Advertisement

Transforming Growth Factor-β Receptor–Mediated, p38 Mitogen-Activated Protein Kinase–Dependent Signaling Drives Enhanced Myofibroblast Differentiation during Skin Wound Healing in Mice Lacking Hyaluronan Synthases 1 and 3

  • Yan Wang
    Correspondence
    Address correspondence to Yan Wang, M.D., Ph.D., or Edward V. Maytin, M.D., Ph.D., Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Mailstop ND-20, 9500 Euclid Ave., Cleveland, OH 44195.
    Affiliations
    Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
    Search for articles by this author
  • Judith A. Mack
    Affiliations
    Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio

    Department of Dermatology, Dermatology and Plastic Surgery Institute, Cleveland Clinic, Cleveland, Ohio
    Search for articles by this author
  • Vincent C. Hascall
    Affiliations
    Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
    Search for articles by this author
  • Edward V. Maytin
    Correspondence
    Address correspondence to Yan Wang, M.D., Ph.D., or Edward V. Maytin, M.D., Ph.D., Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Mailstop ND-20, 9500 Euclid Ave., Cleveland, OH 44195.
    Affiliations
    Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio

    Department of Dermatology, Dermatology and Plastic Surgery Institute, Cleveland Clinic, Cleveland, Ohio
    Search for articles by this author
Published:September 02, 2022DOI:https://doi.org/10.1016/j.ajpath.2022.08.003
      Normal myofibroblast differentiation is critical for proper skin wound healing. Neoexpression of α-smooth muscle actin (α-SMA), a marker for myofibroblast differentiation, is driven by transforming growth factor (TGF)-β receptor–mediated signaling. Hyaluronan and its three synthesizing enzymes, hyaluronan synthases (Has 1, 2, and 3), also participate in this process. In Has1/3 double-knockout (Has1/3-null) mice, closure of skin wounds is significantly accelerated. Herein, we show that TGF-β activity and dermal collagen maturation are increased in Has1/3-null healing skin. Cultures of primary skin fibroblasts isolated from Has1/3-null mice have higher levels of TGF-β activity, α-SMA expression, and phosphorylation of p38 mitogen-activated protein kinase at Thr180/Tyr182, compared with wild-type fibroblasts. We also show that p38α mitogen-activated protein kinase is a necessary element in a noncanonical TGF-β receptor signaling pathway driving α-SMA expression in Has1/3-null fibroblasts. Myocardin-related transcription factor (MRTF), a cofactor that binds to the transcription factor serum response factor (SRF), is also critical. Nuclear localization of MRTF is increased, and MRTF binding to SRF is enhanced in Has1/3-null fibroblasts. Inhibition of MRTF or SRF expression by RNA interference suppresses α-SMA expression at baseline and diminishes its overexpression in Has1/3-null fibroblasts. Interestingly, total matrix metalloproteinase activity is increased in healing skin and fibroblasts from Has1/3-null mice, possibly explaining the increased TGF-β activation.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of Pathology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Singer A.J.
        • Clark R.A.
        Cutaneous wound healing.
        N Engl J Med. 1999; 341: 738-746
        • Rodrigues M.
        • Kosaric N.
        • Bonham C.A.
        • Gurtner G.C.
        Wound healing: a cellular perspective.
        Physiol Rev. 2019; 99: 665-706
        • Gabbiani G.
        The myofibroblast in wound healing and fibrocontractive diseases.
        J Pathol. 2003; 200: 500-503
        • Akhurst R.J.
        • Hata A.
        Targeting the TGFbeta signalling pathway in disease.
        Nat Rev Drug Discov. 2012; 11: 790-811
        • Kim S.I.
        • Choi M.E.
        TGF-beta-activated kinase-1: new insights into the mechanism of TGF-beta signaling and kidney disease.
        Kidney Res Clin Pract. 2012; 31: 94-105
        • Stambe C.
        • Nikolic-Paterson D.J.
        • Hill P.A.
        • Dowling J.
        • Atkins R.C.
        p38 Mitogen-activated protein kinase activation and cell localization in human glomerulonephritis: correlation with renal injury.
        J Am Soc Nephrol. 2004; 15: 326-336
        • Meyer-ter-Vehn T.
        • Han H.
        • Grehn F.
        • Schlunck G.
        Extracellular matrix elasticity modulates TGF-beta-induced p38 activation and myofibroblast transdifferentiation in human tenon fibroblasts.
        Invest Ophthalmol Vis Sci. 2011; 52: 9149-9155
        • Molkentin J.D.
        • Bugg D.
        • Ghearing N.
        • Dorn L.E.
        • Kim P.
        • Sargent M.A.
        • Gunaje J.
        • Otsu K.
        • Davis J.
        Fibroblast-specific genetic manipulation of p38 mitogen-activated protein kinase in vivo reveals its central regulatory role in fibrosis.
        Circulation. 2017; 136: 549-561
        • Ronkina N.
        • Lafera J.
        • Kotlyarov A.
        • Gaestel M.
        Stress-dependent phosphorylation of myocardin-related transcription factor A (MRTF-A) by the p38(MAPK)/MK2 axis.
        Sci Rep. 2016; 6: 31219
        • Martin-Garrido A.
        • Brown D.I.
        • Lyle A.N.
        • Dikalova A.
        • Seidel-Rogol B.
        • Lassegue B.
        • San Martin A.
        • Griendling K.K.
        NADPH oxidase 4 mediates TGF-beta-induced smooth muscle alpha-actin via p38MAPK and serum response factor.
        Free Radic Biol Med. 2011; 50: 354-362
        • Strauch A.R.
        • Hariharan S.
        Dynamic interplay of smooth muscle alpha-actin gene-regulatory proteins reflects the biological complexity of myofibroblast differentiation.
        Biology (Basel). 2013; 2: 555-586
        • Turner N.A.
        • Blythe N.M.
        Cardiac fibroblast p38 MAPK: a critical regulator of myocardial remodeling.
        J Cardiovasc Dev Dis. 2019; 6: 27
        • Miano J.M.
        • Long X.
        • Fujiwara K.
        Serum response factor: master regulator of the actin cytoskeleton and contractile apparatus.
        Am J Physiol Cell Physiol. 2007; 292: C70-C81
        • Olson E.N.
        • Nordheim A.
        Linking actin dynamics and gene transcription to drive cellular motile functions.
        Nat Rev Mol Cell Biol. 2010; 11: 353-365
        • Miralles F.
        • Posern G.
        • Zaromytidou A.I.
        • Treisman R.
        Actin dynamics control SRF activity by regulation of its coactivator MAL.
        Cell. 2003; 113: 329-342
        • Panayiotou R.
        • Miralles F.
        • Pawlowski R.
        • Diring J.
        • Flynn H.R.
        • Skehel M.
        • Treisman R.
        Phosphorylation acts positively and negatively to regulate MRTF-A subcellular localisation and activity.
        Elife. 2016; 5: e15460
        • Fraser J.R.
        • Laurent T.C.
        • Laurent U.B.
        Hyaluronan: its nature, distribution, functions and turnover.
        J Intern Med. 1997; 242: 27-33
        • Itano N.
        • Kimata K.
        Mammalian hyaluronan synthases.
        IUBMB Life. 2002; 54: 195-199
        • Camenisch T.D.
        • Spicer A.P.
        • Brehm-Gibson T.
        • Biesterfeldt J.
        • Augustine M.L.
        • Calabro Jr., A.
        • Kubalak S.
        • Klewer S.E.
        • McDonald J.A.
        Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme.
        J Clin Invest. 2000; 106: 349-360
        • Itano N.
        • Sawai T.
        • Yoshida M.
        • Lenas P.
        • Yamada Y.
        • Imagawa M.
        • Shinomura T.
        • Hamaguchi M.
        • Yoshida Y.
        • Ohnuki Y.
        • Miyauchi S.
        • Spicer A.P.
        • McDonald J.A.
        • Kimata K.
        Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties.
        J Biol Chem. 1999; 274: 25085-25092
        • Mack J.A.
        • Feldman R.J.
        • Itano N.
        • Kimata K.
        • Lauer M.
        • Hascall V.C.
        • Maytin E.V.
        Enhanced inflammation and accelerated wound closure following tetraphorbol ester application or full-thickness wounding in mice lacking hyaluronan synthases Has1 and Has3.
        J Invest Dermatol. 2012; 132: 198-207
        • Wang Y.
        • Lauer M.E.
        • Anand S.
        • Mack J.A.
        • Maytin E.V.
        Hyaluronan synthase 2 protects skin fibroblasts against apoptosis induced by environmental stress.
        J Biol Chem. 2014; 289: 32253-32265
        • Li Y.
        • Jiang D.
        • Liang J.
        • Meltzer E.B.
        • Gray A.
        • Miura R.
        • Wogensen L.
        • Yamaguchi Y.
        • Noble P.W.
        Severe lung fibrosis requires an invasive fibroblast phenotype regulated by hyaluronan and CD44.
        J Exp Med. 2011; 208: 1459-1471
        • Jurukovski V.
        • Dabovic B.
        • Todorovic V.
        • Chen Y.
        • Rifkin D.B.
        Methods for measuring TGF-b using antibodies, cells, and mice.
        Methods Mol Med. 2005; 117: 161-175
        • Wang Y.
        • Mack J.A.
        • Maytin E.V.
        CD44 inhibits alpha-SMA gene expression via a novel G-actin/MRTF-mediated pathway that intersects with TGFbetaR/p38MAPK signaling in murine skin fibroblasts.
        J Biol Chem. 2019; 294: 12779-12794
        • Meran S.
        • Luo D.D.
        • Simpson R.
        • Martin J.
        • Wells A.
        • Steadman R.
        • Phillips A.O.
        Hyaluronan facilitates transforming growth factor-beta1-dependent proliferation via CD44 and epidermal growth factor receptor interaction.
        J Biol Chem. 2011; 286: 17618-17630
        • Takekawa M.
        • Tatebayashi K.
        • Itoh F.
        • Adachi M.
        • Imai K.
        • Saito H.
        Smad-dependent GADD45beta expression mediates delayed activation of p38 MAP kinase by TGF-beta.
        EMBO J. 2002; 21: 6473-6482
        • Peters I.
        • Tossidou I.
        • Achenbach J.
        • Woroniecki R.
        • Mengel M.
        • Park J.K.
        • Paschy M.
        • de Groot K.
        • Haller H.
        • Schiffer M.
        IGF-binding protein-3 modulates TGF-beta/BMP-signaling in glomerular podocytes.
        J Am Soc Nephrol. 2006; 17: 1644-1656
        • Sapkota G.P.
        The TGFbeta-induced phosphorylation and activation of p38 mitogen-activated protein kinase is mediated by MAP3K4 and MAP3K10 but not TAK1.
        Open Biol. 2013; 3: 130067
        • Roux P.P.
        • Blenis J.
        ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions.
        Microbiol Mol Biol Rev. 2004; 68: 320-344
        • Nakagawa T.
        • Lan H.Y.
        • Glushakova O.
        • Zhu H.J.
        • Kang D.H.
        • Schreiner G.F.
        • Bottinger E.P.
        • Johnson R.J.
        • Sautin Y.Y.
        Role of ERK1/2 and p38 mitogen-activated protein kinases in the regulation of thrombospondin-1 by TGF-beta1 in rat proximal tubular cells and mouse fibroblasts.
        J Am Soc Nephrol. 2005; 16: 899-904
        • Canovas B.
        • Nebreda A.R.
        Diversity and versatility of p38 kinase signalling in health and disease.
        Nat Rev Mol Cell Biol. 2021; 22: 346-366
        • Posern G.
        • Treisman R.
        Actin' together: serum response factor, its cofactors and the link to signal transduction.
        Trends Cell Biol. 2006; 16: 588-596
        • Wipff P.J.
        • Hinz B.
        Integrins and the activation of latent transforming growth factor beta1 - an intimate relationship.
        Eur J Cell Biol. 2008; 87: 601-615
        • Krzyszczyk P.
        • Schloss R.
        • Palmer A.
        • Berthiaume F.
        The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes.
        Front Physiol. 2018; 9: 419
        • Werner S.
        • Krieg T.
        • Smola H.
        Keratinocyte-fibroblast interactions in wound healing.
        J Invest Dermatol. 2007; 127: 998-1008
        • Meran S.
        • Thomas D.
        • Stephens P.
        • Martin J.
        • Bowen T.
        • Phillips A.
        • Steadman R.
        Involvement of hyaluronan in regulation of fibroblast phenotype.
        J Biol Chem. 2007; 282: 25687-25697
        • Webber J.
        • Meran S.
        • Steadman R.
        • Phillips A.
        Hyaluronan orchestrates transforming growth factor-beta1-dependent maintenance of myofibroblast phenotype.
        J Biol Chem. 2009; 284: 9083-9092
        • Evanko S.P.
        • Potter-Perigo S.
        • Petty L.J.
        • Workman G.A.
        • Wight T.N.
        Hyaluronan controls the deposition of fibronectin and collagen and modulates TGF-beta1 induction of lung myofibroblasts.
        Matrix Biol. 2015; 42: 74-92
        • Hinz B.
        The myofibroblast: paradigm for a mechanically active cell.
        J Biomech. 2010; 43: 146-155
        • Jones C.
        • Ehrlich H.P.
        Fibroblast expression of alpha-smooth muscle actin, alpha2beta1 integrin and alphavbeta3 integrin: influence of surface rigidity.
        Exp Mol Pathol. 2011; 91: 394-399
        • Chan D.D.
        • Xiao W.F.
        • Li J.
        • de la Motte C.A.
        • Sandy J.D.
        • Plaas A.
        Deficiency of hyaluronan synthase 1 (Has1) results in chronic joint inflammation and widespread intra-articular fibrosis in a murine model of knee joint cartilage damage.
        Osteoarthritis Cartilage. 2015; 23: 1879-1889
        • McCracken J.M.
        • Jiang L.
        • Deshpande K.T.
        • O'Neil M.F.
        • Pritchard M.T.
        Differential effects of hyaluronan synthase 3 deficiency after acute vs chronic liver injury in mice.
        Fibrogenesis Tissue Repair. 2016; 9: 4
        • Petz A.
        • Grandoch M.
        • Gorski D.J.
        • Abrams M.
        • Piroth M.
        • Schneckmann R.
        • Homann S.
        • Muller J.
        • Hartwig S.
        • Lehr S.
        • Yamaguchi Y.
        • Wight T.N.
        • Gorressen S.
        • Ding Z.
        • Kotter S.
        • Kruger M.
        • Heinen A.
        • Kelm M.
        • Godecke A.
        • Flogel U.
        • Fischer J.W.
        Cardiac hyaluronan synthesis is critically involved in the cardiac macrophage response and promotes healing after ischemia reperfusion injury.
        Circ Res. 2019; 124: 1433-1447
        • Williams A.P.
        • Midgley A.C.
        • Charlotte V.M.
        • Brown C.V.
        • Roberts T.H.
        • Morris N.G.
        • Steadman R.
        • Philips A.O.
        • Meran S.
        The hyaluronan synthase-1 isoenzyme promotes differentiation to a distinct subset of myofibroblasts that limit fibrosis progression.
        J Am Soc Nephrol. 2018; : 1
        • El-Brolosy M.A.
        • Stainier D.Y.R.
        Genetic compensation: a phenomenon in search of mechanisms.
        PLoS Genet. 2017; 13: e1006780
        • Siiskonen H.
        • Oikari S.
        • Pasonen-Seppanen S.
        • Rilla K.
        Hyaluronan synthase 1: a mysterious enzyme with unexpected functions.
        Front Immunol. 2015; 6: 43
        • Porsch H.
        • Bernert B.
        • Mehic M.
        • Theocharis A.D.
        • Heldin C.H.
        • Heldin P.
        Efficient TGFbeta-induced epithelial-mesenchymal transition depends on hyaluronan synthase HAS2.
        Oncogene. 2013; 32: 4355-4365
        • Kim Y.H.
        • Lee S.B.
        • Shim S.
        • Kim A.
        • Park J.H.
        • Jang W.S.
        • Lee S.J.
        • Myung J.K.
        • Park S.
        • Lee S.J.
        • Kim M.J.
        Hyaluronic acid synthase 2 promotes malignant phenotypes of colorectal cancer cells through transforming growth factor beta signaling.
        Cancer Sci. 2019; 110: 2226-2236
        • Webber J.
        • Jenkins R.H.
        • Meran S.
        • Phillips A.
        • Steadman R.
        Modulation of TGFbeta1-dependent myofibroblast differentiation by hyaluronan.
        Am J Pathol. 2009; 175: 148-160
        • Treisman R.
        Identification of a protein-binding site that mediates transcriptional response of the c-fos gene to serum factors.
        Cell. 1986; 46: 567-574
        • Chai J.
        • Tarnawski A.S.
        Serum response factor: discovery, biochemistry, biological roles and implications for tissue injury healing.
        J Physiol Pharmacol. 2002; 53: 147-157
        • Miano J.M.
        Serum response factor: toggling between disparate programs of gene expression.
        J Mol Cell Cardiol. 2003; 35: 577-593
        • Gasparics A.
        • Sebe A.
        MRTFs- master regulators of EMT.
        Dev Dyn. 2018; 247: 396-404
        • Muehlich S.
        • Wang R.
        • Lee S.M.
        • Lewis T.C.
        • Dai C.
        • Prywes R.
        Serum-induced phosphorylation of the serum response factor coactivator MKL1 by the extracellular signal-regulated kinase 1/2 pathway inhibits its nuclear localization.
        Mol Cell Biol. 2008; 28: 6302-6313
        • Sebe A.
        • Masszi A.
        • Zulys M.
        • Yeung T.
        • Speight P.
        • Rotstein O.D.
        • Nakano H.
        • Mucsi I.
        • Szaszi K.
        • Kapus A.
        Rac, PAK and p38 regulate cell contact-dependent nuclear translocation of myocardin-related transcription factor.
        FEBS Lett. 2008; 582: 291-298
        • Small E.M.
        The actin-MRTF-SRF gene regulatory axis and myofibroblast differentiation.
        J Cardiovasc Transl Res. 2012; 5: 794-804
        • Crider B.J.
        • Risinger Jr., G.M.
        • Haaksma C.J.
        • Howard E.W.
        • Tomasek J.J.
        Myocardin-related transcription factors A and B are key regulators of TGF-beta1-induced fibroblast to myofibroblast differentiation.
        J Invest Dermatol. 2011; 131: 2378-2385
        • Caley M.P.
        • Martins V.L.
        • O'Toole E.A.
        Metalloproteinases and wound healing.
        Adv Wound Care. 2015; 4: 225-234
        • Dayer C.
        • Stamenkovic I.
        Recruitment of matrix metalloproteinase-9 (MMP-9) to the fibroblast cell surface by lysyl hydroxylase 3 (LH3) triggers transforming growth factor-beta (TGF-beta) activation and fibroblast differentiation.
        J Biol Chem. 2015; 290: 13763-13778
        • Kobayashi T.
        • Kim H.
        • Liu X.
        • Sugiura H.
        • Kohyama T.
        • Fang Q.
        • Wen F.Q.
        • Abe S.
        • Wang X.
        • Atkinson J.J.
        • Shipley J.M.
        • Senior R.M.
        • Rennard S.I.
        Matrix metalloproteinase-9 activates TGF-beta and stimulates fibroblast contraction of collagen gels.
        Am J Physiol Lung Cell Mol Physiol. 2014; 306: L1006-L1015
        • Gill S.E.
        • Parks W.C.
        Metalloproteinases and their inhibitors: regulators of wound healing.
        Int J Biochem Cell Biol. 2008; 40: 1334-1347