Advertisement

Impaired Mitochondria Promote Aging-Associated Sebaceous Gland Dysfunction and Pathology

  • Noha S. Ahmed
    Affiliations
    Department of Genetics, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama

    Department of Microbiology and Animal Resources Program, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama

    Department of Pathology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama

    Department of Dermatology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama

    Department of Dermatology, Zagazig University, Zagazig, Egypt
    Search for articles by this author
  • Jeremy B. Foote
    Affiliations
    Department of Microbiology and Animal Resources Program, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
    Search for articles by this author
  • Keshav K. Singh
    Correspondence
    Address correspondence to Keshav K. Singh, Ph.D., Departments of Genetics, Pathology, and Dermatology, Heersink School of Medicine, The University of Alabama at Birmingham, Kaul Genetics Bldg., Room 620, 720 I 20th St. S., Birmingham, AL 35294.
    Affiliations
    Department of Genetics, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama

    Department of Pathology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama

    Department of Dermatology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
    Search for articles by this author
      Mitochondrial dysfunction is one of the hallmarks of aging. Changes in sebaceous gland (SG) function and sebum production have been reported during aging. Herein, we report the direct effects of mitochondrial dysfunction on SG morphology and function. We utilized a mitochondrial DNA (mtDNA) depleter mouse as a model for introducing mitochondrial dysfunction in the whole animal. We characterized the effects on skin SGs and modified SGs of the eyelid, lip, clitoral, and preputial glands. The mtDNA depleter mice show gross morphologic and histopathologic changes in SGs associated with increased infiltration by mast cells, neutrophils, and polarized macrophages. Consistently, there was increased expression of proinflammatory cytokines. The inflammatory changes were associated with abnormal sebocyte accumulation of lipid, defective sebum delivery at the skin surface, and the up-regulation of key lipogenesis-regulating genes and androgen receptor. The mtDNA depleter mice expressed aging-associated senescent marker. We also observed increased sebocyte proliferation and aberrant expression of stem cell markers. These studies provide, for the first time, a causal link between mitochondrial dysfunction and abnormal sebocyte function within sebaceous and modified SGs throughout the whole body of the animal. Our studies suggest that mtDNA depleter mouse may serve as a novel tool to develop targeted therapeutics to address SG disorders in aging humans.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of Pathology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Schneider M.R.
        • Paus R.
        Sebocytes, multifaceted epithelial cells: lipid production and holocrine secretion.
        Int J Biochem Cell Biol. 2010; 42: 181-185
        • Thody A.J.
        • Shuster S.
        Control and function of sebaceous glands.
        Physiol Rev. 1989; 69: 383-416
        • Smith K.R.
        • Thiboutot D.M.
        Thematic review series: skin lipids: sebaceous gland lipids: friend or foe?.
        J Lipid Res. 2008; 49: 271-281
        • Feingold K.R.
        The outer frontier: the importance of lipid metabolism in the skin.
        J Lipid Res. 2009; 50: S417-S422
        • Drake D.R.
        • Brogden K.A.
        • Dawson D.V.
        • Wertz P.W.
        Thematic Review Series: skin lipids: antimicrobial lipids at the skin surface.
        J Lipid Res. 2008; 49: 4-11
        • Thiboutot D.
        Regulation of human sebaceous glands.
        J Invest Dermatol. 2004; 123: 1-12
        • Duke-Elder S.
        The anatomy of the visual system.
        A Syst Ophthalmol. 1961; 2: 363-382
        • Wybar K.
        Wolff's anatomy of the eye and orbit.
        Br J Ophthalmol. 1977; 61: 302
        • Reznik G.
        • Reznik-Schüller H.
        Pathology of the clitoral and prepucial glands in aging F344 rats.
        Lab Anim Sci. 1980; 30: 845-850
        • Binczek E.
        • Jenke B.
        • Holz B.
        • Günter R.H.
        • Thevis M.
        • Stoffel W.
        Obesity resistance of the stearoyl-CoA desaturase-deficient (scd1-/-) mouse results from disruption of the epidermal lipid barrier and adaptive thermoregulation.
        Biol Chem. 2007; 388: 405-418
        • Zouboulis C.C.
        • Degitz K.
        Androgen action on human skin - from basic research to clinical significance.
        Exp Dermatol. 2004; 13: 5-10
        • Pochi P.E.
        • Strauss J.S.
        Endocrinologic control of the development and activity of the human sebaceous gland.
        J Invest Dermatol. 1974; 62: 191-201
        • Hall D.W.
        • Van den Hoven W.E.
        • Noordzij-Kamermans N.J.
        • Jaitly K.D.
        Hormonal control of hamster ear sebaceous gland lipogenesis.
        Arch Dermatol Res. 1983; 275: 1-7
        • Kurokawa I.
        • Danby F.W.
        • Ju Q.
        • Wang X.
        • Xiang L.F.
        • Xia L.
        • Chen W.
        • Nagy I.
        • Picardo M.
        • Suh D.H.
        • Ganceviciene R.
        • Schagen S.
        • Tsatsou F.
        • Zouboulis C.C.
        New developments in our understanding of acne pathogenesis and treatment.
        Exp Dermatol. 2009; 18: 821-832
        • Makrantonaki E.
        • Vogel K.
        • Fimmel S.
        • Oeff M.
        • Seltmann H.
        • Zouboulis C.C.
        Interplay of IGF-I and 17β-estradiol at age-specific levels in human sebocytes and fibroblasts in vitro.
        Exp Gerontol. 2008; 43: 939-946
        • Alestas T.
        • Ganceviciene R.
        • Fimmel S.
        • Müller-Decker K.
        • Zouboulis C.C.
        Enzymes involved in the biosynthesis of leukotriene B4 and prostaglandin E2 are active in sebaceous glands.
        J Mol Med. 2006; 84: 75-87
        • Chen W.
        • Yang C.C.
        • Sheu H.M.
        • Seltmann H.
        • Zouboulis C.C.
        Expression of peroxisome proliferator-activated receptor and CCAAT/enhancer binding protein transcription factors in cultured human sebocytes.
        J Invest Dermatol. 2003; 121: 441-447
        • Rosenfield R.L.
        • Deplewski D.
        • Greene M.E.
        Peroxisome proliferator-activated receptors and skin development.
        Horm Res. 2000; 54: 269-274
        • Zouboulis C.C.
        • Boschnakow A.
        Chronological ageing and photoageing of the human sebaceous gland.
        Clin Exp Dermatol. 2001; 26: 600-607
        • Sreedhar A.
        • Aguilera-Aguirre L.
        • Singh K.K.
        Mitochondria in skin health, aging, and disease.
        Cell Death Dis. 2020; 11: 444
        • Singh K.K.
        Mitochondrial secrets of youthfulness.
        Plast Reconstr Surg. 2021; 147: 33S-37S
        • Zouboulis C.C.
        • Yoshida G.J.
        • Wu Y.
        • Xia L.
        • Schneider M.R.
        Sebaceous gland: milestones of 30-year modelling research dedicated to the “brain of the skin.”.
        Exp Dermatol. 2020; 29: 1069-1079
        • Lee H.C.
        • Wei Y.H.
        Mitochondria and aging.
        Adv Exp Med Biol. 2012; 942: 311-327
        • Singh B.
        • Schoeb T.R.
        • Bajpai P.
        • Slominski A.
        • Singh K.K.
        Reversing wrinkled skin and hair loss in mice by restoring mitochondrial function.
        Cell Death Dis. 2018; 9: 735
        • Lillie R.D.
        • Ashburn L.L.
        Supersaturated solutions of fat stains in dilute isopropanol for demonstration of acute fatty degeneration not shown by Herxheimer's technique.
        Arch Pathol. 1943; 36: 432-440
        • Evangelou K.
        • Gorgoulis V.G.
        Sudan Black B, the specific histochemical stain for lipofuscin: a novel method to detect senescent cells.
        Methods Mol Biol. 2017; 1534: 111-119
        • Franceschi C.
        • Bonafè M.
        • Valensin S.
        • Olivieri F.
        • De luca M.
        • Ottaviani E.
        • De benedictis G.
        Inflamm-aging: an evolutionary perspective on immunosenescence.
        Ann N Y Acad Sci. 2000; 908: 244-254
        • Fulop T.
        • Larbi A.
        • Dupuis G.
        • Le Page A.
        • Frost E.H.
        • Cohen A.A.
        • Witkowski J.M.
        • Franceschi C.
        Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes?.
        Front Immunol. 2018; 8
        • Salvioli S.
        • Capri M.
        • Valensin S.
        • Tieri P.
        • Monti D.
        • Ottaviani E.
        • Franceschi C.
        Inflamm-aging, cytokines and aging: state of the art, new hypotheses on the role of mitochondria and new perspectives from systems biology.
        Curr Pharm Des. 2006; 12: 3161-3171
        • Nagy I.
        • Pivarcsi A.
        • Kis K.
        • Koreck A.
        • Bodai L.
        • McDowell A.
        • Seltmann H.
        • Patrick S.
        • Zouboulis C.C.
        • Kemény L.
        Propionibacterium acnes and lipopolysaccharide induce the expression of antimicrobial peptides and proinflammatory cytokines/chemokines in human sebocytes.
        Microbes Infect. 2006; 8: 2195-2205
        • Abu Bakar M.H.
        • Hassan W.
        • Sarmidi M.
        • Yaakob H.
        Mitochondrial dysfunction enhances lipolysis and intracellular lipid accumulation in 3T3-L1 adipocytes.
        Int J Pharma Med Biol Sci. 2015; 4: 65-69
        • Georgakopoulou E.A.
        • Tsimaratou K.
        • Evangelou K.
        • Fernandez Marcos P.J.
        • Zoumpourlis V.
        • Trougakos I.P.
        • Kletsas D.
        • Bartek J.
        • Serrano M.
        • Gorgoulis V.G.
        Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence: a method applicable in cryo-preserved and archival tissues.
        Aging (Albany NY). 2013; 5: 37-50
        • Ghazizadeh S.
        • Taichman L.B.
        Multiple classes of stem cells in cutaneous epithelium: a lineage analysis of adult mouse skin.
        EMBO J. 2001; 20: 1215-1222
        • Horsley V.
        • O'Carroll D.
        • Tooze R.
        • Ohinata Y.
        • Saitou M.
        • Obukhanych T.
        • Nussenzweig M.
        • Tarakhovsky A.
        • Fuchs E.
        Blimp1 defines a progenitor population that governs cellular input to the sebaceous gland.
        Cell. 2006; 126: 597-609
        • Jensen K.B.
        • Collins C.A.
        • Nascimento E.
        • Tan D.W.
        • Frye M.
        • Itami S.
        • Watt F.M.
        Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis.
        Cell Stem Cell. 2009; 4: 427-439
        • Conboy I.M.
        • Conboy M.J.
        • Smythe G.M.
        • Rando T.A.
        Notch-mediated restoration of regenerative potential to aged muscle.
        Science. 2003; 302: 1575-1577
        • Rossi D.J.
        • Bryder D.
        • Zahn J.M.
        • Ahlenius H.
        • Sonu R.
        • Wagers A.J.
        • Weissman I.L.
        Cell intrinsic alterations underlie hematopoietic stem cell aging.
        Proc Natl Acad Sci U S A. 2005; 102: 9194
        • Molofsky A.V.
        • Slutsky S.G.
        • Joseph N.M.
        • He S.
        • Pardal R.
        • Krishnamurthy J.
        • Sharpless N.E.
        • Morrison S.J.
        Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing.
        Nature. 2006; 443: 448-452
        • Braig M.
        • Schmitt C.A.
        Oncogene-induced senescence: putting the brakes on tumor development.
        Cancer Res. 2006; 66: 2881-2884
        • Campisi J.
        • d'Adda di Fagagna F.
        Cellular senescence: when bad things happen to good cells.
        Nat Rev Mol Cell Biol. 2007; 8: 729-740
        • Shi G.
        • Wang T.T.
        • Quan J.H.
        • Li S.J.
        • Zhang M.F.
        • Liao P.Y.
        • Fan Y.M.
        Sox9 facilitates proliferation, differentiation and lipogenesis in primary cultured human sebocytes.
        J Dermatol Sci. 2017; 85: 44-50
        • Gong X.
        • Carmon K.S.
        • Lin Q.
        • Thomas A.
        • Yi J.
        • Liu Q.
        LGR6 is a high affinity receptor of R-Spondins and potentially functions as a tumor suppressor.
        PLoS One. 2012; 7: e37137
        • Page M.E.E.
        • Lombard P.
        • Ng F.
        • Göttgens B.
        • Jensen K.B.B.
        The epidermis comprises autonomous compartments maintained by distinct stem cell populations.
        Cell Stem Cell. 2013; 13: 471-482
        • Liao X.H.
        • Nguyen H.
        Epidermal expression of Lgr6 is dependent on nerve endings and Schwann cells.
        Exp Dermatol. 2014; 23: 195-198
        • Kretzschmar K.
        • Weber C.
        • Driskell R.R.
        • Calonje E.
        • Watt F.M.
        Compartmentalized epidermal activation of β-catenin differentially affects lineage reprogramming and underlies tumor heterogeneity.
        Cell Rep. 2016; 14: 269-281
        • Snippert H.J.
        • Haegebarth A.
        • Kasper M.
        • Jaks V.
        • van Es J.H.
        • Barker N.
        • van de Wetering M.
        • van den Born M.
        • Begthel H.
        • Vries R.G.
        • Stange D.E.
        • Toftgård R.
        • Clevers H.
        Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin.
        Science. 2010; 327: 1385-1389
        • Villavicencio K.M.
        • Ahmed N.
        • Harris M.L.
        • Singh K.K.
        Mitochondrial DNA-depleter mouse as a model to study human pigmentary skin disorders.
        Pigment Cell Melanoma Res. 2021; 34: 179-187
        • Angelides A.P.
        Winter ailments of the old.
        J Gerontol. 1947; 2: 85-86
        • Belinchón I.
        • Aguilar A.
        • Tardío J.
        • Gallego M.A.
        Areolar sebaceous hyperplasia: a case report.
        Cutis. 1996; 58: 63-64
        • Boonchai W.
        • Leenutaphong V.
        Familial presenile sebaceous gland hyperplasia.
        J Am Acad Dermatol. 1997; 36: 120-122
        • Wollina U.
        Erythrosis interfollicularis colli and cutis rhomboidalis nuchae: two sides of a coin.
        Acta Dermatovenerol Alp Pannonica Adriat. 2019; 28: 53-55
        • Niemann C.
        Differentiation of the sebaceous gland.
        Dermatoendocrinol. 2009; 1: 64-67
        • Jacobsen E.
        • Billings J.K.
        • Frantz R.A.
        • Kinney C.K.
        • Stewart M.E.
        • Downing D.T.
        Age-related changes in sebaceous wax ester secretion rates in men and women.
        J Invest Dermatol. 1985; 85: 483-485
        • Nien C.J.
        • Paugh J.R.
        • Massei S.
        • Wahlert A.J.
        • Kao W.W.
        • Jester J.V.
        Age-related changes in the meibomian gland.
        Exp Eye Res. 2009; 89: 1021-1027
        • Tomlinson A.
        • Bron A.J.
        • Korb D.R.
        • Amano S.
        • Paugh J.R.
        • Pearce E.I.
        • Yee R.
        • Yokoi N.
        • Arita R.
        • Dogru M.
        The international workshop on meibomian gland dysfunction: report of the diagnosis subcommittee.
        Invest Ophthalmol Vis Sci. 2011; 52: 2006-2049
        • Chhadva P.
        • Goldhardt R.
        • Galor A.
        Meibomian gland disease: the role of gland dysfunction in dry eye disease.
        Ophthalmology. 2017; 124: S20-S26
        • Dobrosi N.
        • Tóth B.I.
        • Nagy G.
        • Dózsa A.
        • Géczy T.
        • Nagy L.
        • Zouboulis C.C.
        • Paus R.
        • Kovács L.
        • Bíró T.
        Endocannabinoids enhance lipid synthesis and apoptosis of human sebocytes via cannabinoid receptor-2-mediated signaling.
        FASEB J. 2008; 22: 3685-3695
        • Géczy T.
        • Oláh A.
        • Tóth B.I.
        • Czifra G.
        • Szöllősi A.G.
        • Szabó T.
        • Zouboulis C.C.
        • Paus R.
        • Bíró T.
        Protein kinase C isoforms have differential roles in the regulation of human sebocyte biology.
        J Invest Dermatol. 2012; 132: 1988-1997
        • Törőcsik D.
        • Kovács D.
        • Camera E.
        • Lovászi M.
        • Cseri K.
        • Nagy G.G.
        • Molinaro R.
        • Rühl R.
        • Tax G.
        • Szabó K.
        • Picardo M.
        • Kemény L.
        • Zouboulis C.C.
        • Remenyik É.
        Leptin promotes a proinflammatory lipid profile and induces inflammatory pathways in human SZ95 sebocytes.
        Br J Dermatol. 2014; 171: 1326-1335
        • Ibrahim O.M.
        • Dogru M.
        • Matsumoto Y.
        • Igarashi A.
        • Kojima T.
        • Wakamatsu T.H.
        • Inaba T.
        • Shimizu T.
        • Shimazaki J.
        • Tsubota K.
        Oxidative stress induced age dependent meibomian gland dysfunction in Cu, Zn-superoxide dismutase-1 (Sod1) knockout mice.
        PLoS One. 2014; 9: e99328
        • Sullivan B.D.
        • Evans J.E.
        • Dana M.R.
        • Sullivan D.A.
        Influence of aging on the polar and neutral lipid profiles in human meibomian gland secretions.
        Arch Ophthalmol. 2006; 124: 1286-1292
        • Trivedi N.R.
        • Cong Z.
        • Nelson A.M.
        • Albert A.J.
        • Rosamilia L.L.
        • Sivarajah S.
        • Gilliland K.L.
        • Liu W.
        • Mauger D.T.
        • Gabbay R.A.
        • Thiboutot D.M.
        Peroxisome proliferator-activated receptors increase human sebum production.
        J Invest Dermatol. 2006; 126: 2002-2009
        • Motojima K.
        • Passilly P.
        • Peters J.M.
        • Gonzalez F.J.
        • Latruffe N.
        Expression of putative fatty acid transporter genes are regulated by peroxisome proliferator-activated receptor α and γ activators in a tissue- and inducer-specific manner.
        J Biol Chem. 1998; 273: 16710-16714
        • Zouboulis C.C.
        • Seltmann H.
        • Alestas T.
        Zileuton prevents the activation of the leukotriene pathway and reduces sebaceous lipogenesis.
        Exp Dermatol. 2010; 19: 148-150
        • Rosenfield R.L.
        • Kentsis A.
        • Deplewski D.
        • Ciletti N.
        Rat preputial sebocyte differentiation involves peroxisome proliferator-activated receptors.
        J Invest Dermatol. 1999; 112: 226-232
        • Lee W.J.
        • Jung H.D.
        • Chi S.G.
        • Kim B.S.
        • Lee S.J.
        • Kim D.W.
        • Kim M.K.
        • Kim J.C.
        Effect of dihydrotestosterone on the upregulation of inflammatory cytokines in cultured sebocytes.
        Arch Dermatol Res. 2010; 302: 429-433
        • Skoczyńska A.
        • Budzisz E.
        • Trznadel-Grodzka E.
        • Rotsztejn H.
        Melanin and lipofuscin as hallmarks of skin aging.
        Postepy Dermatol Alergol. 2017; 34: 97-103
        • Sander C.S.
        • Chang H.
        • Salzmann S.
        • Müller C.S.
        • Ekanayake-Mudiyanselage S.
        • Elsner P.
        • Thiele J.J.
        Photoaging is associated with protein oxidation in human skin in vivo.
        J Invest Dermatol. 2002; 118: 618-625
        • Yaar M.
        • Gilchrest B.A.
        Photoageing: mechanism, prevention and therapy.
        Br J Dermatol. 2007; 157: 874-887
        • Ahlqvist K.J.
        • Suomalainen A.
        • Hämäläinen R.H.
        Stem cells, mitochondria and aging.
        Biochim Biophys Acta. 2015; 1847: 1380-1386
        • Shi G.
        • Sohn K.-C.
        • Kim S.-Y.
        • Ryu E.-K.
        • Park Y.-S.
        • Lee Y.
        • Seo Y.-J.
        • Lee J.-H.
        • Kim C.D.
        Sox9 increases the proliferation and colony-forming activity of outer root sheath cells cultured in vitro.
        Ann Dermatol. 2011; 23: 138-143
        • Qiu W.
        • Lei M.
        • Li J.
        • Wang N.
        • Lian X.
        Activated hair follicle stem cells and Wnt/β-catenin signaling involve in pathnogenesis of sebaceous neoplasms.
        Int J Med Sci. 2014; 11: 1022-1028
        • Norum J.H.
        • Bergström Å.
        • Andersson A.B.
        • Kuiper R.V.
        • Hoelzl M.A.
        • Sørlie T.
        • Toftgård R.
        A conditional transgenic mouse line for targeted expression of the stem cell marker LGR5.
        Dev Biol Dev Biol. 2015; 404: 35-48
        • Niemann C.
        • Unden A.B.
        • Lyle S.
        • Zouboulis C.C.
        • Toftgård R.
        • Watt F.M.
        Indian hedgehog and β-catenin signaling: role in the sebaceous lineage of normal and neoplastic mammalian epidermis.
        Proc Natl Acad Sci U S A. 2003; 100: 11873-11880