.
        • Carpen O.
        • Paetau A.
        • Karjalainen-Lindsberg M.L.
        • Kaste M.
        Endothelial ICAM-1 expression associated with inflammatory cell response in human ischemic stroke.
        Circulation. 1996; 94: 939-945
        • Hallenbeck J.M.
        • Dutka A.J.
        • Tanishima T.
        • Kochanek P.M.
        • Kumaroo K.K.
        • Thompson C.B.
        • Obrenovitch T.P.
        • Contreras T.J.
        Polymorphonuclear leukocyte accumulation in brain regions with low blood flow during the early postischemic period.
        Stroke. 1986; 17: 246-253
        • Barone F.C.
        • Hillegass L.M.
        • Price W.J.
        • White R.F.
        • Lee E.V.
        • Feuerstein G.Z.
        • Sarau H.M.
        • Clark R.K.
        • Griswold D.E.
        Polymorphonuclear leukocyte infiltration into cerebral focal ischemic tissue: myeloperoxidase activity assay and histologic verification.
        J Neurosci Res. 1991; 29: 336-345
        • Ishikawa M.
        • Vowinkel T.
        • Stokes K.Y.
        • Arumugam T.V.
        • Yilmaz G.
        • Nanda A.
        • Granger D.N.
        CD40/CD40 ligand signaling in mouse cerebral microvasculature after focal ischemia/reperfusion.
        Circulation. 2005; 111: 1690-1696
        • Yilmaz G.
        • Arumugam T.V.
        • Stokes K.Y.
        • Granger D.N.
        Role of T lymphocytes and interferon-gamma in ischemic stroke.
        Circulation. 2006; 113: 2105-2112
        • Liebeskind D.S.
        Collateral circulation.
        Stroke. 2003; 34: 2279-2284
        • Wang Y.
        • Liu G.
        • Hong D.
        • Chen F.
        • Ji X.
        • Cao G.
        White matter injury in ischemic stroke.
        Prog Neurobiol. 2016; 141: 45-60
        • Garcia J.H.
        • Liu K.F.
        • Yoshida Y.
        • Lian J.
        • Chen S.
        • del Zoppo G.J.
        Influx of leukocytes and platelets in an evolving brain infarct (Wistar rat).
        Am J Pathol. 1994; 144: 188-199
        • Mori E.
        • del Zoppo G.J.
        • Chambers J.D.
        • Copeland B.R.
        • Arfors K.E.
        Inhibition of polymorphonuclear leukocyte adherence suppresses no-reflow after focal cerebral ischemia in baboons.
        Stroke. 1992; 23: 712-718
        • Schmid-Schonbein G.W.
        Capillary plugging by granulocytes and the no-reflow phenomenon in the microcirculation.
        Fed Proc. 1987; 46: 2397-2401
        • El Amki M.
        • Gluck C.
        • Binder N.
        • Middleham W.
        • Wyss M.T.
        • Weiss T.
        • Meister H.
        • Luft A.
        • Weller M.
        • Weber B.
        • Wegener S.
        Neutrophils obstructing brain capillaries are a major cause of no-reflow in ischemic stroke.
        Cell Rep. 2020; 33: 108260
        • del Zoppo G.J.
        • Schmid-Schonbein G.W.
        • Mori E.
        • Copeland B.R.
        • Chang C.M.
        Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons.
        Stroke. 1991; 22: 1276-1283