Advertisement

Dystrophin Restoration after Adeno-Associated Virus U7–Mediated Dmd Exon Skipping Is Modulated by Muscular Exercise in the Severe D2-Mdx Duchenne Muscular Dystrophy Murine Model

Published:September 13, 2022DOI:https://doi.org/10.1016/j.ajpath.2022.07.016
      Duchenne muscular dystrophy (DMD) is a severe neuromuscular disease caused by Dmd mutations, resulting in the absence of dystrophin in skeletal muscle, with a greater susceptibility to damage during contraction (exercise). In this study, we evaluated whether voluntary exercise impacts a Dmd exon skipping approach and muscle physiology in a severe DMD murine model. We intramuscularly injected an adeno-associated virus (AAV) U7 snRNA that aimed to correct Dmd reading frame in D2-mdx mice, and they voluntary ran in a wheel for 1 month. Our results suggested that voluntary running did not induce muscle fiber regeneration, considering the percentage of centronucleated fibers, Myh3 and Myh4 expression, or maximal force production, and thus possibly not compromise a gene therapy approach. With the AAV-U7 injected just before exercise initiation, we reported that voluntary running did not impact the number of viral genomes and the expression of U7 and Dmd 1 month after injection of AAV-U7, but reduced the amount of dystrophin, from 80% to 65% of the muscle cross-sectional area with dystrophin-expressing fibers. In conclusion, voluntary running did not induce muscle damage and had no drastic detrimental effect on the AAV gene therapy exon skipping approach in a severe murine DMD model. Moreover, our results suggested that exercise should be an additional element to consider in the design and conception of future therapeutic approaches for DMD.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of Pathology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Spitali P.
        • van den Bergen J.C.
        • Verhaart I.E.C.
        • Wokke B.
        • Janson A.A.M.
        • van den Eijnde R.
        • den Dunnen J.T.
        • Laros J.F.J.
        • Verschuuren J.J.G.M.
        • ’t Hoen P.A.C.
        • Aartsma-Rus A.
        DMD transcript imbalance determines dystrophin levels.
        FASEB J. 2013; 27: 4909-4916
        • Duan D.
        Systemic AAV micro-dystrophin gene therapy for Duchenne muscular dystrophy.
        Mol Ther. 2018; 26: 2337-2356
        • Trollet C.
        • Athanasopoulos T.
        • Popplewell L.
        • Malerba A.
        • Dickson G.
        Gene therapy for muscular dystrophy: current progress and future prospects.
        Expert Opin Biol Ther. 2009; 9: 849-866
        • Goyenvalle A.
        • Vulin A.
        • Fougerousse F.
        • Leturcq F.
        • Kaplan J.C.
        • Garcia L.
        • Danos O.
        Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping.
        Science. 2004; 306: 1796-1799
        • Ramos J.N.
        • Hollinger K.
        • Bengtsson N.E.
        • Allen J.M.
        • Hauschka S.D.
        • Chamberlain J.S.
        Development of novel micro-dystrophins with enhanced functionality.
        Mol Ther. 2019; 27: 623-635
        • Sarcar S.
        • Tulalamba W.
        • Rincon M.Y.
        • Tipanee J.
        • Pham H.Q.
        • Evens H.
        • Boon D.
        • Samara-Kuko E.
        • Keyaerts M.
        • Loperfido M.
        • Berardi E.
        • Jarmin S.
        • In’t Veld P.
        • Dickson G.
        • Lahoutte T.
        • Sampaolesi M.
        • De Bleser P.
        • VandenDriessche T.
        • Chuah M.K.
        Next-generation muscle-directed gene therapy by in silico vector design.
        Nat Commun. 2019; 10: 492
        • Pedersen B.K.
        • Hoffman-Goetz L.
        Exercise and the immune system: regulation, integration, and adaptation.
        Physiol Rev. 2000; 80: 1055-1081
        • Pillon N.J.
        • Gabriel B.M.
        • Dollet L.
        • Smith J.A.B.
        • Sardón Puig L.
        • Botella J.
        • Bishop D.J.
        • Krook A.
        • Zierath J.R.
        Transcriptomic profiling of skeletal muscle adaptations to exercise and inactivity.
        Nat Commun. 2020; 11: 470
        • Brooks S.V.
        • Zerba E.
        • Faulkner J.A.
        Injury to muscle fibres after single stretches of passive and maximally stimulated muscles in mice.
        J Physiol. 1995; 488: 459-469
        • Lovering R.M.
        • De Deyne P.G.
        Contractile function, sarcolemma integrity, and the loss of dystrophin after skeletal muscle eccentric contraction-induced injury.
        Am J Physiol Cell Physiol. 2004; 286: C230-C238
        • Hamm S.E.
        • Fathalikhani D.D.
        • Bukovec K.E.
        • Addington A.K.
        • Zhang H.
        • Perry J.B.
        • McMillan R.P.
        • Lawlor M.W.
        • Prom M.J.
        • Vanden Avond M.A.
        • Kumar S.N.
        • Coleman K.E.
        • Dupont J.B.
        • Mack D.L.
        • Brown D.A.
        • Morris C.A.
        • Gonzalez J.P.
        • Grange R.W.
        Voluntary wheel running complements microdystrophin gene therapy to improve muscle function in mdx mice.
        Mol Ther Methods Clin Dev. 2021; 21: 144-160
        • Le Hir M.
        • Goyenvalle A.
        • Peccate C.
        • Précigout G.
        • Davies K.E.
        • Voit T.
        • Garcia L.
        • Lorain S.
        AAV genome loss from dystrophic mouse muscles during AAV-U7 snRNA-mediated exon-skipping therapy.
        Mol Ther. 2013; 21: 1551-1558
        • Head S.
        • Williams D.
        • Stephenson G.
        Increased susceptibility of EDL muscles from mdx mice to damage induced by contraction with stretch.
        J Muscle Res Cell Motil. 1994; 15: 490-492
        • Hammers D.W.
        • Hart C.C.
        • Matheny M.K.
        • Wright L.A.
        • Armellini M.
        • Barton E.R.
        • Sweeney H.L.
        The D2.mdx mouse as a preclinical model of the skeletal muscle pathology associated with Duchenne muscular dystrophy.
        Sci Rep. 2020; 10: 14070
        • Mázala D.A.
        • Novak J.S.
        • Hogarth M.W.
        • Nearing M.
        • Adusumalli P.
        • Tully C.B.
        • Habib N.F.
        • Gordish-Dressman H.
        • Chen Y.-W.
        • Jaiswal J.K.
        • Partridge T.A.
        TGF-[beta]-driven muscle degeneration and failed regeneration underlie disease onset in a DMD mouse model.
        JCI Insight. 2020; 5: e135703
        • Hoogaars W.
        • Mouisel E.
        • Pasternack A.
        • Hulmi J.J.
        • Relizani K.
        • Schuelke M.
        • Schirwis E.
        • Garcia L.
        • Ritvos O.
        • Ferry A.
        • t Hoen P.A.
        • Amthor H.
        Combined effect of AAV-U7-induced dystrophin exon skipping and soluble activin type IIB receptor in mdx mice.
        Hum Gene Ther. 2012; 23: 1269-1279
        • Roy P.
        • Rau F.
        • Ochala J.
        • Messéant J.
        • Fraysse B.
        • Lainé J.
        • Agbulut O.
        • Butler-Browne G.
        • Furling D.
        • Ferry A.
        Dystrophin restoration therapy improves both the reduced excitability and the force drop induced by lengthening contractions in dystrophic mdx skeletal muscle.
        Skelet Muscle. 2016; 6: 23
        • Grundy D.
        Principles and standards for reporting animal experiments in The Journal of Physiology and Experimental Physiology.
        J Physiol (Lond). 2015; 593: 2547-2549
        • Dumonceaux J.
        • Marie S.
        • Beley C.
        • Trollet C.
        • Vignaud A.
        • Ferry A.
        • Butler-Browne G.
        • Garcia L.
        Combination of myostatin pathway interference and dystrophin rescue enhances tetanic and specific force in dystrophic mdx mice.
        Mol Ther. 2010; 18: 881-887
        • Joanne P.
        • Hourde C.
        • Ochala J.
        • Cauderan Y.
        • Medja F.
        • Vignaud A.
        • Mouisel E.
        • Hadj-Said W.
        • Arandel L.
        • Garcia L.
        • Goyenvalle A.
        • Mounier R.
        • Zibroba D.
        • Sakamato K.
        • Butler-Browne G.
        • Agbulut O.
        • Ferry A.
        Impaired adaptive response to mechanical overloading in dystrophic skeletal muscle.
        PLoS One. 2012; 7: e35346
        • Ferry A.
        • Messéant J.
        • Parlakian A.
        • Lemaitre M.
        • Roy P.
        • Delacroix C.
        • Lilienbaum A.
        • Hovhannisyan Y.
        • Furling D.
        • Klein A.
        • Li Z.
        • Agbulut O.
        Desmin prevents muscle wasting, exaggerated weakness and fragility, and fatigue in dystrophic mdx mouse.
        J Physiol. 2020; 598: 3667-3689
        • Waisman A.
        • Norris A.M.
        • Elías Costa M.
        • Kopinke D.
        Automatic and unbiased segmentation and quantification of myofibers in skeletal muscle.
        Sci Rep. 2021; 11: 11793
        • Mayeuf-Louchart A.
        • Hardy D.
        • Thorel Q.
        • Roux P.
        • Gueniot L.
        • Briand D.
        • Mazeraud A.
        • Bouglé A.
        • Shorte S.L.
        • Staels B.
        • Chrétien F.
        • Duez H.
        • Danckaert A.
        MuscleJ: a high-content analysis method to study skeletal muscle with a new Fiji tool.
        Skelet Muscle. 2018; 8: 25
        • Monceau A.
        • Delacroix C.
        • Lemaitre M.
        • Revet G.
        • Furling D.
        • Agbulut O.
        • Klein A.
        • Ferry A.
        The beneficial effect of chronic muscular exercise on muscle fragility is increased by Prox1 gene transfer in dystrophic mdx muscle.
        PLoS One. 2022; 17: e0254274
        • Mariot V.
        • Le Guiner C.
        • Barthélémy I.
        • Montus M.
        • Blot S.
        • Torelli S.
        • Morgan J.
        • Muntoni F.
        • Voit T.
        • Dumonceaux J.
        Myostatin is a quantifiable biomarker for monitoring pharmaco-gene therapy in Duchenne muscular dystrophy.
        Mol Ther Methods Clin Dev. 2020; 18: 415-421
        • Goyenvalle A.
        • Babbs A.
        • Wright J.
        • Wilkins V.
        • Powell D.
        • Garcia L.
        • Davies K.E.
        Rescue of severely affected dystrophin/utrophin-deficient mice through scAAV-U7snRNA-mediated exon skipping.
        Hum Mol Genet. 2012; 21: 2559-2571
        • Goyenvalle A.
        • Griffith G.
        • Babbs A.
        • El Andaloussi S.
        • Ezzat K.
        • Avril A.
        • Dugovic B.
        • Chaussenot R.
        • Ferry A.
        • Voit T.
        • Amthor H.
        • Buhr C.
        • Schurch S.
        • Wood M.J.
        • Davies K.E.
        • Vaillend C.
        • Leumann C.
        • Garcia L.
        Functional correction in mouse models of muscular dystrophy using exon-skipping tricyclo-DNA oligomers.
        Nat Med. 2015; 21: 270-275
        • Aupy P.
        • Zarrouki F.
        • Sandro Q.
        • Gastaldi C.
        • Buclez P.-O.
        • Mamchaoui K.
        • Garcia L.
        • Vaillend C.
        • Goyenvalle A.
        Long-term efficacy of AAV9-U7snRNA-mediated exon 51 skipping in mdx52 mice.
        Mol Ther Methods Clin Dev. 2020; 17: 1037-1047
        • Ferry A.
        • Benchaouir R.
        • Joanne P.
        • Peat R.A.
        • Mougenot N.
        • Agbulut O.
        • Butler-Browne G.
        Effect of voluntary physical activity initiated at age 7 months on skeletal hindlimb and cardiac muscle function in mdx mice of both genders.
        Muscle Nerve. 2015; 52: 788-794
        • van Putten M.
        • Tanganyika-de Winter C.
        • Bosgra S.
        • Aartsma-Rus A.
        Nonclinical exon skipping studies with 2’-O-methyl phosphorothioate antisense oligonucleotides in mdx and mdx-utrn-/- mice inspired by clinical trial results.
        Nucleic Acid Ther. 2019; 29: 92-103
        • Betts C.A.
        • Saleh A.F.
        • Carr C.A.
        • Hammond S.M.
        • Coenen-Stass A.M.L.
        • Godfrey C.
        • McClorey G.
        • Varela M.A.
        • Roberts T.C.
        • Clarke K.
        • Gait M.J.
        • Wood M.J.A.
        Prevention of exercised induced cardiomyopathy following Pip-PMO treatment in dystrophic mdx mice.
        Sci Rep. 2015; 5: 8986
        • van Putten M.
        • Putker K.
        • Overzier M.
        • Adamzek W.A.
        • Pasteuning-Vuhman S.
        • Plomp J.J.
        • Aartsma-Rus A.
        Natural disease history of the D2-mdx mouse model for Duchenne muscular dystrophy.
        FASEB J. 2019; 33: 8110-8124
        • Ubaida-Mohien C.
        • Gonzalez-Freire M.
        • Lyashkov A.
        • Moaddel R.
        • Chia C.W.
        • Simonsick E.M.
        • Sen R.
        • Ferrucci L.
        Physical activity associated proteomics of skeletal muscle: being physically active in daily life may protect skeletal muscle from aging.
        Front Physiol. 2019; 10: 312
        • Van Pelt D.W.
        • Hettinger Z.R.
        • Vanderklish P.W.
        RNA-binding proteins: the next step in translating skeletal muscle adaptations?.
        J Appl Physiol (1985). 2019; 127: 654-660
        • Manta A.
        • Stouth D.W.
        • Xhuti D.
        • Chi L.
        • Rebalka I.A.
        • Kalmar J.M.
        • Hawke T.J.
        • Ljubicic V.
        Chronic exercise mitigates disease mechanisms and improves muscle function in myotonic dystrophy type 1 mice.
        J Physiol. 2019; 597: 1361-1381
        • Chopard A.
        • Pons F.
        • Charpiot P.
        • Marini J.F.
        Quantitative analysis of relative protein contents by Western blotting: comparison of three members of the dystrophin-glycoprotein complex in slow and fast rat skeletal muscle.
        Electrophoresis. 2000; 21: 517-522
        • Banks G.B.
        • Combs A.C.
        • Odom G.L.
        • Bloch R.J.
        • Chamberlain J.S.
        Muscle structure influences utrophin expression in mdx mice.
        PLoS Genet. 2014; 10: e1004431
        • Zelikovich A.S.
        • Quattrocelli M.
        • Salamone I.M.
        • Kuntz N.L.
        • McNally E.M.
        Moderate exercise improves function and increases adiponectin in the mdx mouse model of muscular dystrophy.
        Sci Rep. 2019; 9: 5770
        • Hakim C.H.
        • Wasala N.B.
        • Pan X.
        • Kodippili K.
        • Yue Y.
        • Zhang K.
        • Yao G.
        • Haffner B.
        • Duan S.X.
        • Ramos J.
        • Schneider J.S.
        • Yang N.N.
        • Chamberlain J.S.
        • Duan D.
        A five-repeat micro-dystrophin gene ameliorated dystrophic phenotype in the severe DBA/2J-mdx model of Duchenne muscular dystrophy.
        Mol Ther Methods Clin Dev. 2017; 6: 216-230
        • Kennedy T.L.
        • Guiraud S.
        • Edwards B.
        • Squire S.
        • Moir L.
        • Babbs A.
        • Odom G.
        • Golebiowski D.
        • Schneider J.
        • Chamberlain J.S.
        • Davies K.E.
        Micro-utrophin improves cardiac and skeletal muscle function of severely affected D2/mdx mice.
        Mol Ther Methods Clin Dev. 2018; 11: 92-105