Advertisement

RNA Sequencing of Idiopathic Subglottic Stenosis Tissues Uncovers Putative Profibrotic Mechanisms and Identifies a Prognostic Biomarker

      Idiopathic subglottic stenosis (iSGS) is a localized airway disease that almost exclusively affects females. Understanding the molecular mechanisms involved may provide insights leading to therapeutic interventions. Next-generation sequencing was performed on tissue sections from patients with iSGS (n = 22), antineutrophil cytoplasmic antibody–associated vasculitis (AAV; n = 5), and matched controls (n = 9) to explore candidate genes and mechanisms of disease. Gene expression changes were validated, and selected markers were identified by immunofluorescence staining. Epithelial-mesenchymal transition (EMT) and leukocyte extravasation pathways were the biological mechanisms most relevant to iSGS pathogenesis. Alternatively activated macrophages (M2) were abundant in the subepithelium and perisubmucosal glands of the airway in iSGS and AAV. Increased expression of the mesenchymal marker S100A4 and decreased expression of the epithelial marker EPCAM further supported a role for EMT, but to different extents in iSGS and antineutrophil cytoplasmic antibody–associated subglottic stenosis. High expression of PMEPA1, an EMT regulator, in iSGS patients was associated with a shorter recurrence interval (25 versus 116 months: hazard ratio = 4.16; P = 0.041; 95% CI, 1.056–15.60). Thus, EMT is a key pathogenetic mechanism of subglottic stenosis in iSGS and AAV. M2 macrophages contribute to the pathogenesis of both diseases, suggesting a shared profibrotic mechanism, and PMEPA1 may be a biomarker for predicting disease recurrence in iSGS.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of Pathology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gelbard A.
        • Anderson C.
        • Berry L.D.
        • Amin M.R.
        • Benninger M.S.
        • Blumin J.H.
        • et al.
        Comparative treatment outcomes for patients with idiopathic subglottic stenosis.
        JAMA Otolaryngol Head Neck Surg. 2020; 146: 20-29
        • Quinn K.A.
        • Gelbard A.
        • Sibley C.
        • Sirajuddin A.
        • Ferrada M.A.
        • Chen M.
        • Cuthbertson D.
        • Carette S.
        • Khalidi N.A.
        • Koening C.L.
        • Langford C.A.
        • McAlear C.A.
        • Monach P.A.
        • Moreland L.W.
        • Pagnoux C.
        • Seo P.
        • Specks U.
        • Sreih A.G.
        • Ytterberg S.R.
        • Merkel P.A.
        • Grayson P.C.
        Subglottic stenosis and endobronchial disease in granulomatosis with polyangiitis.
        Rheumatology (Oxford). 2019; 58: 2203-2211
        • Solans-Laque R.
        • Bosch-Gil J.
        • Canela M.
        • Lorente J.
        • Pallisa E.
        • Vilardell-Tarres M.
        Clinical features and therapeutic management of subglottic stenosis in patients with Wegener's granulomatosis.
        Lupus. 2008; 17: 832-836
        • Polychronopoulos V.S.
        • Prakash U.B.
        • Golbin J.M.
        • Edell E.S.
        • Specks U.
        Airway involvement in Wegener's granulomatosis.
        Rheum Dis Clin North Am. 2007; 33 (vi): 755-775
        • Langford C.A.
        • Sneller M.C.
        • Hallahan C.W.
        • Hoffman G.S.
        • Kammerer W.A.
        • Talar-Williams C.
        • Fauci A.S.
        • Lebovics R.S.
        Clinical features and therapeutic management of subglottic stenosis in patients with Wegener's granulomatosis.
        Arthritis Rheum. 1996; 39: 1754-1760
        • Martinez Del Pero M.
        • Jayne D.
        • Chaudhry A.
        • Sivasothy P.
        • Jani P.
        Long-term outcome of airway stenosis in granulomatosis with polyangiitis (Wegener granulomatosis): an observational study.
        JAMA Otolaryngol Head Neck Surg. 2014; 140: 1038-1044
        • Hoffman G.S.
        • Thomas-Golbanov C.K.
        • Chan J.
        • Akst L.M.
        • Eliachar I.
        Treatment of subglottic stenosis, due to Wegener's granulomatosis, with intralesional corticosteroids and dilation.
        J Rheumatol. 2003; 30: 1017-1021
        • An J.
        • Song J.W.
        Life-threatening subglottic stenosis of granulomatosis with polyangiitis: a case report.
        Medicina (Kaunas). 2021; 57: 423
        • Maldonado F.
        • Loiselle A.
        • Depew Z.S.
        • Edell E.S.
        • Ekbom D.C.
        • Malinchoc M.
        • Hagen C.E.
        • Alon E.
        • Kasperbauer J.L.
        Idiopathic subglottic stenosis: an evolving therapeutic algorithm.
        Laryngoscope. 2014; 124: 498-503
        • Jennette J.C.
        • Falk R.J.
        • Bacon P.A.
        • Basu N.
        • Cid M.C.
        • Ferrario F.
        • Flores-Suarez L.F.
        • Gross W.L.
        • Guillevin L.
        • Hagen E.C.
        • Hoffman G.S.
        • Jayne D.R.
        • Kallenberg C.G.
        • Lamprecht P.
        • Langford C.A.
        • Luqmani R.A.
        • Mahr A.D.
        • Matteson E.L.
        • Merkel P.A.
        • Ozen S.
        • Pusey C.D.
        • Rasmussen N.
        • Rees A.J.
        • Scott D.G.
        • Specks U.
        • Stone J.H.
        • Takahashi K.
        • Watts R.A.
        2012 Revised international Chapel Hill consensus conference nomenclature of vasculitides.
        Arthritis Rheum. 2013; 65: 1-11
        • Blumin J.H.
        • Johnston N.
        Evidence of extraesophageal reflux in idiopathic subglottic stenosis.
        Laryngoscope. 2011; 121: 1266-1273
        • Menapace D.C.
        • Ekbom D.C.
        • Larson D.P.
        • Lalich I.J.
        • Edell E.S.
        • Kasperbauer J.L.
        Evaluating the association of clinical factors with symptomatic recurrence of idiopathic subglottic stenosis.
        JAMA Otolaryngol Head Neck Surg. 2019; 145: 524-529
        • Fiz I.
        • Bittar Z.
        • Piazza C.
        • Koelmel J.C.
        • Gatto F.
        • Ferone D.
        • Fiz F.
        • Di Dio D.
        • Bosse A.
        • Peretti G.
        • Sittel C.
        Hormone receptors analysis in idiopathic progressive subglottic stenosis.
        Laryngoscope. 2018; 128: E72-E77
        • Conforti F.
        • Ridley R.
        • Brereton C.
        • Alzetani A.
        • Johnson B.
        • Marshall B.G.
        • Fletcher S.V.
        • Ottensmeier C.H.
        • Richeldi L.
        • Skipp P.
        • Wang Y.
        • Jones M.G.
        • Davies D.E.
        Paracrine SPARC signaling dysregulates alveolar epithelial barrier integrity and function in lung fibrosis.
        Cell Death Discov. 2020; 6: 54
        • McDonald L.T.
        • Zile M.R.
        • Zhang Y.
        • Van Laer A.O.
        • Baicu C.F.
        • Stroud R.E.
        • Jones J.A.
        • LaRue A.C.
        • Bradshaw A.D.
        Increased macrophage-derived SPARC precedes collagen deposition in myocardial fibrosis.
        Am J Physiol Heart Circ Physiol. 2018; 315: H92-H100
        • Church R.H.
        • Ali I.
        • Tate M.
        • Lavin D.
        • Krishnakumar A.
        • Kok H.M.
        • Hombrebueno J.R.
        • Dunne P.D.
        • Bingham V.
        • Goldschmeding R.
        • Martin F.
        • Brazil D.P.
        Gremlin1 plays a key role in kidney development and renal fibrosis.
        Am J Physiol Renal Physiol. 2017; 312: F1141-F1157
        • Yang Y.
        • Zeng Q.S.
        • Zou M.
        • Zeng J.
        • Nie J.
        • Chen D.
        • Gan H.T.
        Targeting Gremlin 1 prevents intestinal fibrosis progression by inhibiting the fatty acid oxidation of fibroblast cells.
        Front Pharmacol. 2021; 12: 663774
        • Guo Y.
        • Xiao L.
        • Sun L.
        • Liu F.
        Wnt/beta-catenin signaling: a promising new target for fibrosis diseases.
        Physiol Res. 2012; 61: 337-346
        • Morrisey E.E.
        Wnt signaling and pulmonary fibrosis.
        Am J Pathol. 2003; 162: 1393-1397
        • Hernandez D.M.
        • Kang J.H.
        • Choudhury M.
        • Andrianifahanana M.
        • Yin X.
        • Limper A.H.
        • Leof E.B.
        IPF pathogenesis is dependent upon TGFbeta induction of IGF-1.
        FASEB J. 2020; 34: 5363-5388
        • Li Y.
        • Azuma A.
        • Takahashi S.
        • Usuki J.
        • Matsuda K.
        • Aoyama A.
        • Kudoh S.
        Fourteen-membered ring macrolides inhibit vascular cell adhesion molecule 1 messenger RNA induction and leukocyte migration: role in preventing lung injury and fibrosis in bleomycin-challenged mice.
        Chest. 2002; 122: 2137-2145
        • Corbel M.
        • Belleguic C.
        • Boichot E.
        • Lagente V.
        Involvement of gelatinases (MMP-2 and MMP-9) in the development of airway inflammation and pulmonary fibrosis.
        Cell Biol Toxicol. 2002; 18: 51-61
        • Koumas L.
        • Smith T.J.
        • Feldon S.
        • Blumberg N.
        • Phipps R.P.
        Thy-1 expression in human fibroblast subsets defines myofibroblastic or lipofibroblastic phenotypes.
        Am J Pathol. 2003; 163: 1291-1300
        • Mou H.
        • Vinarsky V.
        • Tata P.R.
        • Brazauskas K.
        • Choi S.H.
        • Crooke A.K.
        • Zhang B.
        • Solomon G.M.
        • Turner B.
        • Bihler H.
        • Harrington J.
        • Lapey A.
        • Channick C.
        • Keyes C.
        • Freund A.
        • Artandi S.
        • Mense M.
        • Rowe S.
        • Engelhardt J.F.
        • Hsu Y.C.
        • Rajagopal J.
        Dual SMAD signaling inhibition enables long-term expansion of diverse epithelial basal cells.
        Cell Stem Cell. 2016; 19: 217-231
        • Schneider M.
        • Hansen J.L.
        • Sheikh S.P.
        S100A4: a common mediator of epithelial-mesenchymal transition, fibrosis and regeneration in diseases?.
        J Mol Med (Berl). 2008; 86: 507-522
        • Widdicombe J.H.
        • Wine J.J.
        Airway gland structure and function.
        Physiol Rev. 2015; 95: 1241-1319
        • Wang P.M.
        • Kachel D.L.
        • Cesta M.F.
        • Martin 2nd, W.J.
        Direct leukocyte migration across pulmonary arterioles and venules into the perivascular interstitium of murine lungs during bleomycin injury and repair.
        Am J Pathol. 2011; 178: 2560-2572
        • Lidofsky A.
        • Holmes J.A.
        • Feeney E.R.
        • Kruger A.J.
        • Salloum S.
        • Zheng H.
        • Seguin I.S.
        • Altinbas A.
        • Masia R.
        • Corey K.E.
        • Gustafson J.L.
        • Schaefer E.A.
        • Hunt P.W.
        • Deeks S.
        • Somsouk M.
        • Chew K.W.
        • Chung R.T.
        • Alatrakchi N.
        Macrophage activation marker soluble CD163 is a dynamic marker of liver fibrogenesis in human immunodeficiency virus/hepatitis C virus coinfection.
        J Infect Dis. 2018; 218: 1394-1403
        • Shabo I.
        • Svanvik J.
        Expression of macrophage antigens by tumor cells.
        Adv Exp Med Biol. 2011; 714: 141-150
        • Gibbons M.A.
        • MacKinnon A.C.
        • Ramachandran P.
        • Dhaliwal K.
        • Duffin R.
        • Phythian-Adams A.T.
        • van Rooijen N.
        • Haslett C.
        • Howie S.E.
        • Simpson A.J.
        • Hirani N.
        • Gauldie J.
        • Iredale J.P.
        • Sethi T.
        • Forbes S.J.
        Ly6Chi monocytes direct alternatively activated profibrotic macrophage regulation of lung fibrosis.
        Am J Respir Crit Care Med. 2011; 184: 569-581
        • Gelbard A.
        • Katsantonis N.G.
        • Mizuta M.
        • Newcomb D.
        • Rotsinger J.
        • Rousseau B.
        • Daniero J.J.
        • Edell E.S.
        • Ekbom D.C.
        • Kasperbauer J.L.
        • Hillel A.T.
        • Yang L.
        • Garrett C.G.
        • Netterville J.L.
        • Wootten C.T.
        • Francis D.O.
        • Stratton C.
        • Jenkins K.
        • McGregor T.L.
        • Gaddy J.A.
        • Blackwell T.S.
        • Drake W.P.
        Idiopathic subglottic stenosis is associated with activation of the inflammatory IL-17A/IL-23 axis.
        Laryngoscope. 2016; 126: E356-E361
        • Morrison R.J.
        • Katsantonis N.G.
        • Motz K.M.
        • Hillel A.T.
        • Garrett C.G.
        • Netterville J.L.
        • Wootten C.T.
        • Majka S.M.
        • Blackwell T.S.
        • Drake W.P.
        • Gelbard A.
        Pathologic fibroblasts in idiopathic subglottic stenosis amplify local inflammatory signals.
        Otolaryngol Head Neck Surg. 2019; 160: 107-115
        • Davis R.J.
        • Lina I.
        • Ding D.
        • Engle E.L.
        • Taube J.
        • Gelbard A.
        • Hillel A.T.
        Increased expression of PD-1 and PD-L1 in patients with laryngotracheal stenosis.
        Laryngoscope. 2021; 131: 967-974
        • Schoeff S.S.
        • Shi X.
        • Young W.G.
        • Whited C.W.
        • Soni R.S.
        • Liu P.
        • Ong I.M.
        • Dailey S.H.
        • Welham N.V.
        Proteomic and genomic methylation signatures of idiopathic subglottic stenosis.
        Laryngoscope. 2021; 131: E540-E546
        • Gelbard A.
        • Katsantonis N.G.
        • Mizuta M.
        • Newcomb D.
        • Rotsinger J.
        • Rousseau B.
        • Daniero J.J.
        • Edell E.S.
        • Ekbom D.C.
        • Kasperbauer J.L.
        • Hillel A.T.
        • Yang L.
        • Garrett C.G.
        • Netterville J.L.
        • Wootten C.T.
        • Francis D.O.
        • Stratton C.
        • Jenkins K.
        • McGregor T.L.
        • Gaddy J.A.
        • Blackwell T.S.
        • Drake W.P.
        Molecular analysis of idiopathic subglottic stenosis for Mycobacterium species.
        Laryngoscope. 2017; 127: 179-185
        • Henderson N.C.
        • Rieder F.
        • Wynn T.A.
        Fibrosis: from mechanisms to medicines.
        Nature. 2020; 587: 555-566
        • Nieto M.A.
        • Huang R.Y.
        • Jackson R.A.
        • Thiery J.P.
        EMT: 2016.
        Cell. 2016; 166: 21-45
        • Hill C.
        • Jones M.G.
        • Davies D.E.
        • Wang Y.
        Epithelial-mesenchymal transition contributes to pulmonary fibrosis via aberrant epithelial/fibroblastic cross-talk.
        J Lung Health Dis. 2019; 3: 31-35
        • Sohal S.S.
        • Walters E.H.
        Role of epithelial mesenchymal transition (EMT) in chronic obstructive pulmonary disease (COPD).
        Respir Res. 2013; 14: 120
        • Renaud-Picard B.
        • Valliere K.
        • Toussaint J.
        • Kreutter G.
        • El-Habhab A.
        • Kassem M.
        • El-Ghazouani F.
        • Olland A.
        • Hirschi S.
        • Porzio M.
        • Chenard M.P.
        • Toti F.
        • Kessler L.
        • Kessler R.
        Epithelial-mesenchymal transition and membrane microparticles: potential implications for bronchiolitis obliterans syndrome after lung transplantation.
        Transpl Immunol. 2020; 59: 101273
        • Sun Z.
        • Ji N.
        • Ma Q.
        • Zhu R.
        • Chen Z.
        • Wang Z.
        • Qian Y.
        • Wu C.
        • Hu F.
        • Huang M.
        • Zhang M.
        Epithelial-mesenchymal transition in asthma airway remodeling is regulated by the IL-33/CD146 axis.
        Front Immunol. 2020; 11: 1598
        • Trevino-Villarreal J.H.
        • Reynolds J.S.
        • Langston P.K.
        • Thompson A.
        • Mitchell J.R.
        • Franco Jr., R.A.
        Down-regulation of a profibrotic transforming growth factor-beta1/cellular communication network factor 2/matrix metalloprotease 9 axis by triamcinolone improves idiopathic subglottic stenosis.
        Am J Pathol. 2021; 191: 1412-1430
        • Sharad S.
        • Dobi A.
        • Srivastava S.
        • Srinivasan A.
        • Li H.
        PMEPA1 gene isoforms: a potential biomarker and therapeutic target in prostate cancer.
        Biomolecules. 2020; 10: 1221
        • Zhang L.
        • Wang X.
        • Lai C.
        • Zhang H.
        • Lai M.
        PMEPA1 induces EMT via a non-canonical TGF-beta signalling in colorectal cancer.
        J Cell Mol Med. 2019; 23: 3603-3615
        • Wang B.
        • Zhong J.L.
        • Li H.Z.
        • Wu B.
        • Sun D.F.
        • Jiang N.
        • Shang J.
        • Chen Y.F.
        • Xu X.H.
        • Lu H.D.
        Diagnostic and therapeutic values of PMEPA1 and its correlation with tumor immunity in pan-cancer.
        Life Sci. 2021; 277: 119452
        • Sharad S.
        • Sztupinszki Z.M.
        • Chen Y.
        • Kuo C.
        • Ravindranath L.
        • Szallasi Z.
        • Petrovics G.
        • Sreenath T.L.
        • Dobi A.
        • Rosner I.L.
        • Srinivasan A.
        • Srivastava S.
        • Cullen J.
        • Li H.
        Analysis of PMEPA1 isoforms (a and b) as selective inhibitors of androgen and TGF-beta signaling reveals distinct biological and prognostic features in prostate cancer.
        Cancers (Basel). 2019; 11: 1995
        • Liu M.M.
        • Motz K.M.
        • Murphy M.K.
        • Yin L.X.
        • Ding D.
        • Gelbard A.
        • Hillel A.T.
        Laryngotracheal mucosal surface expression of candidate biomarkers in idiopathic subglottic stenosis.
        Laryngoscope. 2021; 131: 342-349
        • Vaughan A.E.
        • Chapman H.A.
        Regenerative activity of the lung after epithelial injury.
        Biochim Biophys Acta. 2013; 1832: 922-930
        • Damrose E.J.
        On the development of idiopathic subglottic stenosis.
        Med Hypotheses. 2008; 71: 122-125
        • Lockhart E.
        • Green A.M.
        • Flynn J.L.
        IL-17 production is dominated by gammadelta T cells rather than CD4 T cells during Mycobacterium tuberculosis infection.
        J Immunol. 2006; 177: 4662-4669
        • Mirsaeidi M.
        • Sadikot R.T.
        Gender susceptibility to mycobacterial infections in patients with non-CF bronchiectasis.
        Int J Mycobacteriol. 2015; 4: 92-96
        • Lee S.Y.
        • Yeh T.H.
        • Lou P.J.
        • Tan C.T.
        • Su M.C.
        • Montgomery W.W.
        Mucociliary transport pathway on laryngotracheal tract and stented glottis in guinea pigs.
        Ann Otol Rhinol Laryngol. 2000; 109: 210-215
        • Thorpe R.
        • Wadhwa M.
        • Bird C.R.
        • Mire-Sluis A.R.
        Detection and measurement of cytokines.
        Blood Rev. 1992; 6: 133-148
        • Whiteside T.L.
        Cytokine assays.
        Biotechniques. 2002; 10: 2-5
        • Damrose E.J.
        • Campbell R.D.
        • Darwish S.
        • Erickson-DiRenzo E.
        Increased expression of estrogen receptor beta in idiopathic progressive subglottic stenosis.
        Laryngoscope. 2020; 130: 2186-2191
        • Dedo H.H.
        • Catten M.D.
        Idiopathic progressive subglottic stenosis: findings and treatment in 52 patients.
        Ann Otol Rhinol Laryngol. 2001; 110: 305-311
        • Ahn T.K.
        • Kim J.O.
        • An H.J.
        • Park H.S.
        • Choi U.Y.
        • Sohn S.
        • Kim K.T.
        • Kim N.K.
        • Han I.B.
        3'-UTR polymorphisms of vitamin B-related genes are associated with osteoporosis and osteoporotic vertebral compression fractures (OVCFs) in postmenopausal women.
        Genes (Basel). 2020; 11: 612
        • MacPherson L.
        • Tamblyn L.
        • Rajendra S.
        • Bralha F.
        • McPherson J.P.
        • Matthews J.
        2,3,7,8-Tetrachlorodibenzo-p-dioxin poly(ADP-ribose) polymerase (TiPARP, ARTD14) is a mono-ADP-ribosyltransferase and repressor of aryl hydrocarbon receptor transactivation.
        Nucleic Acids Res. 2013; 41: 1604-1621
        • Doisneau-Sixou S.F.
        • Sergio C.M.
        • Carroll J.S.
        • Hui R.
        • Musgrove E.A.
        • Sutherland R.L.
        Estrogen and antiestrogen regulation of cell cycle progression in breast cancer cells.
        Endocr Relat Cancer. 2003; 10: 179-186
        • Cripps S.M.
        • Mattiske D.M.
        • Black J.R.
        • Risbridger G.P.
        • Govers L.C.
        • Phillips T.R.
        • Pask A.J.
        A loss of estrogen signaling in the aromatase deficient mouse penis results in mild hypospadias.
        Differentiation. 2019; 109: 42-52
        • Jimenez-Garduno A.M.
        • Mendoza-Rodriguez M.G.
        • Urrutia-Cabrera D.
        • Dominguez-Robles M.C.
        • Perez-Yepez E.A.
        • Ayala-Sumuano J.T.
        • Meza I.
        IL-1beta induced methylation of the estrogen receptor ERalpha gene correlates with EMT and chemoresistance in breast cancer cells.
        Biochem Biophys Res Commun. 2017; 490: 780-785
        • Tsuyuguchi K.
        • Suzuki K.
        • Matsumoto H.
        • Tanaka E.
        • Amitani R.
        • Kuze F.
        Effect of oestrogen on Mycobacterium avium complex pulmonary infection in mice.
        Clin Exp Immunol. 2001; 123: 428-434
        • Danley J.
        • Kwait R.
        • Peterson D.D.
        • Sendecki J.
        • Vaughn B.
        • Nakisbendi K.
        • Sawicki J.
        • Lande L.
        Normal estrogen, but low dehydroepiandrosterone levels, in women with pulmonary Mycobacterium avium complex: a preliminary study.
        Ann Am Thorac Soc. 2014; 11: 908-914
        • Jecker P.
        • McWilliam A.
        • Napoli S.
        • Holt P.G.
        • Pabst R.
        • Westhofen M.
        • Westermann J.
        Acute laryngitis in the rat induced by Moraxella catarrhalis and Bordetella pertussis: number of neutrophils, dendritic cells, and T and B lymphocytes accumulating during infection in the laryngeal mucosa strongly differs in adjacent locations.
        Pediatr Res. 1999; 46: 760-766
        • Gratchev A.
        • Guillot P.
        • Hakiy N.
        • Politz O.
        • Orfanos C.E.
        • Schledzewski K.
        • Goerdt S.
        Alternatively activated macrophages differentially express fibronectin and its splice variants and the extracellular matrix protein betaIG-H3.
        Scand J Immunol. 2001; 53: 386-392
        • Hillel A.T.
        • Samad I.
        • Ma G.
        • Ding D.
        • Sadtler K.
        • Powell J.D.
        • Lane A.P.
        • Horton M.R.
        Dysregulated macrophages are present in bleomycin-induced murine laryngotracheal stenosis.
        Otolaryngol Head Neck Surg. 2015; 153: 244-250
        • Khalil N.
        • Whitman C.
        • Zuo L.
        • Danielpour D.
        • Greenberg A.
        Regulation of alveolar macrophage transforming growth factor-beta secretion by corticosteroids in bleomycin-induced pulmonary inflammation in the rat.
        J Clin Invest. 1993; 92: 1812-1818
        • Zhu L.
        • Fu X.
        • Chen X.
        • Han X.
        • Dong P.
        M2 macrophages induce EMT through the TGF-beta/Smad2 signaling pathway.
        Cell Biol Int. 2017; 41: 960-968
        • Wang L.
        • Zhang Y.
        • Zhang N.
        • Xia J.
        • Zhan Q.
        • Wang C.
        Potential role of M2 macrophage polarization in ventilator-induced lung fibrosis.
        Int Immunopharmacol. 2019; 75: 105795
        • Lurier E.B.
        • Dalton D.
        • Dampier W.
        • Raman P.
        • Nassiri S.
        • Ferraro N.M.
        • Rajagopalan R.
        • Sarmady M.
        • Spiller K.L.
        Transcriptome analysis of IL-10-stimulated (M2c) macrophages by next-generation sequencing.
        Immunobiology. 2017; 222: 847-856
        • Taylor S.C.
        • Clayburgh D.R.
        • Rosenbaum J.T.
        • Schindler J.S.
        Clinical manifestations and treatment of idiopathic and Wegener granulomatosis-associated subglottic stenosis.
        JAMA Otolaryngol Head Neck Surg. 2013; 139: 76-81
        • Sattui S.E.
        • Lally L.
        Localized granulomatous with polyangiitis (GPA): varied clinical presentations and update on treatment.
        Curr Allergy Asthma Rep. 2020; 20: 56
        • Hillel A.T.
        • Namba D.
        • Ding D.
        • Pandian V.
        • Elisseeff J.H.
        • Horton M.R.
        An in situ, in vivo murine model for the study of laryngotracheal stenosis.
        JAMA Otolaryngol Head Neck Surg. 2014; 140: 961-966