Advertisement

Smurf2 Regulates Inflammation and Collagen Processing in Cutaneous Wound Healing through Transforming Growth Factor-β/Smad3 Signaling

Published:September 02, 2022DOI:https://doi.org/10.1016/j.ajpath.2022.08.002
      Wound healing is a highly conserved process that restores the integrity and functionality of injured tissues. Transforming growth factor (TGF)-β is a master regulator of wound healing, whose signaling is attenuated by the E3 ubiquitin ligase Smurf2. Herein, the roles of Smurf2 in cutaneous wound healing were examined using a murine incisional cutaneous model. We found that loss of Smurf2 increased early inflammation in the wounds and led to narrower wounds with greater breaking strength. Loss of Smurf2 also led to more linearized collagen bundles in normal and wounded skin. Gene expression analyses by RT-qPCR indicated that Smurf2-deficient fibroblasts had increased levels of TGF-β/Smad3 signaling and changes in expression profile of genes related to matrix turnover. The effect of Smurf2 loss on wound healing and collagen bundling was attenuated by the heterozygous loss of Smad3. Together, these results show that Smurf2 affects inflammation and collagen processing in cutaneous wounds by down-regulating TGF-β/Smad3 signaling.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of Pathology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Schultz G.S.
        • Chin G.A.
        • Moldawer L.
        • Diegelmann R.F.
        Principles of wound healing.
        in: Fitridge R. Thompson M. Mechanisms of Vascular Disease: A Reference Book for Vascular Specialists. University of Adelaide Press, Adelaide, Australia2011: 423-451
        • Kiritsi D.
        • Nyström A.
        The role of TGF[beta] in wound healing pathologies.
        Mech Ageing Dev. 2018; 172: 51-58
        • Finnson K.W.
        • McLean S.
        • Di Guglielmo G.M.
        • Philip A.
        Dynamics of transforming growth factor beta signaling in wound healing and scarring.
        Adv Wound Care (New Rochelle). 2013; 2: 195-214
        • Rognoni E.
        • Watt F.M.
        Skin cell heterogeneity in development, wound healing, and cancer.
        Trends Cell Biol. 2018; 28: 709-722
        • Heldin C.-H.
        • Moustakas A.
        Signaling receptors for TGF-[beta] family members.
        Cold Spring Harb Perspect Biol. 2016; 8: a022053
        • Hata A.
        • Chen Y.-G.
        TGF-[beta] signaling from receptors to Smads.
        Cold Spring Harb Perspect Biol. 2016; 8: a022061
        • Ashcroft G.S.
        • Yang X.
        • Glick A.B.
        • Weinstein M.
        • Letterio J.L.
        • Mizel D.E.
        • Anzano M.
        • Greenwell-Wild T.
        • Wahl S.M.
        • Deng C.
        • Roberts A.B.
        Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response.
        Nat Cell Biol. 1999; 1: 260-266
        • Zhang Y.
        • Chang C.
        • Gehling D.J.
        • Hemmati-Brivanlou A.
        • Derynck R.
        Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase.
        Proc Natl Acad Sci U S A. 2001; 98: 974-979
        • Andrews P.S.
        • Schneider S.
        • Yang E.
        • Michaels M.
        • Chen H.
        • Tang J.
        • Emkey R.
        Identification of substrates of SMURF1 ubiquitin ligase activity utilizing protein microarrays.
        Assay Drug Dev Technol. 2010; 8: 471-487
        • David D.
        • Nair S.A.
        • Pillai M.R.
        Smurf E3 ubiquitin ligases at the cross roads of oncogenesis and tumor suppression.
        Biochim Biophys Acta. 2013; 1835: 119-128
        • Lin X.
        • Liang M.
        • Feng X.H.
        Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-beta signaling.
        J Biol Chem. 2000; 275: 36818-36822
        • Tang L.-Y.
        • Yamashita M.
        • Coussens N.P.
        • Tang Y.
        • Wang X.
        • Li C.
        • Deng C.-X.
        • Cheng S.Y.
        • Zhang Y.E.
        Ablation of Smurf2 reveals an inhibition in TGF-[beta] signalling through multiple mono-ubiquitination of Smad3.
        EMBO J. 2011; 30: 4777-4789
        • Kavsak P.
        • Rasmussen R.K.
        • Causing C.G.
        • Bonni S.
        • Zhu H.
        • Thomsen G.H.
        • Wrana J.L.
        Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation.
        Mol Cell. 2000; 6: 1365-1375
        • Blank M.
        • Tang Y.
        • Yamashita M.
        • Burkett S.S.
        • Cheng S.Y.
        • Zhang Y.E.
        A tumor suppressor function of Smurf2 associated with controlling chromatin landscape and genome stability through RNF20.
        Nat Med. 2012; 18: 227-234
        • Yang X.
        • Letterio J.J.
        • Lechleider R.J.
        • Chen L.
        • Hayman R.
        • Gu H.
        • Roberts A.B.
        • Deng C.
        Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta.
        EMBO J. 1999; 18: 1280-1291
        • Zheng Z.
        • Nguyen C.
        • Zhang X.
        • Khorasani H.
        • Wang J.Z.
        • Zara J.N.
        • Chu F.
        • Yin W.
        • Pang S.
        • Le A.
        • Ting K.
        • Soo C.
        Delayed wound closure in fibromodulin-deficient mice is associated with increased TGF-[beta]3 signaling.
        J Invest Dermatol. 2011; 131: 769-778
        • Boudaoud A.
        • Burian A.
        • Borowska-Wykręt D.
        • Uyttewaal M.
        • Wrzalik R.
        • Kwiatkowska D.
        • Hamant O.
        FibrilTool, an ImageJ plug-in to quantify fibrillar structures in raw microscopy images.
        Nat Protoc. 2014; 9: 457-463
        • Koh T.J.
        • DiPietro L.A.
        Inflammation and wound healing: the role of the macrophage.
        Expert Rev Mol Med. 2011; 13: e23
        • van Zuijlen P.P.M.
        • Ruurda J.J.B.
        • van Veen H.A.
        • van Marle J.
        • van Trier A.J.M.
        • Groenevelt F.
        • Kreis R.W.
        • Middelkoop E.
        Collagen morphology in human skin and scar tissue: no adaptations in response to mechanical loading at joints.
        Burns. 2003; 29: 423-431
        • Leivonen S.-K.
        • Lazaridis K.
        • Decock J.
        • Chantry A.
        • Edwards D.R.
        • Kähäri V.-M.
        TGF-[beta]-elicited induction of tissue inhibitor of metalloproteinases (TIMP)-3 expression in fibroblasts involves complex interplay between Smad3, p38α, and ERK1/2.
        PLoS One. 2013; 8: e57474
        • Fan D.
        • Kassiri Z.
        Biology of tissue inhibitor of metalloproteinase 3 (TIMP3), and its therapeutic implications in cardiovascular pathology.
        Front Physiol. 2020; 11: 661
        • Kurozumi A.
        • Kato M.
        • Goto Y.
        • Matsushita R.
        • Nishikawa R.
        • Okato A.
        • Fukumoto I.
        • Ichikawa T.
        • Seki N.
        Regulation of the collagen cross-linking enzymes LOXL2 and PLOD2 by tumor-suppressive microRNA-26a/b in renal cell carcinoma.
        Int J Oncol. 2016; 48: 1837-1846
        • Berthet E.
        • Chen C.
        • Butcher K.
        • Schneider R.A.
        • Alliston T.
        • Amirtharajah M.
        Smad3 binds Scleraxis and Mohawk and regulates tendon matrix organization.
        J Orthop Res. 2013; 31: 1475-1483
        • Rosell-García T.
        • Palomo-Álvarez O.
        • Rodríguez-Pascual F.
        A hierarchical network of hypoxia-inducible factor and SMAD proteins governs procollagen lysyl hydroxylase 2 induction by hypoxia and transforming growth factor [beta]1.
        J Biol Chem. 2019; 294: 14308-14318
        • Onursal C.
        • Dick E.
        • Angelidis I.
        • Schiller H.B.
        • Staab-Weijnitz C.A.
        Collagen biosynthesis, processing, and maturation in lung ageing.
        Front Med (Lausanne). 2021; 8: 593874
        • Jia H.
        • Janjanam J.
        • Wu S.C.
        • Wang R.
        • Pano G.
        • Celestine M.
        • Martinot O.
        • Breeze-Jones H.
        • Clayton G.
        • Garcin C.
        • Shirinifard A.
        • Zaske A.M.
        • Finkelstein D.
        • Labelle M.
        The tumor cell-secreted matricellular protein WISP1 drives pro-metastatic collagen linearization.
        EMBO J. 2019; 38: e101302
        • Karsdal M.A.
        • Nielsen S.H.
        • Leeming D.J.
        • Langholm L.L.
        • Nielsen M.J.
        • Manon-Jensen T.
        • Siebuhr A.
        • Gudmann N.S.
        • Rønnow S.
        • Sand J.M.
        • Daniels S.J.
        • Mortensen J.H.
        • Schuppan D.
        The good and the bad collagens of fibrosis - their role in signaling and organ function.
        Adv Drug Deliv Rev. 2017; 121: 43-56
        • Seppinen L.
        • Sormunen R.
        • Soini Y.
        • Elamaa H.
        • Heljasvaara R.
        • Pihlajaniemi T.
        Lack of collagen XVIII accelerates cutaneous wound healing, while overexpression of its endostatin domain leads to delayed healing.
        Matrix Biol. 2008; 27: 535-546
        • Zollinger A.J.
        • Smith M.L.
        Fibronectin, the extracellular glue.
        Matrix Biol. 2017; 60–61: 27-37
        • Midwood K.S.
        • Chiquet M.
        • Tucker R.P.
        • Orend G.
        Tenascin-C at a glance.
        J Cell Sci. 2016; 129: 4321-4327
        • Katoh D.
        • Kozuka Y.
        • Noro A.
        • Ogawa T.
        • Imanaka-Yoshida K.
        • Yoshida T.
        Tenascin-C induces phenotypic changes in fibroblasts to myofibroblasts with high contractility through the integrin [alpha]v[beta]1/TGF-[beta]/SMAD signaling axis in human breast cancer.
        Am J Pathol. 2020; 190: 2123-2135
        • Ignotz R.A.
        • Massagué J.
        Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix.
        J Biol Chem. 1986; 261: 4337-4345
        • Stuelten C.H.
        • Zhang Y.E.
        Transforming growth factor-[beta]: an agent of change in the tumor microenvironment.
        Front Cell Dev Biol. 2021; 9: 764727
        • Ashcroft G.S.
        • Horan M.A.
        • Ferguson M.W.
        Aging is associated with reduced deposition of specific extracellular matrix components, an upregulation of angiogenesis, and an altered inflammatory response in a murine incisional wound healing model.
        J Invest Dermatol. 1997; 108: 430-437
        • Ghosh A.K.
        • Yuan W.
        • Mori Y.
        • Varga J.
        Smad-dependent stimulation of type I collagen gene expression in human skin fibroblasts by TGF-beta involves functional cooperation with p300/CBP transcriptional coactivators.
        Oncogene. 2000; 19: 3546-3555
        • Lu P.
        • Wang S.
        • Cai W.
        • Sheng J.
        Role of TGF-[beta]1/Smad3 signaling pathway in secretion of type I and III collagen by vascular smooth muscle cells of rats undergoing balloon injury.
        J Biomed Biotechnol. 2012; 2012: 965953
        • Qureshi H.Y.
        • Ricci G.
        • Zafarullah M.
        Smad signaling pathway is a pivotal component of tissue inhibitor of metalloproteinases-3 regulation by transforming growth factor beta in human chondrocytes.
        Biochim Biophys Acta. 2008; 1783: 1605-1612
        • Yuan W.
        • Varga J.
        Transforming growth factor-beta repression of matrix metalloproteinase-1 in dermal fibroblasts involves Smad3.
        J Biol Chem. 2001; 276: 38502-38510
        • Stuelten C.H.
        • DaCosta Byfield S.
        • Arany P.R.
        • Karpova T.S.
        • Stetler-Stevenson W.G.
        • Roberts A.B.
        Breast cancer cells induce stromal fibroblasts to express MMP-9 via secretion of TNF-alpha and TGF-beta.
        J Cell Sci. 2005; 118: 2143-2153
        • Gjaltema R.A.F.
        • de Rond S.
        • Rots M.G.
        • Bank R.A.
        Procollagen lysyl hydroxylase 2 expression is regulated by an alternative downstream transforming growth factor [beta]-1 activation mechanism.
        J Biol Chem. 2015; 290: 28465-28476
        • Qi Y.
        • Xu R.
        Roles of plods in collagen synthesis and cancer progression.
        Front Cell Dev Biol. 2018; 6: 66
        • Fang Y.
        • Chang H.-M.
        • Cheng J.-C.
        • Klausen C.
        • Leung P.C.K.
        • Yang X.
        Transforming growth factor-[beta]1 increases lysyl oxidase expression by downregulating MIR29A in human granulosa lutein cells.
        Reproduction. 2016; 152: 205-213
        • Huang M.
        • Liu Z.
        • Baugh L.
        • DeFuria J.
        • Maione A.
        • Smith A.
        • Kashpur O.
        • Black Iii, L.D.
        • Georgakoudi I.
        • Whitfield M.L.
        • Garlick J.
        Lysyl oxidase enzymes mediate TGF-[beta]1-induced fibrotic phenotypes in human skin-like tissues.
        Lab Invest. 2019; 99: 514-527
        • Zhang T.
        • Wang X.-F.
        • Wang Z.-C.
        • Lou D.
        • Fang Q.-Q.
        • Hu Y.-Y.
        • Zhao W.-Y.
        • Zhang L.-Y.
        • Wu L.-H.
        • Tan W.-Q.
        Current potential therapeutic strategies targeting the TGF-[beta]/Smad signaling pathway to attenuate keloid and hypertrophic scar formation.
        Biomed Pharmacother. 2020; 129: 110287
        • Tan R.
        • He W.
        • Lin X.
        • Kiss L.P.
        • Liu Y.
        Smad ubiquitination regulatory factor-2 in the fibrotic kidney: regulation, target specificity, and functional implication.
        Am J Physiol Renal Physiol. 2008; 294: F1076-F1083
        • Cai Y.
        • Huang G.
        • Ma L.
        • Dong L.
        • Chen S.
        • Shen X.
        • Zhang S.
        • Xue R.
        • Sun D.
        • Zhang S.
        Smurf2, an E3 ubiquitin ligase, interacts with PDE4B and attenuates liver fibrosis through miR-132 mediated CTGF inhibition.
        Biochim Biophys Acta Mol Cell Res. 2018; 1865: 297-308
        • Zhang Y.
        • Qian H.
        • Wu B.
        • You S.
        • Wu S.
        • Lu S.
        • Wang P.
        • Cao L.
        • Zhang N.
        • Sun Y.
        E3 ubiquitin ligase NEDD4 family-regulatory network in cardiovascular disease.
        Int J Biol Sci. 2020; 16: 2727-2740
        • Zhang Z.
        • Finnerty C.C.
        • He J.
        • Herndon D.N.
        Smad ubiquitination regulatory factor 2 expression is enhanced in hypertrophic scar fibroblasts from burned children.
        Burns. 2012; 38: 236-246
        • Zhang Z.
        • Liu C.
        • Chen B.
        • Tang W.
        • Liu Z.
        • Cao W.
        • Li X.
        Smad7 down-regulation via ubiquitin degradation mediated by Smurf2 in fibroblasts of hypertrophic scars in burned patients.
        Burns. 2021; 47: 1333-1341